Digitized by the Internet Archive in 2018 with funding from University of Illinois Urbana-Champaign

DATE DUE

		-	
- Jun			
4 Le 5	. 2002		
- LEO	10: 8	204	
ancoo			

gE0L0GICAL SURVEY 0F ILLINOIS.

A. H. WORTHEN, Director.

VOLUME VI.
 GEOLOGY AND PALEONTOLOGY.

G E OLOGY,

By A. H. WORTHEN, and Ass'ts G. C. BROADHEAD and E. T. COX.

PALAENTOLOGY,

 By ORESTES St. JOHN, A. II. WORTIIEN and F. B. MEEK.

TO THE

HON. JOHN L. BEVERIDGE,

GOVERNOR OF ILLINOIS.

SIR :
The sixth volume of my report on the Geological Survey of Illinois, the publication of which was provided for by the 28th General Assembly, is herewith subimitted. Its appearance has been delayed by causes beyond my control, and mainly by the length of time required to engrave the plates and map aceompanying this volume, the work in this instance being assigned exclusively to one engraving establishment instead of being divided between two or more, as was done with the preceding volume.
Although the Palæontology of the State is by no means completed, aud some departments, especially those of the corals and bryozoans, remain almost untouched, while many of our most common fossils have never been fully illustrated, and the descriptions eren have not been published in any work now aecessible to the general student, yet, in consequence of the manifest desire on the part of the law-making power to cut off all appropriations not deemed by them as absolutely neeessary, I have not thought it advisable to make any provision for continuing the work beyond the publication of this volume, which ineludes the geology of all the counties in the State not heretofore reported on.

Moreover, important facts are coustantly being developed in regard to our coal resourees, by experiments with the drill, and by shafts sunk in various portions of the Illinois coal field, which shonld be collated and made available for the information of the public; for it is quite impossible that a State surver covering so large an area as that possessed by the State of Illinois, could be carried on with the detailed accuracy with which such work is prosecuted in the ohler countrics of

Enrope, without an expeuditure of means far beyond any sum hitherto appropriated for scicutific purposes in this State; and, consequently, very much yet remains to be learned in regard to the distribution of our coals and other economical deposits.

The large collection of geological specimens accumulated by the Sur. vey remains in the condition it was left by the fire in the Masonic Hall building, where it was formerly kept, no proper place having as set been provided for its reception, and no provision made for its preservation as a State collection. Some disposition should be made of this collection, either to preserve it as the nucleus of a State Cabinet of Natural History, or to dispose of it to some scientific institution where it would be appreciated and properly cared for.

In the prosecution of the work I hare kept in view two objects that seemed to me of paramount importance, to-wit: First, the development of the material resources of the State, so far as was possible, by making known whaterer matters of economical importance the field exploratious should bring to light; and secondly, to bring out such scientific results as this rich and comparatively mexplored field made possible, so that the State of Illinois, through its geological surser, might contribute something towards the general stock of scientific knowledge.

Althongh the scientific results brought out by the survey may not be, and probably are not appreciated by our own people, nevertheless I have the satisfaction of knowing that they are elsewhere, and that the Illinois Reports are esteemed a desirable acquisition to all scientific libraries, both public and private, and the applications for this work since the distribution of the first three volumes, coming mainly from indiciduals and institutions directly interested in scientific pursuits, would have consumed the entire edition published.

As the alleged reasons for withholding further appropriations to continue the work were based on the necessity of economy, and lest it might therefore be supposed, by those unacquainted with the facts, that there has been an unnecessary expenditure of money in the prosecution of this work, I deem it but just to myself to state in this comnection precisely the amount that has been placed at my disposal for carrying on the Geological Surrey of the State since it has been under my direction.

When the surver came under my control, in Mareh, 1855, the anmal appropration was $\$ 5000$ per annum, with an alditional sum of $\$ 500$ per annmm for topographical work. As the latter amount was intirely inadequate to the accomplishment of any practieal results in topography, it was expended mainly in the enstruetion of the State map accompanying this volume, and in drawing sueh eounty maps as the proseeution of the work rendered necessary, so that the first named sum was all the available means at eommand to pay the salaries of myself and my assistants iu geology and palæontology, for chemieal work and chemieals, and the traveling and incidental expenses of the surrey. This appropriation continued until the adoption of the new eonstitution in 1872, when by a provision in that instrument it was abolished. In addition to this annual appropriatiou, the twenty.fifth General Assembly made a special appropriation of $\$ 10,000$ per anuum for two years to eomplete the field work, and five or six additional assistants were employed for that time, and the sum so appropriated was exclusively devoted to this department of the survey.

After the expiration of the regular annual appropriation in 1879 , by the eonstitutional provision above referred to, the twenty-seventh General Assembly appropriated the sum of $\$ 2000$ to defiay the entire expense of the Survey for one year, and the succeeding General Assembly appropriated the sum of $\$ 3600$ per annum for two years to defray the salary of myself and assistant ineluding offiee and traveling expenses, and $\$ 1500$ to pay the eost of the drawings required to illus. trate this volume. This appropiation expired on the 30th day of June, last. The two first volumes of my report were published in 1866, the third in 1868, the forrth in 1870 , the fifth in 1872 , and the sixth in 1875 , this latter volume laving been delayed nearly a year by causes already alluded to. These six volmmes, averaging about 550 pages each and containing 175 full page plates besides numerons wood ents, were brought ont in abont nine years on the appropriations above specified. From these facts and figures those best qualified to jndge ean determine, for themselves, whether or not the Ceological Survey of Illinois has been conducted with due regard to economy.

In taking leave of a work which I have had so long in charge, and to which I have deroted the best years of my life, I ean but express my
grateful acknowledgments to the many good and true friends of the Survey in various portions of the State, through whose influence and encouragement the work has been brought so near to a final completion, and more especially to thoseeminent eastern scientists, Prof. UENRy, of the Smithsonian Institution, Prof. DaNa, of New Laven, and the lamented Agassiz, for the loan of rare scientific books from the extensive libraries under their control, and for their personal influence and assistance freely manifested in various ways, by which the best interests of the Surrey have been greatly promoted.

I have the honor to be
Your obedient servant,
A. I. WORTHEN.

SpringField, Ill., Sept., 1875.

TABLE OF CONTENTS.

PARTI.
Letter to the: Hon. John L. Beveridge. Page III
CHAPTER I. COAL MEASUIRES.
By A. II. Worthen. Pages 1-8
CIIAPTER II.
GEOLOGY OF CLARK COUNTK.
By d. II. Worthen. Pages 9-21
CHAPTER III.
GEOLOGY OF CRAWFORD AND JASPER COUNTIES.
BJ A. II. Worthen Pages 22-36
CILAPTER IV.
GFOLOGY OF LATRENCE AND RICHLAND COUNTIES.
By A. H. Wonthen. Pages 37-50
CHAPTER V.GEOLOGI OF W゙ABASH ANU EIWHADS COUNTIES.
13y A. II. WorthenPages 51-65
CIIAPTER VI.GEOLOGT OF WHITE AND MAMIKOON COUNTIES.
By A. II. Wothen. I'ages 66-81
ClIADTER V'II.
(BEOLOGY OF WAYNE, AND CLAY (OUNTIES.
By A. 11. Worthen. Pages 82-97
(11AJTER VIII.
GEOLOGY OF CUMBERLAND, COLEN AND DOUGLAS COUNTIES.
liy A II. WorthenPages 98-111
('II.ID'IERE IN.

Bys A. II. WorthenPagr-s 112-127

I'y G. C. Broarthearl

CHAPTER XI.
 GEOLOGY OF FAYETTE COUNTY.

CHAPTER XII. GEOLOGY OF MONTGOMERY COUNTX.

By G. C. Rroadhead. Pages 149-155
CHAP'TER XIII.GEOLOGY OF CHRISTIAN COUNTY.
By G. C. BroadheadCHAPTER XIV.GEOLOGY OF SHELBY COUNTY.
By G. C. Broadhead Pages 163-174
CHAPTER XV.
GEOLOGY OF EFFINGHAM COUNTY.
By G. C. Broadhead Pages 175-184
CHAPTER XVI.
GEOLOGY OF MOULTRIE, MACON AND PIATT COUNTIES.
By G. C. Broadhead Pages 185-196
CHAPTER XVII.
GEOLOGY OF GALLATIN COUNTX.
By E. T. Cox Pages 197-219
CHAPTER XVIII.GEOLOGY OF SALINE COUNTY.
By E. T. Cox Pages 220-234
CHAPTER XIX.GEOLOGY OF LIVINGSTON COUNTY.
By H. C. Freeman. Pages 235-244
PARTII.
PALAEONTOLOGY OF ILLINOIS.
SECTION I.
DESCRIPTIONS OF VERTEBRATES.
By Orestes St. John and A. H. WorthenPages 245-488
SECTION II.
DESCRIPTIONS OF INVERTEBRATES.
By A. H. Worthen and F. B. Meek.

CHAPTERI.

COAL MEASURES.

The eoal area within the boundaries of the State of Illinois may be safely estimated, in ronnd numbers, at about $3 \tilde{5}, 000$ square miles, an area nearly three times as great as that of Penssylvania or Ohio, and equal to one tifth of the productive coal fields of the United States, throwing out of the account the lignite basins of the western Territories. A line drawn from Hampton, in Rock Island eounty, to the junetion of the Kankakee and Iroquois rivers, would define approximately the northern line of the Illinois eoal field ; but from the junction of these streams the boundary line deflects south to the vicinity of Chatsworth, in Livingston county, and thence eastwardly to the Indiana line. All the area south of the line above designated, except a narrow belt along the Mississippi to the mouth of the Ohio, and up the latter stream to Battery Rock, is underlaid by the Coal Measures, and nearly all the counties within the above described boundary have afforded some coal, although in several of them the coal lies too deep below the surface to be available without a heavier expenditure of eapital than the present demand for fuel would seem to warrant.
The Coal Measuyes attain an aggregate thickness of about fourteen hundred feet, and may be properly divided into upper and lower measures, taking as a live of demarcation the limestone of Shoal creek and Carlinville, a tough brownish-gray rock that is so persistent in its lithological characters and development as to make it a conspicuous horizon in tracing the detailed stratification of the Coal Measures. This limestone overlays a thin coal often only three or four inches in thickness, but locally beeoming from eighteen inches to two feet or more, as in the vicinity of Highland, in Madison eounty, where it has been worked in a limited way for many years. Above this limestone there is some seren hundred feet of strata belonging to the upper measurcs, inclosing six or seven scams of coal that range in thickness from six inches to three feet, but nonc of then attaining to the thickness of those in the lower measures. In Europe a coal sean eleven or twelve inches thick is considered of sufficient valne to be worked in the usnal way by
underground drifting, but in this comntry seams of less than eighteen inches are generally neglected, except when they can be worked by stripping the coal along the outcrop of the seam.

The following detailed section has been constructed from the most satisfactory outcrops examined in various portions of the State, and is given as an approximately correct description of the most important strata recognized in the progress of the Geological Survey. They are numbered from the bottom upward and may be brietly described in detail as follows, commencing with the highest beds of the upper measures as they were found developed in Effingham and some of the adjacent counties. The best exposures of these upper coals and associated strata were found on the upper course of the Kaskaskia and its tributa. ries, and to the east and south-east including the counties adjacent to the Wabash river, from Clark county on the north to the south line of White county, where the limestone separating the upper and lower measures is found outcropping at New Haren, on the lower Wabash :

Ft. \ln.
No. 95. The highest strata recognized in the distict above described was found by Mr. Broadhead, in Effingham county, and consists of saudstone and sandy shale, upper part gray. middle brown, with fragments of fossil plants.50

No. 94 Bitumiuous shales and septaria, with Pleurotomaria spharulatu, Spirifer plano-con. vcxus, Rhynchonclla osagcnsis, Nautilus occidentalis, N. ferratus, etc................... 6
No. 93. Dark clay shales.. 4
No. 92. Dark ash-brown shaly and nodnlar limestone, containing Jyalina sub-quadrata, Aviculopecten occidentalis, Bellerophon Montfortianus, Edmondia, Lcda, Macrodon, өtc..
No. 91. Blue and olive shales ... 5
No. 90. Gray sandstones aud sandy shales.. 26
No.89. Thiu coal ..
No. 88. Fire clay... 5
No. 87. Buff sandstone.. 12
No. 86. Clay shale with bauds of fossiliferous iron ore containing Leda bella-striata, Astartclla vera, Nucula ventricosa, Spirifer plano-conrexus, Chonetes Flcmingii, Myalina sub. quadrata, Macrocheilus inhabilis, I'leurotomaria Grayvillensis, Bellerophon Montfortianus, B. carbonarius, and Orthoceras Rushensis.

35
No. 85. Bituminous shales aud pyritiferous limestone with argillaceons shales contaiuing

No. 84. Gray pyritiferous sandstone .. 30 to 40
No. 83. Shales with fucoids 40
No.82. Gray limestone with Fusulina cylindrica? Athyris subtilita, Spirifer camerutus, S. plano-convexus, өte .. 4 to 8
No. 81. Calcareous shales with Orthis carbonaria and Iroductus longispinus very abundant .. 1
No. 80. Coal No. 16, Nelson's coal in Eftingham, aud the coal on the Embarras. in Coles Co.. 1 to 3
No. 79. Fire clay... 1 to 3
No. 78. Sandstone and shales... 80 to 90
No. 77. Bituminous shale.. 2
No. 76. Coal No. 15, "Shelby coal"... 1 to 3
No. 75. Fire clay .. 2 to 5
No. 74. Buff limestone.
No. 73. Sandstone and shales... 15 to 50
No. 72. Shales partly calcareous... 10 to 15
No. 71. Calcareo-bituninons shales passing into shelly bituminous limestone, fossils abnndant, Euomphatus sub-rugosus, Chonetes Flemingii, Productus costatus, I'. longispinus, Hemipronites crassus, Retzia punctulifera, Lophophyllum proliferum, Orthoceras Rushcnsis, Erisocrinus typicus, Zcacrinus? mucrospinus, aud Peripristis semicircularts.
Ft. In
No. 70. Coal No. 14, "Pana coal" 6
No.69. Fire clay and clay shalo 3 to 5
No. 68. Calcareous sandstone 2 to 5
No.67. Sandstoue and sandy shale 50
No.66. Shaly limestone with fossils similar to those of the bed below 4
No.65. Hard gray limestoue containing Syntrielasma hemiplicata, Meekella striato-costata, Spirffer cameratus, S. lineatus, Spiviferina Kentuckensis, Athyris subtilita, Tere- bratula bovidcns, Hemipronites crassus, Productus longispinus, P. costatus, Stenoporalepidodendroides, Lophophyllum proliferum, Polypora, Synocladia, etc........... 5 to 25
No. 64. Shales 6
No. 63. Coal No. 13 1 to 1
No.62. Bituminous and argillaceous shales locally fossiliferous, containing Pleurotomaria spharulata, P. tabulata, P. Grayvillensis, Macrocheilus inhabilis, Goniatites globulo- sus, Orthoceras Rushensis, Bellerophon carbonarius, Leda bella-striata, L. Oweni, Nu- cula ventricosa, Astartella vera, Euomphalus sub-rugosus, Polyphemopsis per-acuta and Conutaria 6 to 8
No. 61. Sandstoves and sandy shales 75 to 85
No. 60. Dark shaly limestone and calcarcons shalcs with Hemipronites crassus, Athyris sub- tilita, Spirifer cameratus, Spiriferina Kentuckensis, Synocladia biserialis, Productus menctatus, P. Prattenionus, P. costatus, P. longispinus, etc 2 to 4
No. 59. Coal No. 12 6 inches to 1
No. 58. Shales 10
No. 57. Gray or huff limcstone, partly shaly, with Productus Nebrascensis, P. longispinus,Spirifer cameratus, Spiriferina Kentuckensis, Synocladia bierialis, Polypora, ete. 5 to 20
No. 56. Bituminous shale, locally fossiliferous 2 to 4
No. 55. Coal No. 11 1 to 1
No. 54. A renacooth and argillaceonsshales 35 to 40
Ño. 53. Caleareo-bituminous shales containing Bellcrophon carbonarius, Pleurotomaria sphee- rulatu, I'roductus longispinus, Ohonetes Verncuilianus, and Lophophyllum prolif.crum.2 to 3
No. 52. Coal No. 10 7 inches to 3
No. 31. Firc clay 1 to 4
No. 50. Sandy shales and brown sandstone 4 to 8
No.49. Dand of cone in cone replaced in Whito county at Carmi by a band of brown iron ore filled with a minuto bivalve shell, probably a Posidonia 2
No. 48. Arrillacenus shales with flattened iron stones 20
No.47. Dark ash-gray or chocolato colored calcareons sandstones with Aviculopecten occiden- tutis, Productus Vebrasccnsis, P. I'rattenianus, Myalina sub-quadrata, M. Swullovi, Euomphalus sub-rugosus, Pinna per-acuta, Ivicula longispina, Meckella striato-cos- tata, Bellerophon crassus, otc 2 to 5
This bed outcrops in the hed of the creok in the south part of the town of Carmi,in Whito county, and also a mile and a half north of Now Haven, at Mr. Murphy'splace in tho south-oast part of Clark connty, at the old Joliff mill site on Crookedcroek in Clinton county, and was penetrated in tho shaft at Centralia, at a depthof about a lundrod fect from tho surface.
No. 46. Sandy shales and sandstone 30 to 00
No. 45. ILad hrownish-gray limostono of Shoal creek, Carlinville and Now IIaven, and thorecognized bonudary liue betwecn tho upper and lowor messnres. Locally theupper layers aro shaly and coutain ummorons fossils, anong which aro Productuslongispinus, Spirifer cameratus, Sp, lineatus, Sp. plano-convexus, Terebratula bovi-dens, Rhynchonclla osagensis, Rctzin punctulifera. Athyris subtilita, Chonetes vario-latu? Hemipronites crassus, Platyostoma Pcoriensc, Chonophyllum, ote........... 4 to ?
No. 44. Greenish-drab and blue slales 4 to 0
No. 43. lifinninons shato 2
No. 42. Jlue shalo, with flattened concretions of iron. 8 to 10
No. 41. Coal, No. 9 1 to 2
No. 40. Fire-clay 1 to 2
No. 39. Sandy sliales and sandstono. 35 to 65
No. 38. Caleareo-bituminous shale, passing looully into an argillaceons limestone aboundingin fossils, among which the following are the most eommon: Leda belle-stricta,Nuculu ventricosa, Astartella vora, A. varica, Bellerophon carbonarius, B. Montforti-enus, B. per.carinatus, Macrocheitus inhabilis, 1f. primigenius, M. ventricosus,Pleurotomaria spherulata, I'. Grayeillensis, I'roductus longispinus, I'. Nebrascensis,P. Prattenianus, Phillipsia Sangamnensis, P. scituta, Jolyphemopsis por.acuta,Orthoceres Rushonsis, Zeacrinus? mucrospinus, Erisocrinus typicus, Lophophyllumprolifcrum, tete2 to 3
No. 37. Coal, No. 8 1 to 2
No. 36. Dark ash-gray fire-clay 2 to 3
No. 35. Nodnlar shale passing locally into a hard silieious limestone 3 to 4
No. 34. Sandy shales and sandstone. 40 to 75
No.33. Dark ash.gray sulicious limestone containing Athyris subtilitio. Spirifer camcratus, Chonctes mcsolobr, joints of Crinoidca, ete. 1 to 7
No. 32. Bituninons shale. 1 to 3
No. 31. Coal, No. 7 2 to 9
No.30. Fire clay 2 to 3
No. 99. Sandstone and sandy-shale 30 to 50
No. 28. Gray argillaceous limestone, with the Fusulina figured in vol.5, pl. 26, fig. 8. It is assoeiated in Fulton eounty with Rhynchonclla Osagonsis, Spirifcrina Kentuckensis and Hemipronitcs crassus 3
No. 27. Lammated bituminons shale, with Lingula umbonata, and Cardinia? fragilis to 4
No. 26. Coal, No. 6. $1 \frac{1}{2}$ to 5
No. 25. Fire clay 1 to 3
No. 24. Sandstones and shates. 25 to 75
No. 23. Hard black shale, with coueretions of limestoue containing numerons fossils, among which are P'roductus muricatus, Clinopistha radata, Nautilus, Orthoccras, otc.. 1 to 5
No. 22. Coal, No. 5 to 7
No. 21 Fire elay. 1 to 3
No. 20. Sandstowe and sandy shale 30 to 75
No.19. Bituminons shale and argillaceons limestone. 2 to 4
No. 18. Coal, No. 4 2 to 4
No. 17. Fire clay and clay sbale 2 to 10
No. 16. Sandstone and sandy shale 50 to $\begin{gathered}\text { is }\end{gathered}$
No. 15. Bituminous shale passing locally into dark blue limestone and encretions of septaria filled with fossils, Cardiomorpha Jissouriensis, Discina nitida, Productus murica-tus, P. Prattenianus, with two or three sinall species of Goniatites and Nautili. 3 to6
No.14. Coal, No. 3 2 to 4
No. 13. Fire-clay 1 to 3
No. 12. Hard, tongl steel-gray limestone weathering to a rusty-brown color, and containing spirifer cameratus, joints of Crinoidea, ete 11 $\frac{1}{2}$ to 3
No. 11. Sandstone and silicions shale 25 to 30
No. 10. Blne elay shale filled with fossil plants. At Murphysboro, Colehester and on Mazoncreek, in Griundy eounty, this sha'e contains coneretious of irou ore inelosingfussil plants, insects, crnstaeca, ete.3
No. 9. Coal, No. 2. 2 to 5
No. 8. Light gray fire clay 3
No. 7. Sandstone and silieions shates, abont fifty feet in thickness, ou the northern andwestern borders of the eoal ficld, but in Gallatin county attaining a thickness ofabout one hundred and forty feet, with some thin seams of coal................. 50 to 14
No. 6. Dark argillaceons limestone, sometimes highly silicions, and in lock Island connty assoeiated with a band of dark steel-gray chert, from six inehes to a foot or more in thiekness. At some loealities, as near Searille, in Fulton countr, it enntains numerens fossils, anong which are Spirifor cumcratus, S. lineatus, S. opimus, Nantilus occidentalis, Producfus Prattenianus, P'.costatus, P'. ntonus, I'penctatus, Macrocheilus, ete. This limestono is replaced in Southem Illinois by silicions shales..
No. 5. Bituminous and silicions shales forming the roof of Coal No. 1. In Gallatin connty this slate is generally silicious, but in the northern portion of the State it is nsually bitmminous, and contains Spirifer cameratus, Athyris subtilita, Aviculopecten, Orthoceras, etc.
Ft. I
112 to 5
No. 4. Coal, No. 1 2 to 3
No. 2. Silicious shales, with concretions of cathonato of iros. In Gallatin connty this bed is trom sixty to seventy foet in thickness, but is not fonod at all in the northern portion of tho State to 70
No. 1. Coarse sandstone or conglomerato forming the base of the Coal Measnres. In tho sonthern portion of the Stato it is largely deroloporl, with an avcrage thickness of moro than a handred feet, but in tho northern portion it is seldom found attaining a thickness of more than twenty five to thirty fect, and is of wanting altogother. It appears at several localitios in Whiteside connty, as ontliers, of considerable thichncss. sevoral miles boyoud tho present boundary of tho coal field. Its thick- ness usually rauges from.
Stems of Sigillaria and Lepidodendron are almost the only fossils it affords, and even these are seldom found in a condition to be specifically determined.
The deepest shaft yet sunk in the State is the one at Centralia, which commences abont the horizon of coal No. 11, and lats been carried down to the depth of 576 feet. The following is a correct copy of the record kept of the thickness and general character of the beds passed through in this shaft, and is inserted here for comparison with the general section, and with others that may liereafter be sunk through the corre- sponding strata in other portions of the State.
Shaft at Centralia.
Ft. I In
No. 1. Drift clay aud soil
11
No. 3. J3lne shalo 47
No. 4. Shalo 8
No. 5. Limestone. 6
No. 6. Coal 8
No. 7. Bluc shale 6
No. 8. Soapstone (clay slaale). 2
No. 9. Limestove 6
No. 10. Ilard sandstone 5
No. 11. Coal. 2
No. 12. Soft saudstone 6
No. 13. Coal. 6
No. 14. Sindstano. 6
No. 15. Coal. 2
No. 16. Soapstone (clay slate) 4
No. 17. Limestono 2
No. 18. Sandstono 2
No. 19. Jlue rock. 6
No. 26. Fire-clay. 2
No. 21. Soipstono (clay slialo) 6
No. 22. Blus alablo 29
No. 23. I inmestome (Carlinville bed) 11
No. 24! Shalo 6
No. 25. Coal. 4
No. 26. Clay shalo 4
Ň. 27. Samdstone 10
Nor. 28. Shale 50
No. 20. Limestono 1
No. 30. Shalo 2
No. 3t. Soapatoue (clity shale) 3
No. 32. Siudsture. 24
Ft. I In.
No. 33. Blue shale12
No. 34. Coal.
No. 35. Clay shale 3
No. 36. Line conglomerate 8
No. 37. Light-co ored shale 10
No. 38. Saudstone 50
No. 39. Dark shale 43
No. 40. Black slate, with carbonato of iron 6
No. 41. Coal 13
No. 42. Clay shale, with sulphuret of iron 3
No. 43. Limestone, kilvey ore and fire-clay mixed. 11
No. 4t. Sandstone, with sulpuuret of iron 1
No. 45. Black slate 1
Na. 46. Fireclay 6
No.47. Gray limestono 2
No. 48. Variegaterl shale. 8
No. 49. Coal 2
No. 50. Limestone 8
No. 51. Bline shale 2
No. 52. Gray limestone 6
No. 53. 13lack sliale 6
No. 54. Gray limestone 4
No. 55. Black shalo. 12
No. 56. Blue limstoue. 7
No. 57. Bituminous shale 2 62
No. 58. Coal 7
Total depth 576

No. 9 of this shaft corresponds with No. 47 of the general section, and No. 23 is probably the Carlinsille limestone, the equivalent of No. 45 of the general section. This shaft is nearer the center of the coal field than any other in the State, and there seems to be a general increase in the thickness of the strata from the borders of the coal field eastwardly, whieh earries the lower seams to a greater depth from the surface than they were supposed to be, judging only from the examinations made at points remote from the center of the basin. In Sangamon and Macoupin counties the main coal is found generally at a depth of 200 to 240 feet below the Carlinville limestone, while at Centralia the first workable coal reached in their shaft was 373 feet below this limestone, though it is quite possible that the eoal found there belongs to a lower horizon than the seams opened in the more northern eounties. The borings at Pana, Vaudalia and Deeatur liave not reached any workable eoal, so far as reported, though the one made at the two former points was earried far enough to reach the Springfield coal, unless there is a greater increase in the thickness of the overlaying strata than could be reasonably antieipated. The boring with the diamond drill at Deeatur was stopped from 80 to 100 feet above the horizon at which the coal should be found, and hence afforded no evidenee in regard to the development of the main coals in that county. A single boring is, however, in no ease a satisfactory test as to the derelopment of coal at a giren point, as the drill might strike what the
miners term a "horseback," and pass below the coal withont showing any indications of the existeuce of a workable seam.

On the eastern borders of the State, in the comnties adjacent to the Wabash river, several borings have been made that failed to find any coal thick enough to be of any value, and it is possible that there are some local areas where there are no heavy beds developed; but this is a point as yet unsettled, and only to be determined by careful experiments at many different localities. It is certainly not a well recognized principle in geology that the central portion of a coal field should be barren, and ouly the borders productive, and there is no good reason to suppose that the Illinois coal basin will prove an exceptional case in this respect. Sir CHarles Lyell suggests, in his "Principles of Geology," that the facts seem to "imply the existence, during the carboniferous epoch, of islands, instead of an extensive continent, in the area where the coal was found." If we accept this as probably one of the prevailing conditions of the coal-producing epoch, we must expect to find certain areas in the coal fields where the surface was not elevated above the ocean level long enough to yield a forest growth sufficient; when again submerged, to form a coal seam, and conscquently local areas of greater or less extent where no workable coal can be found.

It is now a rery generally accepted proposition that the vegetable matter necessary to the production of a coal seam grew upon the spot where the coal is found, and was not, as formerly supposed, drifted from an adjacent shore into the ocean's bed, where it was finally covered by sediments and transformed into bituminous coal through the slow chemical proccsses of succeeding agcs. Hence coal would ouly be found where the conditions requisitc for a dense growth of tropical plants prevailed, and near the ocean level where the land was liable to submergence. All the remains of animal life found in the limestones and calcareous and bituminous shales that are associated with the coal in this State are of marine origin, showing conclusively that the beds from which they come have becn formed bencath the ocean, and not under fresh water, as formerly supposed, and hence onr present coal fields must have been low peaty and boggy lands adjacent to the sea shore, and subject to frequent and loug continued submergencies, during which the sandstones, shales and limestones separating the varions seams of coal were deposited, inclosing the remains of fishes, mollnses and other marine organisms with which tho ocean was filled at that period.

In defining the boundaries of the coal ficld on the State map, we have been compelled to rely mainly on the reports of borings for the counties of Kankakce and Irofuois, as there are few or no natural outcrops of the strata along the borders of the coal arca in these countics,
and this is also the case with regard to the character of the formations upon which the Coal Measures rest in the counties above named. So far as is known at the present time, no Devonian or Lower Carboniferons rocks are known to exist in these coanties, and the whole area east of the coal field is supposed to be underlaid by upper and lower Silurian strata; but it is by no means improbable that beds belonging to the Devonian or even the Lower Carboniferous may yet be found in these counties, as these formations are known to underlay the Coal Measures on the Upper Wabash, in the vicinity of Williamsport, in Indiana, in considerable force, and unless they thin out rapidly to the northwestward, should extend into this State.

OHAPTER II.

, CLARKCOUNTY.

Clark county is sitnated on the eastern border of the State, and is bounded on the north by Edgar and Coles counties, on the east by the Iudiana line and the Wabash river, on the sonth by Crawforl, and on the west by Cumberland and Coles counties. It contains ten full and eight fractional townships, making a total area of about five hundred and thirteen square miles.

The surface of the country in the western portion of the county is generally rolling, though some of the prairies are rather flat. The eastern portion is more broken, especially in the vicinity of the Wabash bluffs, where it becomes quite hilly, and is ofteu broken into steep ridges along the courses of the small streains. The general level of the surface of the highlands above the railroad at Terre Haute, which is a few feet abore the level of high water in the Wabash, is from one hundred and twenty-five to one liundred and fifty feet. The principal streams in the western part of the counts are North Fork, which traverses the western portion of the county from north to south, and empties into the Embarras ricer in the eastern part of Jasper county ; and Hurricane creek, which rises in the sonth part of Edgar county, and after a general course of south 20° east, discharges its waters into the Wabash river near the sonth-east corner of the comty. In the eastern part of the county Big creek, and two or three of less note, after a general suuth-cast comse in this county, empty into the Wabash river. The North Fork, thronghout nearly its wholo course, runs through a broad, flat valley, affording no exposures of the underlaying rocks, and the bluff's on either side are composed of drift clays, and rise from thirty to filty feet or more abore the valley, and at several points where wells have been sunk these clays and moderlaying quicksands are tomnd to extend to an equal depth beneath the bed of the stream. The creelss in the eastern portion of the comnty are skirted by bruffs of rock through some portion of their comses, amb afford a better opportunity of determining the geological structure of the comnty.

The Quaternary system is represented in this connty by the alluvial deposits of the ricer and creek valleys, the loess of the Wabash bluffs, the grarelly clays and hard pan of the true drift, and the underlaying stratified sands that are sometimes found immediately above the bed rock.

Tlie drift deposits proper vary in thickness from twenty to seventyfive feet or more, the upper portion being usually a yellow gravelly clay, with local beds or pockets of sand. The lower division is mainly composed of a bluish-gray hard pan, exceedingly tough and hard to penetrate, usually impersious to water, and from thirty to fifty feet in thickness. This is underlaid by a few feet of sand, from which an abundant supply of water can be had where it cannot be found at a higher level. A common method of obtaining water on the highlands in this county; where a sufficient supply is not found in the upper portion of the drift, is to sink a well into the hard pan, and then bore through that deposit to the quicksand below, when an unfailing supply is usually obtained. Bowlders of granite, sienite, trap, porphyry, quartzite, etc., many of them of large size, are abundant in the drift deposits of this comnty, and nuggets of native copper and galena are occasionally met with, having been transported along with the more massive bowlders, by the floating ice, which seems to have been the transporting agency of our drift deposits.

Coal Measures.

All the rocks found in this county belong to the Coal Measures, and include all the beds from the limestone that lies about 75 feet abore coal No. 7, to the sandstone above the Quarry creek limestone, and possibly coal No. 14 of the general section. These beds are all above the main workable coals, and although they include a total thickness of about 400 feet, and the horizon of five or six coal seams, yet none of them have been found in this county more than from 12 to 18 inches in thickness. The following general section will serve to show the relative position and comparative thickness of Coal Measures in this county :

Ft. In
No. 1. Sandstone, nowhere found well exposed... 30 to 40 ?
No. 2. Quarry creek aud Martinsville limestone... 20 to 30
No. 3. Shales, lower part bituminous... 10 to 15
No. 4. Coal (No. 14 亿).. 1
No. 5. Shaly fire clay... 2 to 3
No. 6. Sandstone and shale, some bands of iron carbonate.................................... 18 to 20
No. 7. Bituminous shale.. 1 to 2
No. 8. Coal (No. 14 亿).. 1 to $1 \frac{1}{2}$
No. 9. Clay shale and fire clay... 4 to 6
No. 10. Cinuaidon-brown limestone... 3
No. 11. Coal (local ?).. 0
No. 12. Sandy shales passing into massivo sandstone below.................................... 40 to 50
F In.
No. 13. Dark shales with nodules of arg - and fossilifcrong limestone 5 to 8
No. 14. Harvl hlack shale approachiug caunel coal 1 to 3
No. 15. Evenly hodded sandstone. 20 to 25
No. 16. Greenish arg. and sandy shales 30 to 40
No. 17. Sandstone 8 to 10
No. 18. Gray limestone (upper division of Livingston hed) 5 to 8
No. 19. Sliale onclosing a 6 to 10 -inch coal (No. 12 ?) 7 to 8
No. 20. Limestono, lower hed at Livingston 7 to 8
No. 21. Argillaceous and sandy shales 30 to 35
No. 22. Coal (No. 11 !) $\frac{1}{2}$ to 1
No. 23. Brown and rray sandstonos 24
No. 24. Shale, lower part hitnminous 25
No. 25. Coal, local. 7
No. 26. White fire clay 6
No. 27. Green clay shale. 6
No. 28. Shale and sandstone. 36
No. 29. Chocolate-hrown impure limestone 3 to 4
No. 30. Bitnmiuous shale 3 to 6
No. 31. Coal No. 10 1 to 1
No. 32 Drab colored shales 30 to 40
No. 33. Compact hrownislogrey limestone 4 to 5
This limestone is ahout 75 to 80 feet ahove the coal in tho shaft just across tho river from TerroHante, which is No. 7 of the Illinois scction, aud the intervening heds would gire the following con-tinuation of the section, if carried down to tho horizon of this coal; but they do not come to tho sur-face in Clark county :
No. 34. Grecn, hluo and red clay shales 10 to 12
No. 35. Sandstono 12 to 15
No. 36 Argillaceous aud sandy shales. 45 to 50
No. 37. Bituminons shalo 1 to 2
No. 38. Coal No. 7 5

The coal afforded by this seam is a rather soft, fat, caking coal, of fair average quality. The lower part of the seam contains two or three partings of shale. This seam would be the first workable coal that could be reached anywhere in Clark county, and its approximate depth at any point where it was desirable to bore for it may be determined by reference to the foregoing general section. From the horizon of the Quarry creek limestone to this coal it would be from 350 to 400 feet, and from the horizon of the Livingston limestone from 250 to 300 feet.

In the north-west part of this county several borings were made for oil during the oil excitement, some of which were reported to be over 900 feet in depth; but as no accurate record seems to have been kept, the expenditure resulted in no general benefit further than to determine that no deposit of oil of any value existed in the vicinity to the depth penetrated. The following record of the "Old Well," or "T. R. Young well," was furnished to Prof. Cox by Mr. Lindsey :
Suil and drift clay 23
Ilard pau. 30
Sandstone 20
Mud stone? 20
Coal and bituminous shale 3
Sandstone 22
Coal 1
Sandstone. 5Chy shale (soapstono so-called) 23

Sandstone. 12
Coal 1
Sandstono. 90
Hud stone? 2
Hard rock 1
Sundstone. 52
314

The upner part of this boring corresponds very well with our general section, except in the absence of the Quary creck limestone, which should have been found where thes report 20 feet of "mud stone," but whatever that may have been, it seems hardly probable that such a term would be used to designate a hard and tolerably pure limestone.

This well was tubed with gas pipe for some 8 or 10 feet above the surface, and water, gas and about a half gallon of oil per day was discharged. All the wells, so far as I could learn, discharged water at the surface, slowing that artesian water could be readily obtained here, but it was all more or less impregnated with mineral matters and oil, sufficient to render it unfit for common use. The 900 foot well must. have been carried quite through the Coal Measures, and, if an accurate journal had been kept, the information it would have afforded would have been of great value to the people of this, as well as the adjacent counties. It would have gone far towards settling the question as to the number and thickness of the workable coals for all this portion of the State, and the depth at which they could be reached from certain specified horizons, as for instance, from the base of the Quarry creek or Livingston limestones, or from either one of the thin coals of the upper measures that were passed through in this boring. As it is, the expenditure was an utter waste of capital, except in so far as it may have taught those directly engaged in the operation the folly of boring for oil where there was no reasonable expectation of finding it in quantities sufficient to justify such an expenditure of time and mones.

The beds forming the upper part of the general section in this connty are exposed on Quarty creek south of Casey and one mile and a half east of Martinstille, on the upper course of Hurricane creck, and tho Blackburn branch southeast of Parker prairie. At the quarry a mile and a halt east of Martinsville, the limestone is heavy bedded, and has been extensively quarried for bridge abutments, culverts, etc., on the old National road. The bed is not fully exposed here, and seems to be somewhat thinner than at Quarry creek, where it probably attains its maximum thickness, but thins out both to the north-east and south-west from that point. The upper part of the bed is generally quite massive, afforling beds 2 feet or more in thickness, while the lower beds are thinner, and at the base it becomes shaly and locally passes into a green
elay shale with thin plates and nodules of -limestone. These shaly layers afford many fine fossils in a rery perfeet state of preservation, though they are neither as numeroms or as well preserved here as at the onterops of this limestone in Edgar eomuty. The most eharacteristie fossils of this formation are Meckella striato-eostata, I'leurotomarice turbiniformis, and Platycerus Nebrascensis, associated with Athyris subtilita, spirifer cameratus, S. lineutus, Spiriferina Kentuckensis, Orthis carbonaria, Platyostoma Peoriense, Terebratula bovillens, Chonctes Verneuilianus, mmerons corals like Heliophyllum, and large joints of Crinsidea. Possibly the apparent thiming ont of this limestone to the northward in this eomity may be due to smface erosion, as we nowhere saw the overlaying sandstone in situ, and Prof. Bradley gives the thickness of this bed in Edgar eomity as about 25 feet, which does not indicate a rery decided diminution of its thickness in a north-eastwardly direction.

Below this limestone, in the vieinity of Martinsville, there are partial outcrops of shale and thin bedded sandstone, with a thin coal, probably No. 4 of the preeeding seetion, and south-west of the town, and abont three-quarters of a mile from it, there is a partial outcrop, of the lower portion of the limestone in the bluff on the east side of the North Fork valley, where we obtained mumerons fussils belonging to this horizon.

West and north-west of Martinswille no rocks are exposed in the bluffs of the creek for some distance, but higher up partial onterops of a sandstone, probably orerlaring the Quarry creek limestone, may be fonnd.

At Quarry creek, about a mile and a half sonth of Casey, on sec. 28, T. 10, R. 14, this limestone appears in full force, and has been extensirely quarried both for building stone and the mannfacture of quieklime. It is here a mottled giay, compact limestone, locally brecciated, and partly in regular beds fiom six inches to two feet or more in thickness. At least ".5 to 30 feet of limestone is exposed here, and as the orerlaying sandstone is not scen, its aggregate thicliness may be even more than the abore estimate. At its base the limestone becomes thin bedded and shaly, passing into a greenish ealeareous shale with thin plates and nodnles of limestone, abomding in the characteristic fossils of this horizon. At one point on this ereek a bed of green slate, abont two feet in thickness, was found intercalated in the limestone. A large amount of this stone was quarred here for lime, for macalamizing material and for bridge aboutments on the ohl National road, and this locality still furnishes the needed supply of lime and building stone for the smounding comntry.

At the base of the limestone here there is a partial exposire of bitmminons shale and a thin coal, probably representing the horizon of No. tof the preeeding section, below which some ten or twelve teet of sandy shale was seen.
At Wm. Howe's place, on sec. 3, T. 9, R. 14, we found the following beds exposed below the Quarry creek limestone:
Clay shale Ft.
Bituminous shale. 2
Coat. 1
Shaly fire-clay. 2
Sandstone and shale with bands of carb. of iron. 20
Coal. $1 \frac{1}{2}$
Clay shale. 6
Compact brownish-gray limestome. 3 to 5
Black shale and fireclay partially exposed. 2 to 3
Sandy shale and sandstone. 25 to 30

Both the coals in the above section have been worked here, mostly, by stripping in the bed of a small branch. The quality of the coal is good, but, unfortunately the seams are too thin to be successfully worked in a regular way. They are the equivalents of the two upper coals in the general section of the rocks of this county.

At Mrs. Brant's place, on sec. 10 of the same township, we found the following section, which varies but littlo from that above given:

Tumbling masses of the Quarry creek limestone were found here as well as at Mr. Howe's place, immediately above the blue shale, at the top of the foregoing sections, and there is probably only a few feet of sandy shale or sandstone intervening between the limestone and the upper shales of these sections. Considerable coal has been mined at Mrs. Brant's place, and these two seams formerly furnished the greater portion of the coal used by the neighboring blacksmiths. It is a true splint coal breaking freely into cuboidal blocks two or three inches in thickness, and free from pyrite. At Mr. Josepir Howe's dwelling honse the limestone was found at the bottom of his well, not more than ten to fifteen feet above the upper coal which crops out near by.

On Hurricane branch, commencing on sec. 14, T. 10, R. 13, and exteuding down the creek for a distance of two miles or more, there are continnous ontcrops of sandstone and sandy shales, No. 12 of the county section. The upper portion is shaly with some thin bedded sandstone, passing dowuward into a massive, partly concretionary sand-
stone that forms bold cliffs along the banks of the stream from 20 to 30 feet in hight. At the base of this saudstone there is a band of pebbly conglomerate from one to three feet in thickness, containing fragments of fossil wood iu a partially carbonized condition, and mineral charcoal.

The regularly bedded layers of this sandstone have beeu extcusively quarried on this creek for the construction of culverts and bridge abutments in this vieinity, and the rock is found to harden on exposure aud proves to be a valuable stone for such uses. Some of the layers are of the proper thickness for flag stones, and from their even bedding can be readily quarried of the required size aud thickuess.

This saudstone is underlaid by au argillaceons shale, and a black slate which, where first observed, was ouly two or three inches thick, but gradually increased down stream to a thickness of about fifteen inches. The blue shale abore it contains concretions of argillaccous limestone with numerous fossils, among which were Pleurotomaria spherulata, P. Grayvillensis, Astartella vera, Nucula ventricosa, Rhynchonella Eatonicformis, Orthis carbonaria, and Lophophyllum proliferum. These fossils indicate the horizou of No. 13 coal, and in Lawrence, White and Wabash counties we find a well defined coal seam associated with a similar shale containing the same group of fossils, but possibly belouging to a somewhat lower horizon.

On Blackburn branch, commeneing on sec. 24 in the same tornship, and following down the stream for a mile and a half, we have a repetition of the same beds of shale and sandstone seen on Hurricauc creek, underlaid by the clay shale and black slate, Nos. 13 and 14 of the county sectiou.

Near the center of section 4, T. 9, R. 12, the following beds were found on Joe's Fork, above the site of the old Anderson mill:

Massive sandstone, the same seen on Hurricane creek.	Ft.
Dark sliales with nodules of arg. limestone	to
Black shalo	1 to 2
Sandy shale and ovenly bedded sandstone.	20 to 25
Greenish coloredsandy and arg. shales.	35 to 40
Hard concretionary sandstones with softor beds below	8 to 10
Gray sparry limestone.......	
Shale with 10 inch seam of coal.	
Brownislı-gray, hard, brittle limestone..	7 to

The above includes Nos. 12 to 20 of the comnty section. The limestones at the base of the above section are the equivalents of the Livingston limestones hereafter described, and they pass below the bed of the ereek here abont a mile above the old mill. The sandstone overlaying the upper limestone here, when ceenly bedded, is quarried for building stone and affords a very good and durable material of this kind for common use. At the mouth of Joe's Fork the lower limestone is partly below the creek bed, the upper four feet only being visible,
and abore it we find clay shale 2 feet, coal 10 inches, shale 5 to 6 fect, succeeded by the upper limestone which is here only three or four fect thick. The upper limestone at the outcrop here is thinly and unevenly bedded and weathers to a rusty-brown color. The lower limestone is more heavily bedded, but splits to fragments on exposure to frost and moisture. It is of a mottled gray color when freshly broken, but weathers to a yellowish-brown. Fossils were not abundant in either bed, but the lower afforded al few specimens of Athyris subtilita, a coral like Heliophyllum, Protuctus costatus, and Terebratulu boridens.

At Mr. Spangler's place, on sec. 12, in Melrose township (T. 9, R. 12), a hard, brittle, gray limestone outcrops on a branch of Mill creek. The bed is about eight feet in thickness here, and is underlaid by a few feet of partly bituminons shale and thin coal from six to eiglit inches thick. This is probably the same as the upper limestone at the ohd Anderson mill, or No. 15 of the county section. The rock has been quarried here for lime, and is said to yield a fair article.

On sec. 5, T. 9, R. 10, Prof. Cox reports the following section :

The fossils observed here in the shale below the limestone were Productus Prattenianus, P. semireticulatus? P. punetatus, Chonetes mesoloba, Ńpirifer cameratus, Athyris subtilita, Lophophylhum proliferum, and Myalina perucformis. The limestone and coal of this locality probably belong to Nos. 10 and 11 of the counts section.

At the railroad bridge north-west of Livingston the following section mas be seen:

The upper bed of limestone (No. 18 of the county section,) is traversed by reins of calcite aud brown ferruginous streaks, that give the rock a mottled appearance when freshly broken. The upper layer of the lower bed is about thirty inches thict, and is a tongh, compact, gray rock, that breaks with an even surface and has a slightls granular or semioolitic appearance. The lower part of this bed is a mottled-gray fine gramed limestone, and breaks with a more or less conclonidal fracture. The forsils foubl in the limestone here were Athyris subtilita, Iboductus costutus, I'. Vebruseensis, Pinna per-ucutu, Spirifer cumeratus, N. plano-
convexus and joints of Crimoidea. The upper division of this limestone thins out entirely about a mile abore the bridge, and passes into a green sbale like that by which the limestones are separated. The following section is seen about one mile above the railroad bridge in the creek bluffs and adjacent hill tops:
Corered slope, with tumbling masses of Quarry creek limestone.. 20
Sandstone, upper part massire, with shaly beds below... 40 to 50
Pebbly sandstone... 8 to 10
Green clay shales, with a streak of coaly matter... 21
Limestone, upper division of Livingston bed.. 3 to 0
Green shale.. 3 to 5
Limestone (partial exposure) ... 3
The tumbling masses of limestone that are found in the hill tops hereaway; no doubt belong to the Quarry creek bed, which is found in partial outcrops not more than half a mile back from the creek, and from 80 to 90 feet above its level. The intervening sandsiones and shales which separate these limestones in the north-eastern part of Clark county are much thimer than where they onterop on Hurricanc and Mill creeks, in the southern portion, indicating a general thinning out of the strata below the Quarry creck bed to the northward. Sometimes I lare been inclined to ${ }_{j}^{7}$ believe that this upper limestone was unconfornable to the bods below, and its disappearance beyond Parker. prairie to the south-west, where the aprarent trend of its outcrop would naturally carry it, seems to strengthen this conclusion, but the outcrops of the underlaying beds are so partial and widely separated that it is difficult to determine this point satisfactorily, At any rate, the thickness of the lieds between these limestones north of Livingston does not exceed 75 or 80 feet, while south of Martiusville they are from 125 to 150 feet apart, at least, slowing that they thin out rapidly to the northward. The upper division of the Livingston limestone can be seen to thin out entirely about a mile north of the railroad bridge north-west of Livingston, and the otler division must also disappear before reaching Edgar comity, as Prof. Bradley failed to find it there, as will be seen by his report ou that county iu Vol. [V of these reports. The Qaarry creck lmestone is undoubtedly the same bed described by him as No. 3 of lis Ellgar county section; and if the Livingston beds extender into that comenty they would be found not more than 60 to 75 feet below his No. 3. Possibly this lower limestone may be represented there by his No. 11, which is described as a "sandy argillaceons limestone, containingr pebbles of black limestone and fragments of fossils," as we have nothing in Clark comty that can be correlated with that mess it is one or both divisions of the Livingston limestones. The distance from liis No. 3 down to coal No. 7 he makes from 185 to 250 feet, while in Clark county the distance from the limestone on Quarry creek to this coal is from 3.50 to 400 feet.

At Mr. Murphy's place, near the month of Ashmore ereek, on see. 29, T. 11, R. 10, a bed of shelly, choeolate-colored, impnre limestone, is found onteropping by the roalside at the base of the Wabash river blnffs. The section seeu here is as follows :

Ft. In.
Massise brown sandstone.. 30 to 40
Brown earthy linestono... 3 to 4
Bituminous shale. ... 4 to 6
Coal .. 1
Fire-clay and shale ... 4
These beds are equicalent to Nos. 29 to 31 inelusive of the counts section, mold the eoal at this point is eoal No. 10 of the Illinois seetion. The limestone above the coal here contains a fine Naticopsis and a Macrodou. It weathers to a rusty-brown eolor on exposure, but when first broken the color is a ehoeolate-brown, mottled with dark bloishgray spots. This limestone resembles the brown aremaceous limestone subsequently fond two and one-half miles north of New Hasen, near the sonth line of White eounty, and also in the bed of the ereek at Carmi, and I am inclined to believe it belongs to tho same horizon, thongh fossils are by no means as mmerous in it in Clark county as at the loealities mentioned in White eounty. If this conclusion is correct, it would bring the New Haren limestone on a parallel with that numbered 33 , and forming the base of the Clark county section, and they agree very well both in their lithological and paleontological charaeters.

The coal seam at Murphy's averages about 18 inches in thickness, and affords a coal of fair quality.

Traciug the bluff northeastwardly from this point, the beds rise rapidly, and about half a mile from Murpir's place there is abont 30 feet of drab-eolored shales exposed beneath the limestone which is here fomid well up in the hill.

At the foot of the blnff on Clear ereek, near the State line, a mottled brown and gray limestone 4 to 5 feet in thickness is found, maderlaid by 10 or 12 feet of variegated shales, which are the lowest beds seen in Clark county. Extensive quarries were opened in this limestone to supply material for building the old National road, and in the debris of these old quarries we obtained mumerous fossils from the marly layers thrown off in stripping the solid limestone beds that lay below. The fossils found here eomprise the following speeies: Athyris subtilita, Retzia punctulifera, Spirifer lineatus, S. plour-convexus, Terebratula bovidens, Platyostoma Peoriense, and two or three undetermined comals. The limestone is a tough, fine-grained, mottled, brown and gray rock, in tolerably heary beds, whieh makes an excelleut maeadamizing material, and also aftords a durable stoue for culverts, bridge abutments and foumdation walls.

The beds intervening between this limestone and coal No. 7 do not make their appearance in this connty, but by visiting the shafts now in operation on the west side of the Wabash river, one and a half miles west of Terre Haute, I found a portion of them outcropping at the surface, and the remainder had been penctrated in the shafts and were reported to me by the gentleman in charge of the work. The section from the limestone to the coal would be as follows:

This is undoubtedly the "Dansille coal" which has been extensively worked at Danville and at several other points in Vermilion county, where it ranges from 4 to 7 feet in thickness, and is equivalent to No. 7 of the Illinois seetion. There it is overlaid by a soft black shale filled with fossil shells in which the calcareous matter is replaced with pyrite, giving to the fossils a beautiful metallic lustre, but unfortunately in many cases the pyrite decomposes if not protected from the atmosphere, and the fossils are soon destroyed. Locally No. 7 is overlaid by a heavy bed of limestone, as at the Equality and Bowlesville mines, in Gallatin county. At the mines opened west of Terre Hante, we found no well preserved marine fossils in the soft shales over this eoal, although a careful search was made for them. Fragments of fossil wood, either silicions or replaced by prite, were abundant in the debris taken from the shaft.s here, as well as at Bowlesville.

In any attempts that may be made in Clark county to mine coal by slafting to the lower coals, this would be the first seam reached, and its approximate deptl at any given locality may be determined by the remarks already made, and especially by reference to the county section. In the northern portion of the county the distance from the Livingston or Quarry creek limestones to this coal would be considerably less than in the southern part, for reasous already stated, namely, the thiming out the intervening beds to the northward, and consequently this variation in the relative thickness of the beds in different parts of the connty should be duly considered in estimating the probable cost of any extensive operations for coal mining.

Economical Gcology.

Coul.-From what has been already stated in the preceding pages, it will be inferred that there is no great amount of coal accessible in this combty exrept by deep mining. In the thin seams outcropping at Mr.

Murphy's place, near the Wabash river, and at Mr. Howe's and Mrs. Brant's, sontl-east of Casey, the coal varies in thickness from a foot to cighteen inches, and thongh of fair quality, the beds are too thin to justify working them except by stripping the seams along their outcrop in the creck valleys. The coal at Mr. Murphy's place has a good roof of bitnminous shale and limestone, and could be worked successfully by the ordinary method of tunnelling if it should be found to thicken anywhere to 24 or 30 inchcs. The higher seams, found at the localities above named, south-east of Cases, are thinner than that at Mr. Murphy's, though one or both of the upper ones are said to have a local thickness of 18 ibches. I sce no good reason to bclieve that the main workable scams that are found outcropping in the arljacent portions of Indiana, should not be found by shafting down to their proper horizon in this county, notwithstanding the reported results of the oil well borings in the north-western portion of the county. I have observerl that in borings made for oil or for artesian water, which are expected to come to the surface whencver thes are reached by the drill, $\mathrm{it}_{\mathbf{k}}^{3}$ is only in exceptional cases in this State, that any accurate knowledge was obtained even by the persons in charge of the work; of the character of the rocks passed through in the boring; and in many cases the work is placed in the charge of those who are ntterly incompetent to determine the proper characteristics of the strata through which the drill was passing. Hence, when the enterprise was abandonerl, the expenditure proved to be utterly valueless, for the want of a correct and reliable record of the strata penctiated, which, if kept and preserved, might have been of great valne to the public at large, as well as to those for whose special benefit the work was prosecnted.

Building Stone.-Clark county is well supplied with botlo frecstonc and limestone suitable for all ordinary building purposes. The sandstone bed on Hurricane creek, south-east of Martinsville, is partly an even bedded freestonc, that works frcely and hardens on exposure, and is a rcliable stonc for all ordinary nses. The abntments of the bridge over the North Fork on the old National road were constrneted of this sandstonc, which is still sound, although more than thirty years have passed away since they were built. The sandstonc bed overlaying the limestone at the old Anderson mill, below the mouth of Joe's fork, also aftords a good building stone as well as material for grindstones, and the evenly bedded sandstone higher up on Joc's fork, which overlays the green shales, is of a similar character, and affords an excellent building stone. Dach of the threc limestones in this county furnish an excellent macadamizing material, and the Quarry creck limestone, as well as the beds near Livingston, furnish dimension stone and mateial for foundation walls of good quality.

Lime.-A fair quality of quick lime is made from both the limestones abore named, and on Quarry creek the kilns are kept in constant operation to supply the demand for this article in the adjacent region.

Potters' Clay.-An excellent article of white clay, suitable for pottery or fire brick, was found in the shaft near Marshall, about 80 to 85 feet below the Livingston limestone, and about fifty feet abore the coal in the bottom of the shaft, which was probably the same coal found at Mr. Murphy's. This bed of clay would probably be found outcropping in the Wabash bluffs, not far below Murphy's place.

Soil and Timber.-The soil is generally a chocolate-colored sandy loam, where the surface is rolling, but darker colored on the flat prairies, and more mucky, from the large per cent. of humus which it contains. The prairies are generally of small size, and the county is well timbered with the following varieties: white oak, red oak, black oak, pin oak, water oak, shell bark and pignut hickory, beech, poplar, black and white walnut, white and sugar maple, slippery and red elm, hackberry, linden, quaking asp, wild cherry, honey locust, red birch, sassafras, pecan, coffee nut, black gum, white and blue ash, dogwood, red•bud, sycamore, cottonwood, buckeye, persimmon, willow, etc. The bottom lands along the sinall streams, and the broken lands in the vicinity of the Wabash bluffs sustain a very heary growth of timber, and fine groves are also found skirting all the smaller streams and dotting the uplands in the prairie region. As an agricultural region this county ranks among the best on the eastern borders of the Statc, producing annually fine crops of corn, wheat, oats, grass, and all the fruits and vegetables usually grown in this climate. Market facilities are aburdantly supplied by the Wabash river, and the St. Louis, Vandalia and Indianapolis railroad, which passes through the central portion of the county, furnishing an easy commmication with St. Lonis on the west, or the cities of Terre Haute and Indianapolis on the east.

Before closing my report on this county I desire to acknowledge my obligations to John F. Lafferty, Esq., of Martinsville, for valuable information, and personal attention and assistance rendered me, white prosecuting my examinations in this county.

CHAPTER III.

CRAWFORD AND JASPER COUNTIES.

Crawford county contains seven full and several fractional townships, making an aggregate area of about 438 square miles. It is bounded on the north by Clark eomity, on the east by the Wabash river, on the south by Lawrence and lichland connties, and on the west by Jasper. Located on the western side of the Wabash, and traversed by several small streams tribntary thereto, the surface is generally rolling, and was originally mostly covered with timber. Subsequently a considerable portion of this timbered area has been cleared and bronght muder enltivation, though there is still remaining an abundance of timber to supply the present, and also the prospective demand for many sears. The sonth-west portion of the connty from the Shaker mills, on the Embarras, nearly to Robinson, is quite broken, and there are also belts of broken land of greater or less extent on all the small streans. The principal water courses 11 the county tributary to the Wiabash river, are the Embarras, which runs diagonally across the south-western corner of the county; the North Fork, traversing its western border from north to south; Crooked creek, also in the sonthwest part; aud Brushy fork, Lamotte ereck, Sugar creek, and some other small streans, in the eastern portion of the county.

The prairies are generally small, and are for the most part rolling, aud are mainly eontined to the northern and western portions of the county, and to the bottom and terrace lands adjacent to the Wabash river. One of the earliest settlements made in the State was on one of these bottom prairies in the vicinity of Palestine, in this eounty.

Quaternary.-The beds referable to this formation in this eounty consist of buff or drab marly elays belonging to the loess, whieh are found eapping the bluffs of the Wabash and attaining a thickness of ten to twenty feet or more, and from twenty to forty feet of brown gravelly elays and hard pan, the latter resting upon the bed rock, or separated from it by a thin bed of stratified sand or gravel. If these beds were fomed in a vertical seetion they would show the following order of snctession :
Ft.
Buff and drab marly clays or sands.. 10 to 20
Brown and yellow gravelly clays... 10 . 20
Bluish.gray hard pan. ... 10 to 95
Sand or gravel. ... 0 . 3

Generally, these superficial deposits are thin in this counts, and at most places the bed rock will be found within fifteen or twenty feet of the surface. Small bowlders are frequently met with in the branches, but large ones are quite mucommon, and they are more frequently derised from the limestones and hard sandstones of the adjacent Coal Measure beds, than from the metamorphic rocks beyond the coufines of the State, though some of the latter were seen.

Coul Measures.

The stratified rocks of this counts all belong to the upper Coal Measures, the lowest beds appearing in the bluff" of the Wabash river aud the highest along the westirn borders of the countr, and inchude the horizon of coals Nos. 11, 12 and 13, of the Illinois section. The only knowlenge that we lave of the unlerlaying formations is derived from a shaft ann boring made at I'alestine landing. The shaft passed throngh the following beds, commencing abont six feet above high water level in the Wabash river:

This shaft was sumk to reach a coal seam reported in a boring previously made to be four feet thick, and at a depth of 123 feet. The bore was made about a mile and a half north-west of the shaft, and commenced 15 feet below a thin coal which outcrops in the hill above. The hore was made for oil, during the oil fever, and no great reliance can be placed on the reported thickness or character of the strata penetrated. The shaft mentioned above was smok to the horizon of a coal

If any reliance can be placed on the reported section of this boring, it must have passed through coals Nos. 10,9 and 8 , of the general section of the Illinois Coal Measures, and it is noticeable that in the shaft sunk at the landing, they found two thin beds of limestone over the coal at the bottom of the shaft, coal No.9, showing that although this limestone has thinned out rery much from what its onterop shows in Clark county, it has, nevertheless, not quite disappeared. This coal was reported in the boring at; 4 feet, without any recoguition of the bituminous shale above it, while in the shaft that was sunk down to this horizon in the anticipation of finding a good seam of coal, the bituminous shale proved to be 2 feet thick and the coal only 6 inches.

The rotten coal No. 27, of the foregoing section, probably represents coal No. 8 , which, in Gallatin county, is from 50 to 75 feet above No. 7, though no trace of the latter was reported in this bore. The coals
interrening between No. 8 and 15 are seldom found of sufficient thickness to be worked to advantage except where it can be done by stripping along their onterops, and lrence they are of but little value as a resouree for fuel. In the western portion of the eounty but little eoal has been found, and only in a single mine, hereafter to be mentioned, has there been any attempt to mine for coal in a systematic way.

The exposnre in the blnffs just below Palestine Landing shows the following beds:

The shelly brown limestone No. 2, of the above section, eontains numerous fossils, among which I reeognized Spirifer cemeratus, Productus eostatus, P : punctatus, P. Pratteniams, P. longispimus, Chonetes Flemingii, joints and plates of Crinoide, Orthis earbonaria, and some undetermined forms of bryozoa. Firrther west in this county, and in Lawrence also, No. 12 eoal is orerlaid by a bnfi, caleareons shate, in which Orthis carbonaria and Lophophyllum proliferum are conspicnous.

The bitmminons shale, No. 5, of the above section I fomm well exposed at the bridge on Lamotte creek, on the road from Palestine to the land. ing, and the following group of fossils were obtained from it at this locality : Pleurotomaria spharulatu, P. tabulatu, P. Grayvillensis, Bellerophon earbonarius, B. per-carinata, etc., corresponding with the beds at Lawreneeville and Graville. Namerons bands of carbonate of iron occur in the shates at the base of the abore seetion, both on Lamotte creek and in the river bank at Palestine landing. .

Robinson is located on a samdstone deposit overlaying all the rocks found in the bluft's at Palestine landing, indicating a decided dip of the strata to the westward. The outerops of sandstone on the small branth of Sugar ereck, which drains the section on which the town is built, show fromr 1.5 to 90 feet in thickness of soft brown rock, in which a few small quarries have been opened. This porton of the bed affiods sandy shates, and thin-bedded, rather soft brown sandstone, with some thicker beds towarls the base of the onterop, which are rather inalecessible, from the amonnt of strippug required to reach them, as well as from the fact that they are partly below the water level in the branch.

At Mr. Isalac C. Hodes's plice, north of Robinson, on the N. E. qur. of sec. 16 , T. T, R. 12, more extensive quarries have been opened in this simblotone, and at much greater thickness of strata is exposed. The furries are on a branch in the timber, but there is almost a contimuns
outcrop along the branch, nearly to the prairie level, showing the following succession of strata:
Shaly, Feet.
Shaly, micaceons sandstone, becoming thicker-bedded and hander towards the bottom, and con.
taining broken plants... 30 to 40
Massive bro. sandstone, (main quarry rock)... 8 to 10

The massive brown sandstone quarried here is locally concretionary, the concretions being much harder than other portions of the bed, and afford a very durable stone. This sandstone, with the shales usually associated with it, probably attains a maximnm thickness of 60 to 80 feet, and fills the intervening space between coals Nos. 12 and 13 of the general section. It has been penetrated in sinking wells on the prairie at many places north and north-west of Robinson.

Law's coal bank, formerly known as Eaton's bank, is on the S. W. of the N. E. qr. of sec. 12, T. T, R. 13. The coal is a double seam, about three fcet thick, with a parting of bituminous shale from two or three inches to two feet in thickness. It is overlaid here by shale and a hard, dark, ash-gray limestone, destitnte of fossils. One mile up the creek from this mine the coal is said to pass into a bituminous shale. The coal obtained here is rather soft, and subject to a good deal of waste in mining; but as the mine was not in operation when I visited the locality, I had no opportunity of judging of its arerage quality. A section of the creek bluff at the mine shows the following order :

A boring was made here by the proprietor, and a thicker seam was reported to have been found some forty feet below; but if this report is correct, the sandstone usmally intervening between coals Nos. 12 and 13 is here much below its average thickness, and no such coal is known to outcrop in the counts. However, local coals are sometimes developed which only cover very limited areas, and this may be a case of that kind.

Four miles sonth-west of Robinson a bed of hard, dark-gray bituminous limestoue outcrops in the bed of Turkey creek, and has bcen quarried for building stone, for which purpose it is but poorly adapted, as it splits to fragments after a limited exposure to the elements. The rock occurs in a single stratum about eighteen inches thick, overlaid by a brown calcareous shale, filled with nodules of argillaceous limestone. The shale containcd numerous specimens of Lophophyllum proliferum, associated with joints of Crinoilde. The foundation stone for the comrt house at Robinson was obtained here. This limestone may overlay a thin coal, but I could not learn that any seam had been found in
this ricinity, and I could find no outerop of the beds below the limestone in this neighborhood. In the western portion of the county outcrops are rare, and so widely separated that no continuous section eould be made.

On section 4, in Hutsonville township, at Mr. W. D. Lanm's place, a bed of limestone is found underlaid by fire or six feet of blue shale and a thin coal. In a well sunk here the limestone was found to be five feet in thickness, a tough, fine-grained dark-grayish rock, containing no well preserved fossils. On Mr. Evans' place, just over the line of Clark eounty, on see. 34 , T. S, R. 12, heavy masses of tumbling limestone are to be seen along the creek valley. It is a massive, gray, brittle roek, and contains Athyris subtilita, Spirifer cameratus and Productus longispinus. A mile and a half further up the creek this limestone is found in place, and is burned for lime by Mr. Drake. I believe these lime. stones belong below the sandstone which is found at Robinson and at Hole's quarry.

At Linley's mill, on the N. W. qr. of sec. 7, T. 8, R. 13, a hard, dark gray limestone was found in the bed of the creek, only abont two feet in thickness of its upper portion being exposed above the creek bed. A quarter of a mile south of the mill, at Mr. Reynolds' place, coal is mined by stripping along the bed of a branch. The coal is from 15 to 18 inches thick, overlaid by two or three feet of blue shale, and a gray limestone filled with large Producti, Athyris subtilita, etc. Productus costatus, with its long spines, seemed to be the most abundant species. This limestone, and underlaying coal, I am inclined to believe represent the horizon of the upper coal in the bluff at Palestine landing, and No. 12 of the general section.

Hutsonville is located upon a bench of sandstone, the lower part of which is concretionary, and the upper part which outcrops in the hills back of the town, is more evenly bedded, and affords some toler able good building stone. The saudstone extends below the arerage water level of the river, and is probably altogether not less than 50 to 60 feet in thickness here, and is the equivalent of the sandstone at Robinson and vieinity in the central portion of the county.

At Martin's mill, on Brushy Fork, near the south line of the eounty, the linestone and shale found at the Lamotte creek bridge, and also at Lawrenceville, representing the horizon of coal No. 11, is well exposed, the creek bluff showing the following section :

[^0]No. 1. Jrown sandy conglomerato and concretionary sandstone, found a quarter of a mile oast of the mill

Nis. 3. Nicacenus sandstono and shale, top of tho blntf.. 6

No. 5. Blur slazle, partly calcaroons, with iron molnles, and mumerons fossils................... 4
No. 6. Lard bitmminons limestome.

The upper bed in the above section was found about a quarter of a mile fiom the ereek, and at a somewhat higher level apparently than the sandstone, No. 2, forming the top of the bluff; but the intervening space conld not be more than ten or fitteen fect. Pockets of coal were found here in the concretionary sandstone; but although dug into for coal, they proved to be of very limited extent. The micaceous sandstone No. 3, of the section, afforls some very good building stone, and some of the thin layers are distinctly ripple-marked.

The calcareous shaleafforded mmerous fossils of the same species found at the Lamotte bridge.

At Mr. Nettle's place, on the N. E. qr. of sec. 24, T. 5, R. 12, coal has been mined for several years. The coal is about 18 inches thick, and has a roof of fine black slate, resembling a cannel coal, nearly as thick as the coal itself. The black slate is overlaid by two or three feet of calcareons shale, containing Orthis carbonaria, Retzia punctulifera, and joints and plates of Crinoidce. This coal I believe to be the same as that uear the top of the hill at Palestine landing, and No. 12 of the Illinois section.

Prof. Cox reports the following onterops in this connty, at localities which I did not risit: "In the hill east of the Shaker mill, see 32, T. 5, R.12, a soft, yellowish, massive saudstone, forming cliffs along the ravines, and in places weathering into 'rock houses,' or oren-like cavities. Sectiou here as follows:

Fliggy samdstone in two to eight inch layers... 8
Solid bedded sandstone................... .. 13
Saudy slaales, flagstones, and an occasional showing of massive soft sandstone form the promiuent geological features of the southern and western portions of the county. Around Hebron, four miles south of Robinson, massive sandstone forms cliffs 15 to 20 feet high, probably a continuation of the rock seen at the Shaker mill. Two miles and a half south-east of Belair, found the following section at Goodeu's coal bank:

Slope of the hill

This mine is worked by a shaft. A quarter of a mile helow, ou Willow creek, the same coal is worked on Mr. Mathenex's place by stripping, where the coal is of the same thickuess."

- This coal mnst be as high in the series as No. 13 or 14 of the general section, and may be the same as the coal mined near Newton and New Liberty, in Jasper comnty.

. Economical Geology.

Coal.-As we have already stated, on a preceding page, all the strat. ified rocks in this county belong to the apper Coal Measures, extending from coals Nos. 11 to 1.t, inclusive, and as these seams are usually too thin to be worked in a regular way, no valnable deposit of eoal is likely to be found onteropping at the surface in the county. The seam at Mr. Law's place, north-west of Robinson, is said to attain a local thicliness of three feet, and may be successfully mined where the coal is good. When the demand for coal shall be such as to justify deep mining, the lower coals may be reached at a depth of four to six hundred feet. Their nearest approach to the surface is along the valley of the Wabash river, and the depth wond be increased to the westward by the dip of the strata and the eleration of the surface.

Building Stone.-The best building stone to be found in this county comes from the heary bed of sandstone abore coal No. 12, which outcrops at various places in the county, and especially at Mr. Hole's quarries north of Robinson. At some localities, a fail artiele of thin bedded micaceous samdstone is found between coals 11 and 12 , as at Martin's mill, on Brushy Fork, near the south line of the county. These sandstones afford a cheap and durablo material for foudation walls, bridge abutments, etc. The limestone four miles west of Robinson, that was used in the fonudation walls of the court house, is liable to split when exposed to the action of frost and water, and althongh seeming hard and solid when freshly quarried, will mot withstand exposure as well as the sandstone, if the latter is carefnlly selected. The limestone at Reynolds' coal bank, ne ir Linley's inill, stands exposure well, and will afford a durable building stone.

Lime.-Wre met with no locality in the comity where lime was burned, but just north of the comnty line of Clark county, at Mr: Drake's place, a fair quality of lime is obtaned from a limestone appatently the equivalent of that at lieynolds' coal bank.

Iron Ore.-The shales associated with coal No. 11 usually contain more or less carbonate of iron, and at the locality below the bridge on Lamotte creek, near Palestine landing, the quantity seemed to be sufficient to justify an attempt to utilize it. 'lhe shale in the bank of the creek shows a perpendicular face of fifteen to twenty feet, and the bands of ore towards the bottom of the bed wond afford fiom twelse to eightern inches of good ore in a thickness of about six feet of shale. At the river bank, just below the landing, this shale onterops again,
and the iron nodules are abundant along the river bank, where they have been washed out of the easily decomposed shale.

Sand, Gravel and Clay.-The materials for brick are abundant almost everywhere, and can be had wherever wanted. Good brick clay can be found in the subsoil of the uplands, and sand is found both in the loess deposits of the river bluffis and in the beds of the streams. The second bottom or terrace land along the Wabash river affords an abundance of gravel for road ballast, naking cements, etc.

Soil and Timber.-From Hutsonville south, there is a belt of alluvial bottom and terrace land, from one to three miles in width, extending to the mouth of Lamotte creek, a distance of about ten miles. This is mostly prairie, and the soil is a deep, sandy loam, and very productive. The upland prairies have a chocolate-colored soil not so rich in humus as the black prairie soils of Central Illinois, but yielding fair crops of corn, wheat, oats, clover, etc. On the timbered lauds the soil is somewhat variable. Where the surface is broken the soil is thin, but on the more level portions, where the growth is composed in part of black walnut, sugar tree, linden, hackberry and wild cherry, the soil is very productive, and fields annually large crops of all the cereals usually grown in this latitude. The varieties of timber observed in this county were the common species of oak and hickory, black and white walnut, white and sugar maple, slippery and red elm, honey locust, linden, hackberry, ash, red birch, cotton wood, sycamore, coffee nut, black gum, pecan, persimmon, paw-paw, red thorn, crab apple, wild plum, sassafras, red bud, dog-wood, iron-wood, etc.

Indian Mounds.-One mile south of Hutsonville, on the gravel terrace, and about 200 yards from the river bank, there is a curious group of mounds, 55 in number, and from eight to ten feet in hight. One of the largest mounds is surrounded by a wall of earth raised about three feet above the surface, and from five to six feet in width, inclosing a space of ground about a hondred feet in diameter. This was undoubtedly the site of an ancient village belonging to that mysterious people whom we call the "Mound builders," for the want of some more distinctive appellation, and who onee, and probably for a long series of years inhabited the valless of the Mississippi and its tributaries, as is proven by their earth works scattered over the whole area of the western and southern States. But little is at present known of the character and habits of this ancient people, whenee they came or whither they went, and the study of these ancient works, and the ornaments and implements belonging to those who built them, is perhaps the only available clue to their history.

JASPER COUNTY contains au area of 484 square miles, and is bounded on the north by Cumberland, on the east by Crawford, on the sontl by Richland, and on the west by Clay and Effingham counties. The Embarras river traverses the whole cxtent of the county from north. west to soutl-east, and drains nearly the whole of its surface except the south-west corner, which is drained by Mud creek, a tributary of the Little Wabash. About one-third of the county was originally tim. bered land and the remainder prairie, the latter occupying the broad areas of upland between the valleys of the streams, and elevated from sisty to eighty feet above the water courses. From Robinson to New Liberty the country is rather low and comparatively level, seldom rising more than twenty or thirty fect above the beds of the small streams. The Embarras river runs through a low, flat bottom, from three to fire miles in width, with some swampy areas, though generally dry enongh to admit of cultivation, but subject to orerflow from the high water of the river. Rock exposures are but rarely to be met with in the county, owing, in part, to the soft and yielding character of the sandstones and shales that form the bed rock over the greater portion of the comnty, and in part to the wide valleys in which the streams have their conrses, seldom impinging upou the blnffs sufficiently to expose the stratified rocks.

The superficial deposits of this county consist mostly of brown, graselly clays, and a bhish gray harl-pan, the whole aggregating from tweuty to forty feet in thickness, and presenting the same character as in Crawford county. These beds thicken to the westward and are considerably heavier in the western part of the comnty than in the eastern. Small bowlders of metamorphic rock are frequently met with in the creek beds or on the hill sides weathered out of these deposits, associated with those derived from the sandstones and limestones of the Coal Measures.

Coal Measures.

From the limited exposures, and the widely separated points where the bed rock can be seen in this comity, no general section of the stratib was possible, but enongh was seen to indicate their general character, and to determine very wearly their relative position in the Coal Measures. The main water consses traverse broad alluval valleys which gradually slope n^{\prime}, to the level of the adjacent highlands, ravely impinging npon the bhuffs on either side so as to show the character of the mulerlaying formations. The lowest beds in the connty are probably the shales and shaly sandstones ontcropping on the lower comses of the North Fork, and on the Emburras in the vienity of St. Maric, which probably
belong to the heary shale deposit passed in the boring at Greenup, and belong between coals Nos, 14 and 16 of the gemeral section. 'The highest outcrops will be fomd in the north-west corner of the eomity, where the Fusulinu limestone that outerops at Churchill's place, near the county line in Cumberland eounts, may be seen.

At the erossing of North Fork, on the old Palestine and Vandalia road, a blue, sandy shale has been penetrated by a shaft to the depth of abont thirty feet in seareh of coal, but withont success. The upper part of this shale bed onterops in the bank of the stream at an old mill just below the bridge. About a mile finther down the ereek, a bed of brown, ealeareous sandstone is fomed from 18 to 20 inches thick, which contains Pimna per-acuta, Spirifer plano-convexus, Productus Prattenianus, Orthoceras, Myatina, ete.

In the bauk of the Embarras, at St. Marie's, a thin bedded micaeeous sandstone is quaried at low water, but it splits into thin layers on exposure, and is of but little value as a building stone. A well was sumk here at the steam mill, to the deptr of ninety feet, throngh sandy shales and sandstone, without finding either coal or limstone.

Newton, the comity seat of this comnty, is loeated on the bluff of the Embarras, and the outcropping beds that form the lower portion of the bluff" eonsist of 25 to 30 feet of soft micaceous shales and sandstones extending below the river bed. About two miles sonth-east of the town, on Brush creek, a sandstone is found that furnishes most of the building stone used in this vicinity. The quarry roek is from eight to ten feet thick, in layers sarying from six to twelve inches or more in thickness. The stone is rather soft when first quarried, but becomes harder on exposure and makes a rery dnrable roek for ordinary use. Locally it has a coarsely encretionary strueture, the coneretions being harder than the surrounding rock, a character frequently observed in the heary bedded sandstones of the Coal Measmes. Below the sandstone there is a variable thickness of shate that beeomes bituminons towards the bottom and forms the roof of a coal seam that has been opened and worked to some extent at this locality. The seam was covered up by the falling in of the roof, so that I conld not see the quality of the coal or measure its exact thickness, but it is said to be from 2.22 to 3 feet thick, and has a slate parting like the seam at the old Eaton mines north-west of Robinson. This is probably coal No. 14 or 15 of the general section. This coal probably muderlases the town of Newton at a depth of eight or ten feet below the bed of the Embarras river, and might be easils mined anywhere along the bluff, by driving an inclined thmel into the base of the hill above high-water mark down to the level of the coal. A mine conk be cheaply opened here in this way, and if the quality of the eval should prove to be good, it woth no
doubt become a profitable inrestment in supplying the steam mills and other local demands for coal.

Three miles east of Newton, on the road to New Liberty, the same sandstone is met with on the east side of the Embarras valley outcropping in the base of the low hills bordering the valley, and continuing in oecasional outcrops to the coal bank one mile west of New Liberty. This coal is probably the same as that on Brush creek a mile and a half south-east of Newton. The seam is divided by a bituminous shate varying from six to eighteen inches in thickness, and only the lower division of the seam is mined here, the upper part being too soft and shaly to be of much value. A section of the beds above this coal, as seen between Newton and this point, would be as follows :

Ft. In.
Mcaceous sandstone thin bedded at the top and more massive below.......................... 20 to 30
Sandy shale with local layers of thin sandstone.. 5 to 10
Bituminous shale.. 1 to 3
Coal, rather soft and poor. .. 1 to 1 1

Coal, good 1 . 1 . 6
We found no fossils in the shale overlaying this eoal on Brush ereek, but west of New Liberty we noticed imperfect examples of Bellerophon carbonarius and spirifer plano-contexus.

South of Newton a prairie ridge extends for several miles in a southerly direction, along which sandstone is said to be fourd, and most probably this ridge shoms the trend of the sandstone formation in this part of the eountr:

On Limestone creck, in the south-west corner of the county, there is an outcrop of light-gray limestone, that is quarried for building stone and is also burned for lime.

The following sections were found by Prof. Cox at localities I did not visit: "In the north-west corner of the eounty, on Island ereek, an outcrop of heary bedded sandstone and flagstone commences on sec. 16, T. 8, R. 8 , and may be traced northward to the county line. The sandstone is brownish colored and makes a fair building stone. On Mint areek, sec. 1, T. 7, R. S, the following section was found :

Ft. In
Silicious shale 20
Gray pyritiferous shale, passing into limestone... 2
Jet black bitmminons shalo with fish scales and spines... 6
Coal, breaking into suall cubes... 6
Fire-clay..... .. 3
Gray silicious shale and flargtone. ...
This thin coal was sometimes found split by a hard bituminous shale, leaving only abont an inch of coal in each division.

Section on Slate creek, see. 9, T. T, R. s :

Calcareo-argillaceous shale with fossils. .. 1
Brownish-black shales. 6
Hard black shale 2
Gray argillaceous shale. 6
The fossiliferons shale in the above section contained Euomphalussub-ruyosus, Pleurotomaria Graysillensis, Nucula rentricosa, Lophophyl-Tum prolifermm, Chonetes mesoloba and a leaf of Teuropteris.
Section on the Embaras river, S. W. qr. of sec. 31, T. 7, R. 10 :
Ft. In.

1. Corered slope 10
2. Bluish-brown argillaceous shale 10
3. Brown and black bituminous shale 3
4. Fire-clay 3
5. Gray fossiliferous limestone 10
6. Blue argillaceons shate 4
\%. Brownish-black impure limestone 3
7. Blue shale $\stackrel{2}{2}$
Bluish slaaly sandstones 10The impure limestone, No. 7, contained Productus longispinus, Athyrissubtilita, Pleurotomaria Grayrillensss, Terebratula bocidens, Chonetes mes-oloba and Hemipronites crussus. The shale under the limestone containedMyalina sub-quadrata? Euomphalus sub-rugosus, Orthoceras Rushensis,frasments of Pimna, etc. Two miles north of St. Marie on the westhalf of sec. 7, T. 6, R. 11, a shaft was sunk twenty feet to the riverlevel and some fragments of impnre limestone were thrown out. Abouta hundred fards mp the rirer this limestone is jnst at the water's edge.It is 8 or 10 inches thici and contains Athyris subtilita, Spirifer camer-atus and fragments of Pinna. It is probably the equivalent of the lime-stone near Nerrton.
The second bluff or terrace is about forty feet above low water. About thirty feet above low water in the face of the bluff, there are the remains of an old fnrnace. It is about three feet in diameter, of a circular form and walled with rock. Around it are pieces of burnt limestone, charcoal and cinders. On the top of the bluff there are a number of Indian mounds arranged in the form of an oblong square inclosing a court. The peculiar arrangement of the mounds, and the presence of mica in the sandstone and also in the drift bowlders found here, led to the belief that silser existed in the rocks and conld be extracted from them, and the existence of the mounds and the furuace led to the sinking of the slaft in pursuit of the same precious metal.
On Crooked creek, a half mile west of Brockrille, the following section was found:

The fossils found in the rotten limestone were: Athyris subtilita, Chonetes mesoloba? and Productus longispinus. One mile and a half southwest of Harrisburg, on Lick creek, found the following beds :

Ft. In.
Bluish argllaceous shale... 10
Black bituminous shale... 4

The water of the ereek is slightly saline, and some prospecting for brine has been done in this vieinity."

All the outcrops given on the preceding pages belong to the upper Coal Measures, and range about the horizon of coals No. 14 or 15 of the general section. From the general trend of the strata it may be inferred that the lowest beds that outerop in the county are those along its eastern border, and the highest those upon the western.
Economical Geology.

Coal.-A limited supply of coal may be obtained from the beds outeropping near Nerton and New Liberty, but neither the arerage thickness of the seams nor the quality of the eoal they afford would justify an attempt to work them except in a linited way. The main coals are here from five to six hundred feet or more below the surface, and to reach the bottom of the Coal Measures would require a shaft more than a thousand feet in depth. It will probably be many years before the demand for coal will be such in this county as to warrant the opening of mines at this depth.

Building Stone.-Building stone of good quality is not aboundant, the supply being mainly from the sandstone orerlaying the eoal at Newton and in that vicinity. At some points this bed affords a brown sandstone of fair quality, and at others it passes into silicious shales or slaty sandstones too soft and thin bedded to be used for building purposes. On Limestone creek, in the south- western portion of the eomnty, there is a bed of compaet gray limestone in layers of a foot to cighteen inclies in thickness, that is quarried for foundation walls, ete., for the supply of the adjacent region.

Lime.-The only limestone fomd in the eounty that seemed to be at all adapted for use in the lime kiln, was that on Limestone creek in the south-west eorner of the comty, and a fair quality of lime may be made there for the smpply of such portions of the adjacent region as are remote from railroad tranportation.

Sand and Clay.-These eommon and useful materials are abundant, and good brick may be made at almost any point on the nplands where they may be required. Siund for mortar and cement oceurs at many
places along the blufts of the Embarras, and may be found in the beds of most of the small streams, and in nearly every portion of the country.

Soil and Timber.-The bottom lands of the Embarras have a rich alluvial soil, and when cleared and brought under cultivation, produce large erops of corn, to which they seem best adapted. The soil of the prairie region is a chocolate colored clay loam, similar to that of the adjoining counties, and produces fair crops of corm, wheat, oats and grass. The timbered upland is similar to that described in the report on Crawford county, and the varieties of timber noticed here was nearly the same. Although not possessing so large an area of timbered land as Crawford county, it has nevertheless an abundant supply for a much larger population than it contains at the present time.

CHAPTER IV.

LAWRENCE AND RICHLAND COUNTIES.

Law rence county embraces an area of about three hundred and sixtytwo square miles, and is bounded on the north by Crawford county, on the east by the Wabash river, on the south by Wabash county and on the west by Richland. The principal water courses in the counts, besides the Wabash river which forms its eastern boundary, are the Embarras river, which traverses the north-east portion of the counts, with its affluents Brushy Fork and Indian creek, which drain the northern and central portions of the county, and liaccoon creek and the eastern fork of the Bonpass, which drain the sonthern part. East of Lawrenceville, and lying between the Embarras and Wabash rivers, there is an extensive marsh from two to four miles in width and about ten miles in length, called Purgatory swamp. Surrounding this on the east and north, there is a considerable area of bottom prairie, the upper or northern portion being known as Allison's prairie, and the lower portion as the Russelville prairic. In addition to this there are some small prairies in the southern, and also in the north-western portion of the county, but the greater portion of its area was originally covered with a heary growth of timber. The surface is generally rolling, but nowhere so broken that the land camot be cultivated even along the bluffs of the streams. The elevation of the combtry above the water courses is nowhere very great, and on what may be termed the upland ranges from fifty to abont a hundred feet.

Loess and Drift.-In the vicinity of the Wabash river we find beds of brown clay and bnfi or yellowish marly sands ranging from ten to twenty feet or more in thickness which probably represent the age of the loess. These are underlaid by brown or gravelly clays containing small bowlders ranging in size from an inch or two to a foot or more in diameter. On the mplandsaway from the river blufis there are nsnally from fifteen to twenty feet of these gravelly clays above the bed rock, and usmally in sinking wells, especially in the northern portion of the county, an adequate supply of water can only be obtained by going from ten to forty fect or more below the drift clays into the mederlaying shales or
sandstones. About Lawrenceville there is usually from five to six feet of brown gracelly clay resting immediately upon the bed rock, and abore that from ten to twelve feet of buff or brown clays that are quite free from gravel.

Stratified Roeks.-All the formations that outcrop in this county below the superficial deposits already described, belong to the upper Coal Measures, and include a vertical thickness of not more than one hundred and fifty to two hundred feet. On the Tabash river at St. Francisville there is an outcrop of massive gray sandstone, which I believe to be the same as that found at Hanging-rock Bluff in Wabash county, and the lowest rock seen in this county. The section here is as follows :

Ft.

Shale... 8

Thin bedded sandstone and sandy shale.. 16
Massive gray sandstone... 20 . 1025
Unexposed to rirer level... 10 to 15
Just below the dam at Lawrenceville on the Embarras river we fiud the following section, which I believe orerlays the beds seen at St. Francisville:

	Ft.
Brown and bluish-gray argillaceous shale.	to 12
Biuminous and partly calcareous shale with	to 5
Black slaty shale.	3 to 5
Dark gray limestone in the river bed.	.. 1

The fossiliferous bed at this locality contains Lophophyllum proliferum, I'leurotomuria spherulutn, P. tabulata, P. Graycillensis, P. curbonaria, Polyphemopsis per-acuta, Bellerophon Montfortienus, B. carbonarius, B. per-corinatus, Astartella varica, Produetus longispinus, Hemipronites crassus, Hacroeheitus inhabilis, and joints and plates of Crinoidea.

At the bridge two miles east of Lawrenceville we find a repetition of the foregoing section, but the bluff is much higher airl a greater thickness of strata is exposed, giving the following section:

About a hundred sards above the bridge, by an uudulation of the strata, the limestone No. 4 of the above section is brought down to, and passes under the river bed. This would seem to indicate a rapid dip to the northward, but the re-appearance of the fossiliferous shale No. 2 of this section on Lamotte creek, in Craisford county; some twenty miles north of this, shows that the apparent dip here is only an undulation of the strata, such as mas frequently be observed in the Coal Measures of this State. Near the upper end of the exposure here a dike of sandstoue from six to eighteen inches in width, cuts transversely
through the lower bed of shale N゙o. 5 of the above section, haring an east and west direction. This would seem to indicate that the undulation in the strata here might be due to some disturbing force acting from below. The calcareous shale No. 2 of this section contains the same group of fossils found at Lawrenceville. The limestone contains Natieopsis ventricosus, Tautilus sp? Terebratula bovidens, Spirifer planoconvexus, Rhynchonelle Osagensis, Athyris subtilita, Clinopistha rudiata, Solenomya rudiutu, with several undetermined species of small univalve shells. This is a very marked horizon in the upper Coal Measures, and the outcrops exteud along the valley of the Wabash from below Grayrille, in White county, to the central or northern part of Crawford county. The black laminated shate above the limestone contains local concretions of black limestone, with fish scales Discina nitidr, etc. South of the bridge, on the east side of the Embarras, there is an outcrop of micaceous sandstone that affords some building stone of a fair quality, which has been used for bridge abutments, foundation walls, etc., and is probably the equivalent of the upper part of the foregoing section.

At Mr. F. Pluminer's place, on the S. E. qr. of sec. 25, T. 5 N., R. 12 west, two mells were sunk, one near his dwelling house, passing through eighteen inches of coal at a depth of eighteen feet, and the other, about a quarter of a mile to the northward, commencing at a level below the bottom of the first, was carried down forty-three feet mostly through sandstone and shale, the lower part bituntinous, and ending in the calcareous fossiliferous beds of the section at Lawrenceville and the bridge two miles east of that point.

At Mr. Porteris place, adjoining Mr. Plumarer's on the south, a well was sunk to the depth of fiftr-six feet, through the following beds:

Drift clay soil, etc.. 18
\qquad
Blue shales, bituminous at the hottom..
The water was obtained in the fossiliferous layers orer the black, sheety shale No. 3 of the section at the Embarras bridge. The coal passed through in the well at Mr. Plummer's house must lay above the sandstone in the Porter well, which hat probably been eroded away at that point by water currents during the drift epoch.

At Mr. Fritchey's well, a half mile west of Mr. Plumaer's, a bed of cellular iron ore occurs in the sandstone near its base, and was passed throngh in his well about sixteen feet below the surface. The iron ore was reported to be two fect thick in the well, but at the outcrop, a quarter of a mile from the house, its thickuess was only abont six inches. It apporars to be too sandy to be of any valne for the prorluction of iron.

At Mr. Warriner's well, a mile and a half northwest of Mr. PlumMER's, the sandstone was penetrated in a well to the depth of fifty-eight feet without reaehing the bottom of the bed, and its entire thickness here eannot be less than from sixty to seventy-five feet. Near its base there is a very hard layer about two feet in thickness, which rings under a blow of the hammer like a eompact limestone, probably from a small per cent. of calcareous or ferruginous matter in its composition. A similar hard layer was observed at the base of the sandstone at Hole's quarry, north of Robinson, in Crawford eounty, of which this is probably the equivalent. The coal under this sandstone is probably No. 12 of the general section, which is somewhat irregular in its development in this county, sometimes affording from eighteen to twenty inches of good coal, while at other places it thins out to a few inches, or is wanting altogether.

At Mr. Emerich's quarry, two miles and a half north east of Sumner, a heary bed of sandstone outerops on a branch of the Embarras, that is probably referable to this same formation. The faee of the quarry shows from eighteen to twenty feet of massive sandstone, presenting a coneretionary structure at the base of the bed, but becoming thimer bedded and somewhat shaly towards the top. This rock has been extensively quarried here for building eulverts and bridge abutments on the O. aud M. railroad. One mile north of the town there has also been a small quarry opened higher up in this formation, where the roek is thin bedded and shaly, but affords some good building stone near the bottom of the quarry, though the orerlaying beds are shaly and worthless.

In the Embarras bluff's near Mr. Wh. H. Miles' place on the N. W. qr. of see. 33, T. J, R. 12, there is a massive sandstone exposed forming the lower portion of the bluff in connection with a thin seat of coal. The section here is as follows:

Ft. In.

A hundred yards above where this section was seen, the saudstone eontinues down to the river level with no indications of eoal. This is probably the same thin coal found on Brushy ereek, near Martin's mill, just over the line in Crawford eounty, and as it is there from forty-five to fifty feet above the creek level, it indieates a westerly dip of the strata erfual to about six or seven feet to the mile. No rocks are known to outerop on the Embarras for some distanee above this point, and below there is no eonsiderable exposure between this and the ḑam at Lawreneeville.

Three miles sonth of Lawrencerille, on Mr. Henderson's plaee, on
the south side of Indian creek, and at sereral other points in the neighborhood a coal seam is found which has been opened and worked in a limited way to supply the local demand for coal. It ranges from trelve to eighteen inches in thickness and is mined only by stripping along its outcrop in the banks of the small streams. The seam at Mr. Henderson's place is from twenty-five to thirty feet above the bed of Indian creek, and partial outcrops of soft shate were seen between the coal seam and the creek level. This coal seems to be identical with that at Mr. Netrle's, near the south line of Crawford connty, and the equivalent of No. 12 of the general section. It outcrops also on Mud creek, three or four miles north-west of Lawrenceville, at several places, and has been worked to a limited extent to supply the neighboring blacksmiths previous to the construction of the O. and M. railroad, since which time it has been generally abandoned.

A boriug was made some eight or ten years ago at Lawrenceville, to the depth of about four hundred and fifty feet, but no accurate record has been kept of the beds passed through. A thin coal was reported at the deptin of three hundred and forty feet, and another seam four feet thick near the bottom of the bore, but it seems probable, from all that can be learned at the present time, that the work was not in charge of a competent person, and lence but little reliauce can be placed on the reported results. A very good brine was said to have beeu reached near the bottom of the bore.

The following sections and notes are reported by Prof. Cox, from his examinations at localities not visited by myself: "At JoHn Leed's quarry, on Indian creck, one mile west of the St . Francisville road, found the following section :

This sandstone is a durable building stone aud was used in the bridge abutnents on the Embarras river. On the north bank of the Embarras river, at the Shaker mill, on sec. 32, T. 5, R. 12 , the following section was found, the massire saudstone being probably the equivalent of that at St. Francisville :

[^1]The eight inch coal in the abore spction is below that mentioned on a previons page as occuring on Mr. Henderson"s place in this meghborhood, as that is fomd firom 25 to 30 feet or more above the bed of Indian creck, and ranges from twelve to eighteen inches in thickness. The following is an approximate section of the rocks ontcropping in this county :

Feet
Brown and gray sandstone, the lower part in massive beds... to 75
Coal-No. 12.. $1 \frac{1}{2}$
Shale, with bauls of argillaceous iron ore.. 30 to 35
Coal-No. 11.. 0 to 1
Sandstone, top thin-bedded and shaly, bottom massive... 30 to 35
The mper sandstone mulerlays the northern and western portions of the eounty, and is penetrated in sinking wells mearly everywhere upon the mplands. At its base there is usually a very hard stratum that is sometimes called limestone on account of its larduess, and also a ferruginous bed, that passes locally into a sandy iron ore. The lower saudstone forms the main portion of the W「abash bluff at St. Francisville, and also appears at the Shaker mill on the Embarras; but its outcrop is restricted to the eastern border of the county.

Ecoutomical Geology.

Building stone.-Both the sandstones in the foregoing section afford more or less building stone of fair quality for ordinary nse, and extensive quarries hare been opened in the upper one in the ricinity of Summer for the use of the O. \& M. Railroad. Small quarrics have been opened in rarious places in the central and northern portions of the county in this bed to supply the local demand for foundation stone, walling wells, bridge abutments, etc. Leeds' stone quarry on Indian creek, south of Lamrenceville, and one mile west of the St. Francisville road, is probably in the lower bed of sandstone, and the rock obtained there is in thin, even beds, ranging from four inches to a foot in thickness.

The limestone associated with coal No. 11 at Lawrencerille, aud at the bridge two miles east on the Embarras, is somewhat argillaceous, and consequently camot be depended on where it is to be subjected to the action of frost and moisture, althongl it has been used in building the Lawrencerille bridge. This is the only limestone that was met with in the eounty, and being both argillaceous and silicious, it is not adapted either for building pmoposes or for the lime kiln.

Coal.-The uppermost of the two coal seams that outcrop in this connty las been worked in a small way at several points by stripping, and affords a coal of very good quality ; but unfortonately it has been nowhere found thick enough to be profitably mined in any other way.

Just north of the county line in the edge of Crawford county, at Mr. Nettre's coal mine, the coal is about 18 inches thick, overlaid by about a foot or more of hard bituminous shale resembling a cannel coal. It has been mined here for several year's at intervals, by tumeling into the bank along the line of outcrop, but no permanent entry was construeted, and when the work stopped the roof caved in and filled the opening so that a new entry was required as often as the work was resumed.

This was the coudition of things when I was there, and I was unable to make any satisfactory examination of the quality of the coal, or to determine its exact thickness.

The main coals of the lower measures which are so extensively mined in Gallatin and Saline counties will probably he found here by boring, and if the well bored at Lawrenceville had been in the hands of an expert, and an exact record kept of the thickness and composition of the rarions beds passed through, the question would have been settled whether there was any thick seam of coal within four hnudred feet of the surface in this connty. As it is, nothing has been positively determined by this expenditure of money, further than the fact that two coal seams of uncertain thickness were found in the boring, one at a depth of about 340 and the other at 440 feet below the surface. The depth of the seam, when not exceeding four or five handred feet, is no serions imperliment to the working of the coal, if the demand for this kind of fuel is sufficient to justify the investment, and we already have several shafts in successful operation in the State that are over 500 feet in depth. Deep mining is the only alternative in this county for obtaining an unfailing supply of this kind of fuel, as the surface seams appear to be too thin at erery outerop at present known in this or the adioining counties to be suceessfully worked for the supply of any large demand for coal.

Iron ore.-The shales intervening between coals 11 and 12 contain mumerous bands of argillaceons iron ore, but they are too widely separated at the localities where the shales were met with in this connty to be of any practical vane for the fanate. At the base of the upper sandstone a ferruginons bed is frequently met with, sometimes appearing as a conglomerate of iton nodules in sandstone; but in Mr. Friocmey"s well, on sec. 25, T. 5 N., R. 12 W ., it was reported to be two feet thick, and consisted partly of a very good quality of brown hematite ore, but other portions were too much mixed with stund to be of any value for the production of metallie iron. It was fomm in the well at a depth of 16 feet, and ontcrops about a rumater of a mile to the westward, where its thickness is only about six inches.

Soil and Timber:-The Wabash and Embarras nivers are skirted with broad allurial bottoms and level table lands, ranging from two to fome
miles in width. Some portions of the latter are quite sandy, and consti tute the terrace prairies between the Purgatory swamp and the Wabash. The bottoms along the Embarras are heavily timbered with all the common rarieties of oak, hickory, ash, elm, maple, black and white walnut, coffeenut, persimmon, cottonwood, sycamore, hackberry, red birch, honey-locnst, wild cherry, black gum, dogwood, etc. The uplands are genesally rolling, and were mostly originally covered with a heavy growth of timber, though much of the surface has been cleared and brought under cultivation since the first settlement of the county. The soil on the rolling uplands is a chocolate-colored clay loam, usually very productive, bninging good crops of corn, wheat, oats and grass amually.

With a judicious system of cultivation, and a proper rotation of crops, these uplauds can be easily kept up to a high standarl of fertility. There are some small uplaud prairies along the western borders of the county, the soil of which does not differ very much from that of the timbered lands adjacent thereto.

Richland County embraces a superficial area of abont threc hundred and fifty square miles, and is bounded on the north by Jasper and Crawford counties, on the east by Lawrence, on the south by Wabash, Edwards and Wayne, and on the west by Wayne and Clay connties. There are no large streams in the county, but some of the northern affluents of the Little Wabash diain the western, and the western branch of the Bonpass creek the south-eastern portion of the county. The main stream of the Little Wabash also skirts the sonth-western border of the county for the distance of about eight miles. The surface of the county is generally rolling, and its area is nearly equally divided into prairie and timbered land, the latter forming belts along the courses of the streams from one to three miles in width, and the prairies occo: pying the higher or table lands between the main water courses. The elevation of the prairies above the beds of the principal streams ranges from fifty to about a hundred feet. The south-eastern portion of the county on the head waters of the Bonpass is quite broken, and is muderlaid by the heary beds of sandstone and sandy shales intervening between coals 12 and 13 , which attain here a thickness of serenty to eighty feet, or more. In the central and western portions the surface is seldom so broken as to reuder it unfit for cultivation.

The geological formations of this county comprise a moderate thickness of drift clay, sand and gravel, that is everywhere found immediately beneath the soil, except in the creok valleys, where this superficial material has been removed by eroding agencies; and a series of sandstones, shales, etc., embracing an aggregate thickuess of 250 to 300 feet, which belongs to the upper Coal Measures, and include the horizon of three or four thin seans of coal.

The drift clars are somewhat thicker in this county than in Lawrence, and the bowlders are more numerous and of larger size. Below the brown gravelly clays that usually form the subsoil ou the uplands, and range from ten to trenty feet in thickness, there is in many places a bed of hard, bleish-gray, grarelly clay, or "hard pan" as it is frequently termed, and below this at some points there is an old soil or muck bed, underlaid by from one to five feet or more of quicksand. Limbs and trunks of trees are frequently fond imbedded in this old soil in which they probably grew, or in the bluislr-gray hard pan immediately above it, but to the present time no authentic specimens of animal remains have been fomd in them in this State, sufficiently well preserred for identification. Some small fresh water and land shells have been fonnd in the quicksands in other portions of the State, but they did not prove to be specitically distiuct from those now lising.

Coal Measures.-From the meager onterops to be seen on the small streams in this county, it would not be possible to construct a continuous section of all the beds that should be fonnd here, bit fortmately a boring has recently been made at Olney which will aid us materialiy in ascertaining the general character of the formations that muderlay the southeru and eastern portions of the comnty to the depth penetrated by the drill. This boring for coal was mate by Mr. Crane, to whom I am indebted for the following report of the beds passed through :

[^2]1. Soil and drilt clay.. 13

2. Gray simistone
3. Liack shalo (horizou of coal No. 13 ?)
4. Clay shale.. . . . 99

5. Clay shalo with black slate.. 95
6. Iliurl saurl rock .. 3

7. Harrl mock (prolably sandstone) 36

8. Clay mhinle ... 31

9. Shale, partly calcareous... 23

Two miles and a half south of Olney, in the vicinity of Boden's mill, located on the S. E. gr. of see. 15, T. 3, R. 10 E., there is an outerop of a thin coal in the creek bed, overlad by the fullowing strata :

The black slate in this section is probably itentical with No. 4 of the Olney boring, and the thin coal below was wanting there or else was passed without observation. Some of the limestone concretions contain fossils, among which I identified Productus Nebrascensis, Bellerophon corbonurins, 1 ciemborecten, etc. The band of hard silicions limestone fomd at this locality is a very durable stone and has been quarried for building purposes. It is a refractory stone to work, but may be relied ou for culverts and bridge abntments where an ordinary sandstone would sield to atmospheric influences.

One and a half miles south of Clermont there is an onterop of the following beds, probably representing the same strata seen at Borlen's mill sonth of Ohney:

[^3]The quarry here belongs to the \mathbf{O}. and M. railroad, and an immense amont of stone has been quarried from the caleareons sandstone No. 2 of the above section, to be used in the construction of culverts and bridges on that road. This quarry is near the center of sec. 16, T. 3, R. 14 E .

On Mr. P. Berry's place, on the S. E. qr. of sec. 11, T. 2, R. 14 E., coal has been mined for several years in a limited way by stripping the sean along its outcrop in the valley of a small stream a tributary of the Bonpass. The coal is about 18 inches thick and of good quality, and is overlaid by a few inches of soft bitmminons shate, and an argillaceous shelly limestone which contains Productus costutus, P. punctatus, İ. Prattenianus, Spirifer camerotns, "te. The shale contains C'honetes veriolata, Orthis cerbonaria, Lophophilhm proliferum, Trematoporn, joints and plates of C'rinoiden, etc. This coal is also mined by Mr. Stover on the N. E. qr. of the same section. This is probably coal No. 12 of the general section, and must have been passed through in the boring at Olney, and may be represented by No. 12 ot the boring at that point.

Abont five miles north-east of Ohney coal has been found on the open prairie at a depth of about $2 \boldsymbol{2}$ fect below the geueral surface level. It was first discorered in digging a stock well, and snbsequently an inclined tminel has been driven down to the coal and peparations made to work it in a systematic way. If the seam retains an average thickness of three feet, it will prove of great ralue to the comty. The roof consists of clay shale with some limestone in bowlder-like massen, thongh it is possible the limestone masses thrown out in opening the tumel may belong to the drift clays, and not to the roof shales of the coal. This tumel is on Mr. Combs' place, but the coal has also been fombl on the adjoining place belonging to Mr. Shoors. On another farm a little
farther to the west, on sec. 18, T. $4 \mathrm{~N} ., \mathrm{IR} .10 \mathrm{E}$. , a double seam was reported to have been passed fhrough in a bore but a short distance below the surface, the mper one two feet and the lower one three feet in thickness, witin a space of about fiftecn feet between them. These coals, if there are teally two distinct seams here, must be about the horizon of No. 15 of the general section, and this is probably about the southern line of outcrop for these coals, as mo indications of their presence was found in the boring at Ohney or in sinking wells about the city, and from the topography of the surface 1 am inclined to believe the surface level where these coals have been found is at least forty or fifty feet above the level at Oney.

Irof. Cox notes the following sections at points I did not visit: "Section at B. F. Meap's sandstone quarry on sec. 34, T. 4, R. 10 E .

Soft huti sardstone . 3
Hard gray buihling stonc. 4
The gray sandstone is very lard and taikes a good finish, stands well but is somewhat marred by carbonaceons spots. At Andy Darling's quary, two miles west of Oney, the quary rock is orerlaid by 8 feet of buff silicions shale, beneath which is a heary bedded bufi sandstone that was quarried for the masonry on the O. and M. railroad at the time of its construction.

On sec. Is, T. 3, R. 10, on Big creek, fonnd the following section :

Heavy lurdd.d sandstone. 10

A yua:ter of a mile down the creek a soft buff sandstone in heavy beds from fonr to ten feet thick altemate with thimer beds of hard bluish sandstone. At Higgins' mill, on sece. 34, T. 3, R. 14, in lis well located on the slope of a hill rising to the north from Bonpass ereek, sixteen feet of sandstone was pased through and a coal sean below it reported to be twenty inches thick. Shaly sambtone and clay shale were seen overlaying the heary bedded sandstone a few hondred yards abore the mill. The hills along the bompass are from twenty to sixty feet high, composed in part of drift deposits consisting of yellowish clay with gravel and small bowlders, the latter seldom execeding five or six inches in diameter.

It Wihson Law's coal bank, on sec. 16, 'I. 2, R. 11, the section is as follows:

The shale orer the coal was filled with fossil shells, corals, etc. The limestone orer this coal was also sem three miles north-west of Law's place, where it was formerly quarried and burned for lime.

A quarter of a mile below the Big Creek bridge, south of Olney, found the following section:
Snil and drift . .. 15
Conrse irregularly bedded sandstone .. 15
Black marly shale.. 1.3
The lower part of the black shale was slaty and contained numerous fossils, Pleurotomaria tabulata, P. Grayvillensis, Bellerophon percarinatus, B. Montfortianus, E. carbonarius, A thyris subtilita, Prorluctus longispinus, N'ucula ientricosa, Orthocerus liushcusis, and Lophophyllum proliferum. At Javes C. Stewart's place, four aud a half miles south-west of Olney, a black shale outcrops in the banks of Sugar creek about five feet thick, underlaid by a thin coal. A quarter of a mile below at the bridge saw the same conglomerate sandstone that occurs on Big creek, underlaid by the same black shale, which was sometimes marly and contained the fossils mentioned above. It also contains large nodules of impure limestone."

This bituminots shale and thin coal probably represents coal No. 13 of the general section, and this same group of fossils occurs in conneetion with this coal on the East fork of Shoal creek in Montgomery county.

Economical Geology.

Building Stone.-Sandstone of a fair quality for ordinary use is quite abundant, and there is probably not a township in the county where good quarries could not be opened at a moderate expense. Many of these localities have been mentioned in the preceding pages, and bot little needs to be said farther in regard to them. The quaries south of Clermont, belonging to the O. and M. railroad, afford a very hard and durable rock, and although the bed is only about six feet in average thickness, it is, fortunately, so situated as to require no great expenditure in strippiug, and the rock has already been removed over a surface of several acres in extent. The rock is a very hard, gray, micaceous sandstone and seems to be but little affected by loug exposure, and hence affords a desirable material for culverts, bridge abutments, etc. The sandstones in the northern and western portions of the county are for the most part rather soft, lont locally they afford some very good building stone, as at Mr. Heap's quarry northeast of Olney, and at Darliug's quarry two miles west of that town. The stratim of hard, silicious limestone outcropping on Big creek two miles and a half south of Olney is a durable stone, but is not to be obtained in sufficient quautity to be of much importance as a building stone.

Coal.-There are tro coal seams cropping out in this county that promise to be of some valuo in supplying the local demand for finel, and the upper one, if its thickness at the outcrop should be found persistent over any considerable area, will furnish all needed supplies for the county for many years to come. The lower seam, which outcrops on the head waters of the Bonpass in the south-easteru portion of the county, and has been referred to No. 12 of the general section, ranges from sixteen to twenty inches in thickness, and has ouly been worked by strip. ping in the creek valleys where it outcrops. It affords a coal of good quality, but infortunately is generally too thin to be mined profitably in a systematic way The other seam, five miles north-west of Olney, is about three feet in thickness, and an inclined tunnel has been carried down to it, and preparations made for working it systematically for the supply of the Olner market. This is probably the Shelbyville seam, No. 15 of the general section, which is the thickest seam in the upper Coal Measures, and usually quite persistent in its developuent. In Shelby county this seam affords a semi-block coal of fair quality, lard enough to be handled without minch waste, and tolerably free from sulphuret of iron, but showing thin partings of selenite on transverse clearage. The thickness of the sandstones, shales, etc., intervening between coals 12 and 15 in the ralles of the Okaw is abont 235 feet, but in this county it is probably somewhat less, though this point could only be determined approximately from the lack of continuous outcrops of the intervening strata. The main coals of the lower Coal Measures are probably from six hmedred to a thousand feet below the surface at Olney, and it would require an expenditure of capital to open and work theun that the present demand for coal would not justify. If the seam northeast of Olney slonld be found to retain an average thickness of three feet over any considerable area, it will furnish an abundant supply for all the present demands for coal in this county.

Lime.--No limestone was seen in this cominty that seemed well adapted for use in the lime kiln, though some attempts have been made to nse the rock overlying coal No. 12 on the Bompass for that purpose. It is usually too argillaceous to slack freely when burned, and at best wonld only produce a very iuferior quality of lime.

Soil and Agriculture.-The agrienltural facilities in this county are similar to those of the counties adjoining, and do not require any extended notice in this place. The surface is generally rolling and pretty equally divided into timber and prainie land. The prairies are nsually small, and possess a rich, productive clay-loan soil, that will never require mauring if properly enltivated with a judicious system of rotation of crops. The soil on the timbered lands is less uniform in quality than on the prairies, and its character is generally well indicated
by the growth of timber. Where this is mainly composed of two or three varieties of oak and hickory, the soil is thin and poor, and will require frequent applications of manure or other fertilizers to keep it up to the ordinary standard of prodnctiveness for western lands. But where the timber growth is largely interspersed with elm, black walnut, linden, wild cherry, persimmon, honey locnst, etc., the soil is good, and will rank farorably with the best prairie lands in its prodnctive qualities. A large portion of the timbered land in the county is of this quality, and when cleared and bronght under cultivation, it prodnces nearly or quite as well as the best prairie land.

I am indebted to Mr. J. B. Wolf, of Olney, former county surveyor, for mnch valuable information, and for personal attention and assistance while at work in the county.

CHAPTERV.

Wabash and edwards counties.

Wabash and Edwards are two of the smallest counties in the State, and laying contiguous to each other on its south-western borders, they may vers properly be deseribed together. Their aggregate area is about four hundred and twenty-five square miles, and their boundaries are as follows: Wabash is bounded on the north by Lawrence and Richland counties, on the east and south by the Wabash river, and on the west by the Bompass creek. Edwards county is bounded on the north by Richland countr, on the east by Bonpass creek, on the south by White county, and on the west by Wayne. The only streams of any inportance are those forming in part their respective boundaries, the Wabash river, by a south-westerly course, bounding Wabasis county on the east and sonth, and the Bonpass creek, with a course nearly due south, forming the dividing live between them. The latter stream winds its sluggish course through a broad alluvial valley showing no outcrops of the underlaying rock formations except at rare intervals. Along the Wabash, exposures of the rocky strata are more numerous, but as the course of the river is nearly on the trend of the underlaying formations, but a limited thickness of strata can be seen along the bluffs of this stream. The surface of the uplands is generally quite rolling, but there are some limited areas of rather flat timbered lauds above the level of the river bottoms, and forming what may properly be termed terrace lands. Both comnties are heavily timbered, though there are some small prairies within their limits. A complete list of the trees and shrubs indigenous to Wabash county has been furnished for this report by Dr. J. Scmence, of Mt. Carmel, which will be found further on. It is peeuliarly interesting because it shows the presence here of some species hitherto supposed to belong exclusively to a more sonthern latitule.
The geological formations to be seen in this connty belong to the Quatemary and the upper Coal Meannres. The former is more firlyy developer along the bluft; of the Walbash than elsewhere, and consist of the bulf and yellow marly sands and clays of the loess, and a moderate thickness of the gravelly clays of the drift- formation.

On the lower course of the Bonpass, in the vieinity of Grayville, and in some of the valleys of the smaller streams, stratified elass are found at the lowest levels seen, whieh may belong to an older deposit than the drift, and a heary bed of this kind is reported to have been passed through in the boring sonth-west of Mount Carmel, but as it was overlaid by sandstone, and no rock of this kind is known in this county of more recent age than the Coal Measures, I am inelined to donbt the correetness of the report. Howerer it is by no means improbable that there are old valleys along the Wabash, as well as the Mississippi and Ohio, that were filled originally with Tertiary or Cretaceous deposits, some of whieh still remain, and are now hidden by the subsequent aecumulations of loess and drift. Indications of the existence of such beds have been found on the Ohio as far north as Louisville, and on the Mississipui for more than two hundred miles above St. Louis, the evidences being well preserved shark's teeth fomd at various points within the region speeified, some of which are too fragile and delicate to lave been transported for long distances by drift agencies without destmetion. The reported sandstone above the clay in the boring is most probably a Coal Measure bed, and the reported clay beneath it may be a soft clay shale of the same age, such as is frequently met with in the coal-bearing formations. At Mount Carmel the loess and drift elays are about thirty feet in thickness, which is probably about the average in the ricinity of the river bluffs, while on the uplands, remote from the river, their arerage thickness is not more than fifteen to trenty feet, and at many points much less.

In Edwards county the Quaternary beds present the same general character, and are considerably thieker in the bluffs on the lower course of the Bonpass than in the eentral and western portions of the connty, where we only find from ten to twenty feet of buff or brownish gravelly clays overlaying the bed roek. Near Grayville the creek banks show outerops of five to ten feet or more of stratified clays, variously colored, and seemingly derived from the deeomposition of the clay shales of the Coal Measures, and above these we find from twenty to thirty feet of loess possibly eovering a nuclens of gravelly drift clay. To the north and west the loess is not conspicuous, and in digging wells the bedrock is usually reached after passing through ten or fifteen feet of brown drift elays.

Coal Measures.

In the blulfs of the Wabash river, at Mount Carmel, there is an ontcrop of sandstone forming the lower portion of the bluff, underlaid by a blue clay shale but partially exposed.

The following is a section of the bluff at this point:

Loess and drift clays.Ft.
Soft, shaly, micaccous sandstone 13
Massive sandstone, partly coneretionary 20
Blne clay shalo-partial exposure of. 3 to 6

Springs of water issue from the base of this sandstone, indicating the imperrious character of the underlaying beds, even where there is no outcrop of the shales. Locally the concretionary sandstone contains geoles of oxyd of iron, filled with a greenish or buff colored clay. The base of the ahore section is some fifteen or twenty feet above the low water level of the riser, and the interrening beds which are probably shales are not exposed. A boring was made here for coal under the direction of Mr. J. Zimmernan, to whom I am indebted for the forlowing section of the beds passed through, and as the work was done with a hollow drill and prosecuted very earefully, the section is probably a very correct one. The bore was commenced just above the low water level of the river, and something like fifteen feet below the base of the foregoing section, and passed through the fullowing beds:

No. 1. Shalo.. 2
No. 2. Sindstone ... 2
No. 3. Clay shale ... 4
No. 4. Saudstonө.. 35
No. 5. Micaccons sandstonc... 0
No. 6. Havl, fine sandstone 4

No. 8. Coal aud bitnuinous shalo.. 0 .

No. 10. drgillacenus santstone.. 2
No. 11. IBlıo shalle... 1
No.12. Firoclay ... 310
No. 13. Calc. shale ant sandstnno. .. 32
No. 14. Calc. slale, with black streaks ... 20

No. 16. 13lıe fire-clay.. 4

No. 18 Fire clay.. 3
No. 19. Arsillareons limestoио ... 5
No. 20. Ilard saudstone, parting....:... 0.
No 21. llard gray limestone ... 2
No. \&iz. Ilard мr:y limestone .. 1

No. 24. Cialcareous shale... 1

No. 31. Itard rray limostonc.. 8
This boring was commenced near the horizon of No. 11 doal, and the beds passed through probably extend very neally to No. 7. The

following is the report of a bore made for oil one mile and a half southwest of the court house, commencing in a creek valley:

Ft. In
No. 1. Soil, clay, ote 54
No. 2. Sandstone. 24
No. 3. Clay ? (probably clay sliale) 45
No. 4. Sandstone 2
No. 5. Bituminous shale (probably blue clay sliale) 32
No. 6. Sandstone 6
No. 7. Bituminous shale 6
No. 8. Sandstone 2
No. 9. Bituminous slale 5
No. 10. Sandstone 3
No. 11. Bituminous shale 4
No. 12. Sandstone4
No. 13. Bituminous shale, showing oily soot 5
No. 14. Sandstone 13
No. 15. Very hard limestone 24
No. 16. Bituminous shale. 8
No. 17. Saudstone 2
No. 18. Coal, No. 9 2
No. 19. Limestone 5
No. 20. Shale 3
No. 21. Sanlstone 2
No. 22. Misture of sand and limestone 8
No. 23. Fellow shale 4
No. 24. Sandstone. 12
No. 25. Clay shale, with pyrites 1:
No. 26. Sandstone 15
No. 27. Bituminous shale 6
No. 28. Sandy shale 70
No. 29. Sandstone 60
No. 30. Micaceous sandstono 10
No. 31. Coal, No. 7? 3
No. 32. Bituminous shate 1%
No. 34. Compact limestone 8
No. 35. Bituminous shate. 7
No. 39. Lime and sandstone 2
No. 40. Bitumiuous shale 5
$\overline{482}-4$

It is bardly possible that the beds reported as bitnminous shale in this lore could be anything more than ordinary blue clay shales, and as a rule I believe that but little dependence can be placed in the reported sections of oil well borings made in this State. By comparing this section with that made for coal it will be seen that there is a wide discrepancy in the descriptions given of the strata passed through in each, and althongh the oil well boring was carried down to the deptly of about seven hundred feet, yet no coal was reported below the three feet seam found at the depth of fonr houdred and fifty five feet, which probably represents coal No. 7 or 8 of the general section. The sandstone No. 2 of the oil well boring may be the same as No. 4 in the other, but there is very little correspondence in the lower strata, considering that the distance between the points where the borings were made is scarcely two miles in a direct line.

In the bed of the river at low water there is an outcrop of micaceous saudstone No. 2 , of the first boring, which contains iron nodules, some of which inclose fossil ferns, and one was found containing Leaia tricarinata. In the bed of the river, a little further down, an impure argillaceous limestone has been found below the river level.

At Hanging-roek bluff, about three miles north-east of Mt. Carmel, there is an onterop of massive sandstone similar to that at the town, which projects into the bed of the river at low-water, and rises above it to the hight of 30 to 35 feet. Three quarters of a mile nearly west of Hanging-rock, at Mr. Reel's place, there is an exposure of the beds above the sandstone showing the following seetion:

Ft. In.

The limestone here is a steel-gray, passing in to black, and weathering to an olive-brown, and filled with crushed shells of small size, among which Rhynchonella Osayensis seeured to be most conspieuous. It is possible that the sandstone at Hanging-rock belongs below that at Mt. Carmel, as the beds seemed to rise to the northward, so far as we coukd find the roeks exposed, and this sandstone may be the bed No. 4 in the boring made at the river bank. This seems the more probable from the faet that no trace of the limestone or eoal has been foumd above the Mt. Carmel sandstone, where it should appear if theso sandstones are identical. Furthermore the outcrop at Hanging-rock is about a mile to the eastward of the Mt. Carmel bluff, and the general western dip of the strata would naturally bring mp the lower beds in this direction. Furthermore the roek seemed harder and appeared to be less affected by atmospheric influences at the former locality than at Monnt Carmel. If the sandstone is the same at these localities, the limestone and coal at Refl's place must be a mere local deposit; but I beliere this limestone to be identieal with that at Rochester mills in the river bank, which represents the horizon of No. 10 coal. On Coffee ereek there is a grood exposure of the beds overlaying this limestone, and the following section, commeneing in the bed of the river at low-water mark, and extending up the ereek for about a mile, shows the general character and relative position of the roeks in this vicinity:

The limestone No. 19 of the above section I believe to be identical with that at ReEL's place, and the sandy shate and sandstone in the river bed at Rochester mills to be the upper part of the Hanging-rock sandstone, and the sandstone at Mount Carmel is probably the equivalent of No. 11 of the foregoing section. The mpper coal on Coftee creek, No. 1 of the abore section, is probably the same formerly worked by Mr. Smonds and others sonth-west of Mount Cammel, and is either a merely local seam, or a division of No. 12, as there is a heary bed of sandstone, usually from sixty to eighty feet in thickness, intervening between coals 12 aud 13 , of which there wis no trace here, the covered space represented by No. 2 of the section not exceeding 8 to 10 feet in thickness. It is possible that the outcrop of No. 1, which was only some two or three huudred yards from the outcrop of Nos. 7,8 and 9 , may be only a thickening and reappearing of the same seam at a little higher level. The outcrop at the highest exposure was in the bed of the ereek, and no roof bat sand and gravel was found abore the coal. The shaly brown limestone No. 4 of this section contained a few fossils, among which I noticed Spirifer cameratus, Lophoplylhem proliferum and joints of Crinoide. The hard, dove-colored limestone contained numerous examples of Productus Prattenianus, Aviculopecten Clevelundicus, and a small branching coral.

The old coal shaft on Mr. Snionds' place, about three miles sonthwest of Mount Carmel, has been abandoned for some time, and the sides have fallen in, so that nothing could be learned when I was there in regard to the thickness or quality of the coal, except from those who had worked in the mine when it was in operation. The sean is said to average about three feet in thickness, and lass from 30 to 35 feet below the surface.

Section of Simonds' coal shaft :

[^4]This seam has been opened by several parties in this neighborlood, but the shafts have all been abandoncd. This eoal probably corresponds to coal 11 or 12 of the general section.

At Hershey's old mill, on Raccoon creck, there is an outcrop of the same fossiliferous sliales found at Lawrencevilic and Grayville, associatcd with coal No. 11. The section here shows the following beds outcropping in the bluffs of the creek:

No. 1. Brown sandy shales and sandstone.. 8 to 10
No. 2. Blue and gray shales, the lower part argillaceons... 20 to 25
No. 3. Bluo fossiliferous shale, with iron nodules.. 3
No. 4. Black laminated sliale... 1 to 2
No. 5. Dark, bitıminous limestone... 2
No. 6 Black laminated shale... $1 \frac{1}{2}$ to 2
No. T. $131 u 0$ clay shalo
6
The argillaceons shales No. 2 of the above scetion contain nmerous bands of argillaccous iron ore, which are more numerous in No. 3, and contain the same speeies of fossils that oceur in the shale. I obtained here the following species: Pleurotomaria tabulata, P. spharulata, P. Grayzillensis, Bellerophon carbonarius, B. per carinatus, I'olyphemopsis per-acuta, Lophophyllum proliferum, Dentalium obsolctum, Orthoceras Rushensis, and Macrodon carbonarit.

At Allendale this fossiliferons shale was found in a well smuk near the railroad, overlaid, as at HersHey's mill, by sandy shales and sandstone, which is found in sinking wells in the higher portions of the town. In olic well near the summit level a thin coal 8 inches thick was passed through, with 2 fect of clay shale above it, and about the same thickness of fire-clay below. In the vicinity of Oriole the sandstone above this thin coal is found at several places, and quarries have been opened in it for building stone, flag-stones, ete. It probably underlays all the hightands in the north-west portion of the county.

At Janes McNaIR's well, one mile and a quarter north of Friendsville, the following beds were reported from inemoranda furnished by Mr. J. Zimmerian :

At M1: Gilkerson's well, in the same neighborhood, after reaching the coal found at the bottom of McNAIR's well, a boring was made to the depth of ? fect below the coal. The material obtained from the boring was a milk-white substance resembling fire-clay.

At Haniker's old mill on the Bonpass, a little north of west from Allendale, a bed of bitmminous shale outcrops at the base of the bluff, overtaid by a conglomerate of ferruginous pebbles and a rather soft, thin-bedded sandstone. The section here is as follows :

Ft.
S fft, thin bedded sandstone and shale.. 15
Ferruginons conglumerato... 3 to 4
Hard black shale
2 to 3
The black shale extended below the bed of the creek, and I could not learn that any coal had been found miderneath it here. 'These beds resemble the outcrop at the iron bridge on the Little Wabash, between Albion and Fairfield.

Prof. Cox reports the following sections at points I did not visit: "On sec. 5, T. $10, \mathrm{R} .1$, there is a bed of light-blne clay, very plastic, exposed in the bauk of Crawfish creek, as shown in the following section:

The calcareous shate ahove the coal contains the same species of fossils enmmerated from the locality on Raccoon ereek at Hamiker's old mill, indicating the horizon of coal No. 11.
"At Emanuel Reel's place, on sec. 8 , T. 1 S., R. 12 , blue limestone at the foot of the hill oue foot thick, underlaid by a thin coal. Bluish shale and sandstone in the hill forty feet above. The well at the house went through soil and drift 10 feet, clay shale 4 feet, sandstone 29 feet.

At Little Rock, on the Wabash river, sec. 19, T. 1 N., R. 11 W.:
Ft.

Sandstone in solid bed..
$30^{\prime \prime}$
This hill forms a conspicnons land-mark on the river, and the sandstone at the base is prohably the same as that found at St. Francisville, a little higher up the river, in Lawrence comnty.

Edwards County. The outcrops of rock in this county are few and widely separated, and $n o$ continuous section of the beds could possibly be made from surface exposures only. The sandstones and shales intervening between coals No. 11 and 13 are probably the prevailing rocks. The following beds may be seen in the vicinity of Albion, in the railroad cut aud on the small creek that intersects the town :

Ft. In.
Shale and shaly sandstone with a pebbly bed at the bottom. .. 20 to 25
Sathelstume, locally hard and eoneretionary.. 8 to 12
Streak of bitmminons shalo.-... 0

Shale with bata of argillaceous iron ore... 4 to 6
Hard shaly saudstoro.. 8 to 4

The coneretionary sandstone is their main quarry rock here, and it is sometimes quite hard and affords a very durable material for fomblation walls. Above this there are some layers of even-bedded sandstone that, although rather soft when first quarried, beeome harder after exposure and make a fair building stone.

At Dr. Suitu's place, four miles north of Grayrille on the west bank of the Bonpass creek, the lill rises to an elevation of about a hundred feet, but the beds forming its npper portion are hidden beneath a covered slope. A thin coal is fomm in this hill at an elevation of thirtysix feet above the bed of the creek, which is underlaid by sandy shates and sandstones that form a preeipitous cliff to the ereek bed. The coal is about 8 inches thick and of good quality, and is underlaid by a lightgray fire-clay. The sandstone and shale below this coal are the equiralents of the beds above the fossiliferous shale in the Grayville section, and the fossil bed of that loeality ronld no doubt be found here a little below the creck berl. The thin coal fomnd here has also been met with in sinking wells at Grayville in the upper part of the town. About half a mile above this, on the same side of the Bonpass, the same beds outcrop again where an old mill was formerly located. At the base of the bluff here there is from ten to twelse feet of blue shales partly argillaceons, and passing upward into a sandy shale and sandstone tweuty feet or more in thickness, with a partial outcrop of the thin coal and bituminous shale still higher up. This eoal probably eorresponds to the ten-inch seam No. 15 of the Coffee ereek section.

At Mr. Nallor's place, six miles north wesst of Grayville, a eoal seam was opened many years since and snceessfully worked for a time to supply the local demand for eoal. It is probably the same seam worked by Simonds and others sontle-west of Monnt Carmel. The seam is said to be about thirty inches thick and the coal hard and splinty, partaking of the block character.

At the ford on the Little Wabash, eight miles north-west of Albion, on the S. W. qr. of sec. T, T. 1 S., R. 10 E., there is an outcrop of a thin coal associated with the following beds :

The shale No. 5 of the foregoing section contains considerable clay iron ore of a far quality, amoming to nearly or quite one-half of the whole thickness of the bed. If the prantity of iron in this shale should, on difting into the bluff, prove continuous for some distance, it would
eventually justify the erection of an iron furnace in this ricinity. At another old ford about a mile further ul the river, the same coals outcrop in connection with a thin bed of nodular argillaceous limestone of a light-gray color, weathering to a yellowish-brown on exposure.

Five miles north-west of Albion, on the N. W. qr. of sec. 22, T. 1 S., R. 10 E , an argillaceous limestone similar to that above mentioned, but rather darker colored, is found underlaying a bed of bituminous shale, as shown in the following section:

Ft. In.
Sandy shale and thin bedded micaceons staudstono.. 10 to 12
Bituminous shalu.. 1 to 1
Nodular argillaceous limestone... 2 to 3
Gray sandy shale with bands of iron stone .. 3 to 4
This outcrop seems to be on the same horizon with the beds at the Wa bash fords, the coal found there being represented here by the bituminous shale of the above section. The thin bedded sandstone has been quarried here for building cellar walls, fonudations, etc., and seems to be the best material in the neighborhood for such purposes.

At Mr. Hartman's mill, on the east side of the town of Albion, there was a boring made for oil some sears since, of which the following is a reported section:

All the beds represented by the foregoing sections in these two counties belong between coals No. 10 and 13 , and do not attain an aggregate thickness of more than 150 to 200 feet.
Eeonomical Geology.

Building Stone.-A fair quality of building stone may be obtained from the sandstones outcropping in various portions of these two comb-
ties as indicated in the sections giren on the preceding pages. The best is probably that from the even bedded brown sandstone abore No. 11 coal, that is found in the northern and north-mestern portions of Wabash, and the central and northern portious of Edwards. Quarries hare been opened in this sandstone in the ricinity of Oriole, in Wabash counts, where a good evenly bedded rock is obtained, the thin layers affording a good flag stone, and the thicker beds material suitable for foundation walls, etc. This sandstone probably underiays all the ridges and highlands in the north-west part of the county and will be found accessible at many points as the demand for building stone increases. The sandstove in the river bed at Rochester has also been quarried to a linited extent, and quarries hase been opened at Walden's phace, between this point and MIt. Camel, where a fair quality of sandstone has been obtained from a bed that is scemingly the equiralent of the sandstone in the Mt. Carmel blutf.

In the vicinity of Albion saudstone of a fair quality is obtained at several points, some of which is concretionary and rery hard, sielding a rery durable stone. This concretionary character is not persistent howerer, but the rock passes locally into a thin bedded sandstone or sandy shale. No limestone was scen in either county that could be recommended as a building stone, althongh that found at Rochester mills and at Mr. Reel's place north of Mat. Carmel has been used to some extent in the neighborhood of these outcrops. The rock is argillaceous and locally highly bituminons, aud is liable to split into fragments by long exposure.

Coal.-The upper coal seam in the Coffee creek section was the only outcrop we were able to find in either of these comnties that promised to be of any valne for practical coal mining. The coal in this seam ranges from thirty inches to three feet in thickness, and appears to molerlay a considerable area in the sonth part of Wabash and the soutl-western part of Edwards. Several shafts have been smek to this coal abont three miles sonth-west of Mt. Carmel, where the eoal is fonnd from thirty to thirty-fise feet below the surface. This seam affords a hard splinty or semi-block coal of fair quahty, and with jndicions man agement it might be worked to adrantage, either by a shatt or perhaps better by an inclined tmmel. The roof seems to be groold and if the thickness of the coal is at all miform, I see no reason why it may not be made to sield a fatrereturn for the labor and eapital respuired to put a mine in successfin operation where the coal lays so near the sufface. This is probalbly the same coal worked at Mr. Nallor's place in the sontheast part of bdwards several yoars sinee, for the suplly of Albion and the adjacent region. No attempt has as fet been made to reach the lower seams in either of these comities except at Mt. Camel, where
a boring was made to the depth of 180 feet, but this did not go deep enongh to reach No. 7 , which is the uppermost of the main seams. It commenced about the horizon of coal No. 10 or 11, and the depth from this horizon to No. 7 is probably from two to three hundred feet.

Iron Ore.-Bands of argillaceons iron ore are found disseminated more or less abmudantly through many of the shale beds in these counties, bot usually in too limited quautities to be of much value. At the ford eight miles north-west of Albion on the S. W. quarter of sec. 7, T. 1 S., R. 10 E., there is a larger quantity of iron ore than was seen elsewhere in this region. The shale bed is four feet thick, and nearly or quite one-half of this thickuess is a clay iron ore of filir quality. Several tons of ore may be collected from the debris at the foot of the bluff where it has beeu washed out of the shale by the river current. Twenty inches of coal of a fair quahty immediately overlays the ferruginous shale.
l'otters' Clay.-Potters' clay of fair quality is found in the bank of Greathouse creek, near Mt. Carmel, and a bed of fine white clay also oceurs on Crawfish creek on sec. 5, T. $1 \mathrm{~S} ., \mathrm{R} .12 \mathrm{E}$. This bed is four feet thick and appears like a good fire clay.

Brick Muterials.-Good brick clay is aboudant in almost every neighborhood, and sand suitable for mortar aud cement may be found in the river bluffs as well as in some of the creek valleys.

Soil and Timber.-The soil on the rolling upland is a chocolate colored clay loam well charged with humms from the decomposition of organic matters, and very productive, especially in wheat, oats and grass. In the vicinity of the Wabash bluff's the character of the soil is modified by the sandy marls of the loess upon which they rest, but these soils are very quick aud productive, vielling anumally large crops of all the cereals usually cultivated in this climate. Along the Wabash and Bonpass there are extensive tracts of heavily timbered bottom lands that have a deep alluvial soil with a sandy subsoil. These lands are very productive when cleared and brought muder cultivation, and are decidedly the best corn lands in this portion of the State. They are subject to ammal orerflow from the river freshets, but these usnally occur in the early spring time and seldom interfere with the production of the usual crops. These two counties, though limited in area, have a thrifty and wealthy population devoted mainly to agriculture, the Wabash river and the intersecting railroads furnishing all needed market facilities.

I am indebted to Mr. J. Znmmernan, of Mt. Carmel, for much valuable information and assistance winle engaged in my examinations in this ricinity, and to Dr. J. Somenci for the following complete list of the trees and shrubs indiginous to Wabash county:

A list of the Forest Trees and Shrubs found in Wabush County.

```
Acer rubrum, L., (Fied or Suamp Maple.)
    " dasycarpum, Ehrhart, (White or Silver Maple.)
    " saccharinum, Wang., (Common Sugrer Maple.)
    " sacchariuum, var. nigrım, (Blucli Sugar Maple.)
A'sculus grlabra, Willd., (Smooth or Ohio Buckeye.)
Alnus serrulata, Ait., (Smooth Alder.)
Amorpha fructicosa, L., (Fulse Indigo.)
Asimina triloba, Dunal., (Common P'upuc.)
Betula lenta, L., (Cherry or Sweet Birch.)
    " nigra, L., (River or Red Birch.)
Carpinus Americana, Michx., (Tron-uood; Mornberm.)
Catalpa bignonioides, Walt., (Cutupa; Indirn Bean.)
Carya oliveformis, Nutt., (Pee(n mut.)
    " alba, Nutt., (Shell burk or Shug-barl: Hickory.)
    " microcarpa, Nitt., (S'mall-fiuited Hickory.)
    " tomentosa, Nutt., (Mocker-mut; White-heurt Hickory.)
    " procina, Nutt., (Pig mut or Broom Hickory.)
    " amara, Nutt., (Bitter-mut or Suramp Hictory.)
Celtis occidentalis, L., (Ineckibervy ; Sugurbervy.)
    " Missippiensis, Bose., (Mississippi-huchberry.)
Cephalanthus occidentalis, L., (Button I'ush.)
Cercis Canadensis; L., (Red-bud; Jutus-tree.)
Cornus tlorida, L., (Florering Dogwood.)
    " sericea, L., (Silliy Cornel ; IVimikinnik.)
    " paniculata, L'Ier., (l'amiched Cornel.)
Corylus Americana, Walt., ( Wild Imacl-mut.)
    " rostrata, Ait., (Bentied Huzel-mut.)
Cratregns tomentosa, L., (Bheck or I'ear Thorn.)
    " tomentosa var. Mollis.
    " punctata, Jacq.
    " cordata, Ait. (W'ashingtom Thorn.)
    " Crus-galli, L., (Cockspur Thorn.)
    " reridis, L.
1)iospros Virginiana, L., (Common Persimmon.)
Enonymus atropurpurens, Jacq.. (Burning-lush; Wathoo.)
    " Americamus, L., (Strutherry-bush.)
l'agns ferruginea, Ait., ( 1 merican Beech.)
Forestiera acuminata, Poir.
```

```
Fraxinus Americana, L., (White Ash.)
    " pubescens, Lam.,(采d Ash.)
    " viridis, Miclıx., (Green Ash.)
    " quadraugulata, Michx., (Blue Ash.)
Gleditschia triacanthos, L., (Thuee-thomed Aeacia or Honey-looust.)
Gymnocladus Canadensis, Lam., (Coffce Tree.)
Hydrangea arborescens, L., (Wild Hydrangea.)
Hypericum prolificum, L., (Shrubly St. John's W'ort.)
Hex decidua, Wilt.
Juglans cinerea, L., (Butternut.)
    " nigra, L., (Black Wralmut.)
Juniperns commmnis,(Common Juniper.)
Lindera Benzoin, Meisner, (N'pice-bush; Benjaminbush.)
Liquidambar Styracilla, L., (S'reet Gum Tree.)
Liriodendrou Tulppifera, L., (Tulip-tree ; Poplar.)
Morus rubra, L., (Red Mulberry.)
Negundo aceroides, Mernch, (Box\cdotelder.)
Nyssa multiflora, W`arg., (Black: Gum; Tupelo.)
Ostrya Virginica, Willd., (Hor-hornbecm; Lever-wood.)
Platanus occidentalis, L., (Sycamore; Plane-trec.)
Populus heterophylla, L., (Cotton Wood; Downy Poplar.)
    " monilifera, Ait., (Neckluce Poplar; Cotton Wood.)
    " tremmloides, Michx., (American Aspen.)
Prinos verticillata, Gray, (Blachi Alder; Winterberry.)
Prunus Americana, Marshell, (Wild Yellow, or Req Plumb.)
    " insititia, L., (Bulluee Plumb.)
    " serotina, Ehrhart,( Fild Blaek: Cherry.)
Pyrus coronaria, L., (Sweet seented Crab Applc.)
    " angustifolia, Ait., (Narrow-leaved Cral Apple.)
Ptelea trifoliata, L., Wafer Ash; Shrubby Trefoil.)
Quercus alba, L., (White-oak.)
    " obtusiloba, Michx., (Post-oak.)
    "6 macrocarpa, Michx., (Bur or Over-cup Oak.)
    "macrocarpa, var. (?) Lyrata, Michx., (Lyré-laved Oak.)
    " prinus, Willd., (Swamp, Chestnut Oak.)
    " bicolor, Willd., (Swamp White Oak.)
    " castanea, Muhl., (Chestnut Oak.)
    " tinctoria, Bartram, (Black or Tanner's Oak.)
    " coccinea, Wang., (Scarlet Oak.)
    " rubra, L. (Red Oak.)
    " palustris, Michx., (Pin or Water Oal.)
    " nigra, L., (Black-Jack or Barren Oak.)
    " Phellos, L., (Willow Oak.)
    " imbricaria, Michx., (Laurel or Shingle Oak.)
```

```
Rhus typhina, L., (Staghorn Sumuch.)
    "glabra, L., (Smooth Sumuch.)
    " copallina, L., (Dwarf Sumach.)
Salix tristis, Ait., (Dwarf Gray Willow.)
    " discolor, Muhl., (Glencous Willou.)
    " criocephala, Michx., (Wooly Heuded Willow.)
    " petiolaris, Smith, (Long-stalled Green Osier.)
    " nigra, Marshall, (Black Willow.)
    " rigida, Muhl., (Stiff-leaved Willow.)
Sambucus Canadensis, L., (Common Elder.)
Sassafras officinale, Nees., (Sassufrus.)
Staphylea trifolia, L., (Bludder-mut.)
Symphoricarpus occidentalis, R. Brown, (Wolf or Buek Berry.)
        " Fulgaris, Michx., (Indian Currant; Coral-berry.)
Taxodium distichum, Richard, (Americtu Bald Cypress.)
Tilia Americana, L., (Busswood; Lindcn.)
    " heterophylla, Vent., (White Basswood.)
Ulmus fulva, Michx., (Slippery Elm.)
    " Americana, L., (Americten or White Elm.)
    " alata, Michx., (Winged Elm.)
Tiburnum prunifolium, L., (Blach Hax.)
    " nudum, \I., (White Rod.)
Zanthoxplum Americanum, Mill., (Northern Prickly Ash.)
```


OHAPTER VI.

THITE AND HAMILTON COUNTIES.

White eounty has a geographieal area of about four hundred and eighty square miles, and is bounded on the north by Wayne and Edwards counties, on the east by the Wabash river, on the south by Gallatin county, and on the west by Hamilton. The Little Wabash trarerses the county from north to south through its eentral portion, and the Skillet Fork enters at the north-west eorner, and after a southeast eourse enters the Little Wrabash near the centre of the county. These streans, with their smaller affuents, and the main Wabash river as its eastern boundary, drain nearly the whole area of the county. South of Phillipstown there is a considerable area between the Little and the main Wabash risers of rather flat land, interseeted by a chain of ponds extending nearls due north and south, through townships five and six south, range tell east, which probably marks the eourse of an old river ehannel. This portion of the eounty is rather flat and heavily timbered. The remainder of the county is quite rolling, and portions of it south and west of Carmi are broken and hilly.

Superfioial Deposits.-The alluvium, loess and drift, the three principal divisions of the Quaternary, or most recent of the geological systems, are well developed in this county. Alluvial bottoms of considerable extentskirt the courses of the main and Little Wabash and Skillet Fork, but being subjeet to annual overflow, the land is only valued at the present time for the fine body of timber which it snstains. The soil, however, is a rich sandy loam, and when eleared and brought under cultivation will prove the most fertile land in the eounty.

The loess is very hearily developed along the bluff's of the Wabask from Phillipstown to Grayville, and ranges from thirty to sixty feet or more in thickness. It eomprises a bed of brown clay immediately below the surface, of variable thickness, which is underlaid by the usual ashgray and buff marly sands, containing the eharacteristic fresh water and land shells usually found in this deposit.

The drift deposits in this county vary from ten to thirty feet or more in thickness, and consist of brown gravelly class, with some northern
bowlders of considerable size. In the ricinity of the Little Wabash, north of Carmi, these seemed to be more abundant than elsewherc, and one was seen near the north line of the county, and about a mile east of the ford on the Little Wabash, that was fully four feet in its longest diameter, by two feet or more in the opposite direction. This is the most southerly point in the State where bowlders of this size have been seen.

Coal Measures.

The stratified rocks of this county bclong to the lower part of the upper Coal Measures, and the lowest beds appearing in the county are to be secn in the bluffs of the Little Wabash, in the vicinity of Newr Haren and near Carmi, these two points being on nearly the same geological level. The New Haven limestone appears to be identical with the lowest limestone seen in Clark county, which there lays abont serenty-fice to eighty feet above coal No. 7 . Here the space is probably a hundred and fifty to two hundred feet or more, with two thin coals interrening between the limestone and the main coals below. ln the solid portions of this limestone fossils are comparatively rare, the ouly species we were able to find in an hour's search at New Haven being Spirifer cameratus, S. plano-conrexus, Productus Prattenianus, P. Iongispinus, Terebratula bovidens, Rhynchonella Osagensis, Platyostoma Peoriense, joints of Crinoided, etc. The rock is hard and brittle, and weathers to a rusty-brown color. The scction in the ricinity of New Maren, commencing at the base with this limestone and extending nortlo along the small branches putting into the Little Wabash for about two miles and a lialf to land adjoining Mr. R. W. Boyd, and belonging to the Jones' heirs, is as follows:

Ft. In.
No. 1. Sandstone, forming the bed rock on top of the hills, and penetrated by Mr. Boyd, in his well.

13
No. 2. Sandstone and sandy shale, passing downward into arg. shale (partial exposure) . . 40 to 50

No. 4. Ferruginous slale, with fossils... 0.
No. 5. Chocolate-hrown calc. sandstone, with fossils .. 116
No. 6. Dark-crlored shale.. 2 to 3
Nัก. т. Coal.. 0 . 2

So. 9. Hard sandstone, partly in heary beds... 4 to 6
No. 10. Shale and thin bedrled sandstone... 6 to 8
No. 11. Spaec covered, probably not more thau ... 15 to 20
No. 12. New IIaven limestone.. 3 to 4
The three inch band of ferruginous limestone, No. 3 of the abore section, contains numerous well preserved fossils, and we obtained from it Plewromaria Graycillensis, Bellerophon carbonarius, B. Montfortianus, Euomphalus sub-rugosus, Mueroehcilus inhabitis, Nucula ventricosu, and

Polyphemopsis per-acuta. The chocolate-brown calcareous sandstone below it contains a peculiar gronp of fossils, among which are Myalina ampla, Aviculopecten occidentalis, Aricula Tongispina, Pinna per-acuta, Schizodus Appinus? Edmondia Nebrascensis, Allorisma sub-cuneata, Bel. lerophon crassus, Naticopsis Pricci? Platyceras Nebrascensis, Productus Pratteniunus, and some other undetermined forms. This bed is found at Carmi in the bed of a small branch south of the town containing the same group of fossils.
About three-quarters of a mile from New Haren north on Rock creek, the beds numbered from two to ten of the foregoing section are well exposed, and a fair qualits of thin bedted micaceous sandstone is quarried for building purposes. From this point to Carmi by the road on the west side of the river the country is quite broken, and frequent outcrops of sandstone and slale may be seen in the hill sides and in the banks of the small streams. On Grindstone creek, seren miles south of Carmi, a bed of sandstone in rather even beds is exposed on a small branch ruming into the main creek from the south-west. The beds exposed are from twelve to fifteen feet in thickness, and the rock has been quarried for building stone, and some grindstones have also been made from it. Most of the beds are in tolerably eren lagers, but some portions of the mass show a more or less concretionary structure.

At Carmi we have a repetition of the same beds found in the vicinity of New Haven, with the upper part of the section better exposed, but only extending downwards to No. 5 of the section seen near New Haven, the lower part of that section being here below the level of the Little Wabash. Commencing with the sandstone to be seen in the north part of town, above the dam, and descending from thence along the river bluff's to the small creek just south of the town, we have the following. section:

Ft. In.
No. 1. Sandy shales and some sandstone in even beds... 12
No. 2. Clay shales... 16 to 18
No. 3. Two thin coats, parted by a foot or more of clay sbale....................................... 1 to 1 6
No. 4. Brown saudstone, quarry reck... 8 to 10
No. 5. Band of cinnamon-brown shale, with Posidonias... 2
No. 6. Dark clay shalo.. 1
No. 7. Gray sandy sbales, passing dowuward into clay shale, with iron stones............. 18 to 20
No. 8.* Ferro-calcareous chocolate-brown sandstone, with fossils................................... $1 \frac{1}{2}$ to 2
The lower bed of the abore section was only partially exposed in the bed of the creek, where it presents the same general appearance, and contains the same group of fossils as were obtained from No. 5 of the section near New Haven. I was mable to find more than a partial exposure of it in the vicinity of Uarmi. The brown sandstone No. 4 of the abore section contains mumerous specimens of broken plants, is somewhat

[^5]ferruginous, and affords a good quality of building stone. The thin baud of eininamou-eolored shale seems to hare been formed from an impalpable brown mud, and on splitting it in thin lasers countless numbers of minute shells like Posidonia are fonnd eovering the surfaee of the slabs.

In the bank of Skillet Fork, at Mill Shoals, there is an outerop of thin eoal, with a bituminous shale and limestone, as shown in the following seetion :
Hard shelly sandstone. 3 to 4Hard, black laminated slate, passing locall 5 into clas shale.6 to 8
Shale, witb thin coal 2 to 3Hard, fine grained limestone
2 to 3
Greenish, pebhly shale. 2Sandy shale, in crenk bedFt.

These beds afford no distinet fossils, but the limestone and blaek laminated slate bear a strong resemblanee to beds found three miles north-east of Fairfield, in Warne eounty, and two and a half miles south of Olney, whieh I have referred to the horizon of coal No. 13 of the general section. The eross clearage planes of the limestone shows Stigmaria rootlets, aud these were the onls indications of organie life we eould find in it. The roek is fine-grained, of a bluish dove color, the lower portion weathering to a jellowish-buff. The beds in the foregoing section are succeeded in the hills north and east of the station by sixty to serenty feet of shale and sandstone, with a thin bed of bituminous shale near the top of the exposure.

At Grayville, on the west bank of the Wabash river, the bluff rises to a hight of more than a hundred feet above low-water level, and affords a fine seetion of the Coal Measure beds, as follows:

[^6]This section was taken about 300 yards below the ferry landing, and at the lowest stage of water in the river. The beds here lie in wavelike undulations, the black shale in the above seetion being at one point 15 feet above the river bed, and in a distance of about fifty yards they come down to within abont six feet of the riser level. In the calcareons shale N 0.7 of the above section there is a thin band filled with erusherl and broken specimens of a small Myalina, probably M. perattenuata. This shale is darkecolored and highly bitmminons, and contains several species of erushed fossils in addition to that above mentioned, but all
identieal with those found in the clay iron band at the base of No. 5. Local patches of sandstone and conglomerate in lenticnlar masses a foot or more in thiekness come in at two or threc points immediately above the black shales, and where this occurs the shales are compressed into something less than one-half their normal thickuess. At the upper end of this exposure the calcareo-bituminous shale No. 7 is replaeed by three or four inches of blue clay shale. The thin-bedded sandstones and sandy shales in the river bed contain Calomites, and fragments of other coal plants, sometimes inclosed in iron concretions similar to those noticed in the river bed at Mt. Carmel. The ferrnginons band at the base ot the blne shale No. 5 of the foregoing section contains many fine fossil shells in a good state of preservation, and the locality has bccome somewhat noted on this account. The species to be fonnd here inclnde the following : Nantilus occidentalis, N. globntus? Cyrtoceras curtum, Dentalium obsoletum, Pleurotomaria tabulata, P. splutrulata, P. Grayvillensis, Macrocheilus inhabilis, Ianthinopsis tumida, Euomphahus subrugosus, Nincula rentricose, Astartella vera, Leda bella rugosa, Lima retifert, Orthis carbonaria, and Lophophyllum proliferum. This is the same group of fossils fomed on Raccoon creek near the north line of Edwards county, at Lawrenceville in Lawrence county, and on Lamotte creek near Palestine landing, showing that the Wrabash river, from the latter point to Grayville, continnes on nearly the same geological level.

The exposure in the Grayville bluff affords an interesting exhibition of the rariable character of the beds occuring at this horizon, and if the upper and lower extremities of this outcrop were only to be seen as separate exposures their identity might not be suspeeted. At the upper end of the hill a seam of pritiferous shale from one to three inches thick is all that separates the black laminated shales, while at the lower end they are separated by abont three feet of calcareons shale and shaly bituminous limestonc. Fossils are aboundant at the npper end of the exposure in clay iron ore in the lower part of No. 5 of the section, while three hundred yards below neither the iron stones nor the fossils they inclose can be found. Hence the difficulty of constructing a connected section in the Upper Coal Measures from the examination of isolated outcrops, which are the only exposures of the strata to be fonnd in this portion of the State.

On the Little Wabash at the ford six miles west of Gray ville, on scc. 21, T. 3 S., R. 10 E., the bluff consists of sandstone and sandy shale, inclosing a bituminous shale and thin coal. The section here is as follows :

A short distance below the ford the bituminous shale and coal appeared to be wanting, wedging out in a distance of about a hundred yards. The upper bed of sandstone is in part a hard micaceous rock, in even layers of moderate thickness, and will afford a good quality of building stone, as will also the concretionary bed below. About half way from Grayville to this ford, in crossing a ridge, there is from 20 to 30 feet of shales exposed, which probably overlay the sandstones at the ford, though the exact connection between them could not be determined.

Gossett station, on the Cairo and Vincennes Railroad, is located on a high ridge something more than a hundred feet above the bed of Bear creek. At the summit the railroad cut shows about ten fect of coarse, soft, brown saudstone, that decomposes easily on exposure. A few feet below this sandstone a thin coal has been found at two or three places in the ncighborhood, and some digging has bcen done here in the expectation of finding it somewhere thick enough to work to advantage, but so far without success. A section of the rocks seen in this vicinity show the following order :

The lowest bed in this section affords sandstone in smooth even layers from an inch to a foot or more in thickness, which is an excellent and durable stone for flagging, foumdation walls, ctc., and the thickest bels could be easily cut for caps and sills. The rock at this quarry resembles that at McGilly's, a mile west of McLeansboro. No outcrop of coal of any valuc has yet been found in this portion of the county, and the four-inch seam in the above section is not likely to increase in thickness sufficiently to become of any practical value for mining pur. poses.

The following observations and sections are from Prof. Cox's notes in this county: " Δ t the Gramd Chain, one and a half miles below Black's ferry, the Wabash flows over a hard sandstone, that is here a fine-graned gray rock, excellent for building purposes. It forms a low recf across the stream, creating a strong current, and hence the name, 'Grand Chain.' On the Illinois shore the rock is but a few feet above the river bed, and is soon lost under the alluvial bottom. On the Indiana side it forms a ledge in the hills bordering the narrow bottom. At Warrick's rittle, six miles abore, this sandstone is again seen at the
water's edge, and on the Indiana shore, near the mouth of Rush creek, it is orerlaid by a heavy bed of shale, including a soft, calcareous stratum, coltaining numerous fossils.

At Webr's ferry the equivalent of the Rush creek shale, alternating with shaly sandstone, again makes its appearance, and at Bonpass, a little higher up, we have the following section :

Ft. In.
Loess, with cbaracteristic fossils .. 30
Drift clay and gravel... 20
Buff sandstone... 10

Thin coal... 0

Silicious shale and sandstone... 6
Argillaceous shale.. . 25
$\frac{25}{123}$
The lower shale in the above section is first seen half a milc below the ferry, and contains fossil plants, Sphenophyllum, Pecopteris and Neuropteris, but too fragile to be preserved.

On the western borders of the county, opposite New Harmony in Indiana, there is a large island formed by an arm of the Wabash, called Fox river. This island is low and flat, and sulbject to orerflow. Soon after crossing Fox ruver we ascend the Phillipstown ridge, which bears a little east of north, and strikes the Wabash river at Grayrille. In this ridge we find the comnterpart of the sections at Cut-off, below New Harmony, and at Grayville; but the creeks do not cut quite so deep into the argillaceous shales here, so as to show the lowest beds. Just bcfore reaching Phillipstown, on the New Harmony road, a thin coal is seen in the bank of a branch. Below it there is a few inches of fire clay; and then an argillaceous shale, which is seen in the bed of the brancli. Abore the coal, which is mostly decomposed, there is a calcareous band containing fossils similar to those found at Grayville. When first quarried this band is firm and hard, but after long exposure it bccomes soft. Abore the fossil band there is a few feet of argillaceous shale and a bed of sandstone, as seen in the following section :

Ft. In.
Tellow crumbling clay ... 20 to 40
Loess with fossils.. . . . 20 to 30
Drift, with pebbles and small granito bowlders.. 35
Silicious shale 10
Sandstonө.. 2
Argillaceous shale... . . . 10
Calcareous fossil band 3
Fire-clay.. 1
Thin coal and fire.clay ... 5
$133 \quad 3$
About a quarter of a mile south-rest of this the sandstone of the above section is ten feet thick withont seams. It is micaceous and soft when first quarried, but hardens on exposure and makes a good durable
building stone. Two and a half miles sonth-west of Phillipstown this same ledge of sandstone forms a low eliff along the eastern face of the ridge and in places is weathered into eaves, localls ealled rock houses.

On the road to Carmi the loess is replaced by a loose yellow sand, that forms a bluff ou the eastern border of a prairie, whieh is sueceeded by a shallow slough or swamp that was probably once the bed of an arm if uot the main stream of the Little Wabash.

Section on Seren-mile creek, on the MIt. Vernou road and near the ferry on Skillet Fork, sec. 30, T. 4, R. 9 E. :

Ft. In.
Drift clay ... 5 to. 6
Argillaceous shale ... 20

Coal... 1

The black shate contained some poorls preserved specimens of Polyphemopsis, Aviculopecten and Nucula ventricosa. The argillaceons shale twenty feet or more in thickness appears again on the ereek a short distance below the opening to the coal.

On Limestone ercek north of Enfield, T. 4 S., R. 8 E., there is an earthy limestone two feet thick passing down into hard silicious fire-elay. No fossils in the upper part, but the lower part contains rootlets of stig. maria. This rock has been burned for lime, and henee the name of the ereek.

A thin eoal is fonnd at the following loealities in this county not already mentioned: Sections 16 and 18, T. 4, R. 8 ; see. 8, T. 5, R. 10 ; sec. 30 , T. 4, R. 9 ; sec. 21 , T. 6, R. 8 ; sec. 3, T. 6, R. 10 ; and sec. 19 , T. 3, R. 9."

Economical Geoloyy.

Building Stone-Sandstone of a fair quality for bnilding purposes is fomm at a number of localities in this county, as noted in the sections already given in the preeeding pages. At Carmi the brown sandstone that forms the bed rock in the sonth-east part of the town is an even bedded fermginous rock, that hardens on exposimre and makes a rery good building stone. On Grindstone ereek, six or seven miles south of Cami, on the New Haven road, a bed of gray samdstone is quaried for building stone, and affords a dmable stone for all ordinary purposes. Near Gossett station an excellent flagstone may be obtained as well as hearier bedded sandstone for other pmrposes. This rock is micalcons and ents freely, and could be cheaply wronght into door sills, lintels, window caps and sills, ete.

The sandstone onteropping in the bliffs of the Wabash river from Phillipstown to Grayville affords good building stone at many points,
as does that also that onterops farther south at Grand Chain. In the huffs of the Little Wabash, near the north line of the comnty, there is from thirty to forty feet of sandstone, nearly all of which might be used for building purposes, and the upper beds are in eren layers of moderate thickness, that coukd be cheaply quarried.

Conl.-No eoal seam thick enongh to be worked adrantageonsly was found ontcropping in the comnty, and the only resonrce of this connty in that direction is in the main coals of the lower measures. These coals may be found here, in my opinion, at a depth of two to fonr handred feet in any part of the countr. At Carmi, and along the Wabash south of Grayrille, eoal No. 7 ought to be found not more than one hme dred and fifty feet below the river level, and if that should be fonnd too thin to be worked to adrantage, abont a hundred feet more wonld reach No. 5 , one of the most persistent seams that we have in the Illinois coal basin. Sitnated as Carmi is at the junction of two important railroads, the citizens conld well afford to make a test experiment with the drill, in order to determine whether they have coal beneath the surface at a reasonable depth and of sufficient thickness to justify the sinking of a slaft. This is a matter of publie interest, and so far as the test experiment is conemed, the expense shonld be shared by the property holders of the town, and when this point is settled private enterprise will do the rest.
lrick materials.-Sand and clay suitable for briek making may be found in every neighborhood, and on the mplands on nearly every farm. Sand for mortar and cement is also aboudant at some localities, as between Carmi and Phillipstown, where a bed of clean yellow sand is fomed replacing the loess.

Soil and Agriculture.-The soil of this connty includes three quite distinct varieties, to-wit: The low alluvial bottoms skirting the main water courses, and subject to annual overtlow ; the higher allurial lands sontheast of Carmi, between the Little Wabash and the chain of ponds already referred to as indicating an ancient river channel, which are mostly above high water ; and the rolling mplands forming the northern and western portions of the eounty. There is a small prairie on this second or higher bottom betreen Carmi and Phillipstown, about five miles in length by two in breadth, and also two small prairies on the northern border of the comnty and partially within its limits, but the remainder of its surface was originally covered with a heary growth of timber. On the low hottoms between the Fox river and the Wabash, cane-brakes are frequently met with, the canes msually ranging from three to six feet in ligglit. This is the most northerly point that we have observed this shrub growing in Illinois. The soil on the low river bottoms is exceedingly productive, and expecially adapted to the growth
of corn, and were it not for the amnal river floods would be the most valuable land in the comnty. The higher alluvial land skirting the Little Wrabash south of Carmi has a sandy soil, not quite so productive as that on the low river bottoms but sielding fair crops of corn, whent oats and grass, and casily enltivated. On the uplands the soil is generally a clay loam, similar to that of Wayne and Edwards, but more variable in its productive capacities, in consequence of the inequalities of the surface. On the oak ridges the soil is thin and yields only light crops of corn, but is better adapted to sinall gianis and grass, while the valleys and the level stretches of land between them have a deep loamy soil that is rery productive, yielding good crops of all the cereals nsnally grown in this portion of the State. For a list of the trees of this comnty the reader is referred to that already given in the report on Wabash county.

Hamilion County embraces an area of fonr hundred and twentythree square miles, aud is bounded on the north by Wayne connty, on the east by White, on the south by Saline and on the west by Franklin and Jefferson counties. There are no streams of any considerable size in the county. The northern portion however is daraned by the tributaries of Skillet Fork, the main stream intersecting the north-east corner of the county, and the sonthern by the North fork of Saline, several branches of which take their rise near the center of the connty and coalesce near the south line to form the man stream. The surface is generally rolling, and was originally mainly covered with timber, though there are two or three small prairies within is borders.

Superficial Deposits.-The alluvial deposits in this county are limited to the valleys of the sinall streams mainly tributary to the North fork of Saline, and are seldom" more than a mile in wittly. They are very heavily timbered with several varieties of oak, hickory, ehn, linden, ash hackberry, black and white walnont, poplar, sugar maple, etc. The drift deposits on the mpands range from ten to thirty feet in thickness and consist of gellow and buff gravelly clays, with small bowlders of northern origin varying in size from a feew inches to a foot or more in diameter. Branches of trees and sometmes the stems also, of considerable size, are met with in sinking wells through the drift in this comuty, as well as nearly every other portion of the State, and very freqnently the ancient soil in which they grew remains in situ beneath the gravelly clays and hard pan of the drift.

Stratified Rocks.-The rock formations of this comnty belong to the npper Coal Measmres, ranging from the homizon of coal No. 10 to coal No. 13, and including a total thickness of one homdred and tifty to two hmmed feet of rock strata, lont affording but little coal thick enongh to be worked to adrantage.

About a mile a little south of west from McLeansboro, at Mr. James McGilley's place, sandstone is quarried to supply the demaud for building stone in this ricinity. The stone is of a good quality, very evenly bedded, and can be quarried in slabs of any desirable sizc, and varying in thickness from two or three inches to two feet. The bed is from five to six feet thick at this quarry, and it affords most of the building stone used in McLeansboro and the adjoining neighborhood. The rock dresses easily and hardens on exposure, and can be cheaply cut for window caps and sills, ashlars, etc. The sandstone is underlaid at the quary by about three feet of shale which farther down the brancl thickens to ten or twelve feet, when the banks of the stream become alluvial and no further outerop is seen for some distance. Above the quarry rock there is a partial outcrop of ten to fifteen feet of sandy slialc, with a few thin layers of sandstone intercalated therein, from two to cight inches thick.

At Mr. Rice's place, about a mile north of McGilley's quarry, there is a band of hard argillaceous limestone from a foot to eighteen inches in thickness, outcropping at a considerable higher level than the sandstone at McGilley's. The limestone is overlaid by fire-clay and a thin seam of coal, which has been worked in a small way by stripping at spreral places hereabouts. The limestone has been burned for lime, but is evidently too impure to slack freely, and moreorer, the bed is too thin to be profitably quarried for any purpose. It contains no fossils. On the north side of the ridge about a quarter of a mile from Rice's, there is another outcrop of the limestone where lime has bcen burned, and here it is overlaid by a black shale containing concretions of black limestone or septaria.

At Mr. Barnet's place, on Hog prairie, the coal overlaying the limestone is from eight to twelve incles thick, with from one to two feet of fire clay between. In the early settlement of the comntry this coal was worked by stripping to supply the neighboring blacksmiths, but since the opening of the heavy beds in Saline county the work here has been abandoned. This limestone is probably somewhere from thirty to forty feet above the highest beds seen at McGilley's quarry, and the following section will show the general relation of the strata seen between Hog prairie and McLeansboro:

	Ft.	In
Yellow ferruginous shale.	10	
l3tack, or dark-hlue bituminons shale.	2 to 3	
Coal.	$\frac{9}{3}$ to 1	
Fire-clay	1 to 2	
Limestone	1 to 1	6
Space unexposed, estinated at	30 to 40	
Shate and thin hedded sandstone.	10 to 12	
Evenly bediled sandstone at McGilley's	5	
Saudy shales..	8 to 10	

This coal seam is probably nowhere more than twelve to fifteen inches thick in this part of the connty, and the coal is rather soft aml slaty, but quite free from pyrite, and is a very fair blacksmith's coal. The limestone is a hard fine grained grayish rock, weathering to a yellowishdrab, and wheu thoroughly burned is said to yield a strong dark colored lime.

To the mestrard of Hog prairie sandstone and sandy shales onterop at intervals in the small branches and in the hill sides to the Jefferson county line, just beyond which the following beds were seen, and as they probably underlay the north-west part of Hamilton combty from the prevailing north-easterly dip of the strata, I (leem it proper to give a description of them in this place.

At Dr. Wilkey's place on sec. 36, T. 4 S., R. 4 E., the following section was seen:

Among the fossils fonnd here I recognize the following species: Orthoceras I'ushensis, Bellerophon carbonarius, B. Montfortianus, Enomphalus subrugosus, X̌uculu rentricosn, Asturtella vera, Ledu Oweni, Mracrodon carbonaria, Spirifer plano-concexus, C'lonetes. Flemingii, Synorladia biscrialis, Lophophyllum proliferum, and plates and spiues of Eupochy. crimus.

About a mile nortl of Dr. Wilkey's on MIr. Jines' phace another coal sean is fomm where the coal is about eighteen inches thick, and orerlaid by a few inches of bituminons shate without fossils, passing npward into a chocolate colored shale, of which abont two feet in thickness is exposed on the branch in stripping the coal. This spam is operned ou a small branch rmming north-eastward into a tribntary of Skillet fork, and the coal dips in the same direction abont with the fall of the errek, while the onterop) at 1)r. Wilkey's is on one of the branches of the Middle fork of Big Muddy, which runs to the sonth and south westward. The eoal at Mh: Jines' mine sermed to be harder than that at Dr. Wilkey's, and while at the latter locality the coal was quite variable in thickness, ranging from eighteen inches to meanly or quite three feet; at the former it varies but little from eighteen inehes. I have no doubt but these onterops are on two distinct seams, probably the equivalents of Nos. 10 and 11 of the genemal section. In the vicinity of MeLemsboro the strata seem to be nearly horizontal, no dontinuous dip, in any direction being perceptible, bit to the westward betwern Hog prainie and the county line there appeared to be a decided dip to
the north-eastward. These two coals, and possibly a still higher seam, No. 12 of the general section, must undenlay the north-west corner of Hamilton countr, and where there is no outerop they will probably be found at a depth of less than a hundred feet from the surface.

Five miles south-west of McLeansboro, on the old Locirwood estate, there is a thin coal from six to fifteen inches in thickness, overlaid by bituminous slate, which passes 11 prard into gray silicious shale and sandstone, the latter buc partially exposed. The coal is rather slaty, and has only been worked to a limited extent by stripping at the outcrop in the banks of a small branch. Neither the quality nor thickness of the coal would justify any attempts at systematic mining here.

On Esq. TwigGs' land, about three miles west of Rectorsville station, a thin coal was found in sinking a shallow well near a sandstone quarry. The coal and a few inches of bituminous shale forming its roof lies immediately below the sandstone, but no outcrop of it could be found. It is probably too thin to be of any practical value. The sandstone quarre shows a space of about three feet in thickuess of soft micaceous erenly bedded rock in layers from one to six inches thick, and contains fragments of plants and numerous casts of Aviculopecten rectilaterarius. Quarries have been opened at several places in this vicinity in this sandstone, and the coal has been found in several wells, but always too thin to be of any practical ralue for mining purposes.

At Hood's old mill on the North Fork, about two miles and a half south-east of Rectorsville station, the following beds outcrop in the bluffs of the stream:

Ft.

Sauty micaceous shale... 14
The chocolate-colored sandstone at this locality resembles somewhat the brown calcareous sandstone found in the bed of the creek at Carmi, but it is less calcareous here if they are equivalent strata, and contains but few fossils, and none of the species most characteristic of that bed in White counts. The fossils observed iu it here were Productus Pruttenianus, P. Nebrascensis, Terebratula bovidens, Bellerophon, Fenestella, and joints of Crinoidea. Hand specimens of this saudstone, which is here fermginous and perhaps slightly calcareous, rery closely resemble those from the White county localities, and it is quite possible they may represent equivalent strata, and if so this is probably about the lowest bed outcropping in this county.

The following outcrops are reported by Prof. Cox:
"Oli sec. 23, T. 5, R. 5, on Knight's prairie, coal is found reported to be eighteen inches thick, overlaid by argillaceous and silicious shatc. At J. M. McDaniel's well on sec. 5, T. 5, R. 6, passed through eighteen
feet of sandstone and two feet of blue shale. Mr. JoHn HaLl, in digging a well on Kinght's prairie, struck coal at the depth of seventen feet. Earthy limestone one foot thick exposed at S. Lave's, also at Plate Stephens' on see. 16, T., , R. 7 , where it is exposed in the bed of a branch orerlaid by ten feet of silicious slate. A thin coal is found on sections 14 and 23, T. 5, R. 7."

These isolated sections give the general elaracter of the outerops to be seen in this eounty, but they afford no data on whieh to construct a comected section of the several beds that outcrop within its borders. It is probable the total thickness of the strata that appear in natural outcrops within the comnty do not exeeed one hundred and difty to tiro hundred feet, and inchade no important limestones, and no coal seams above fifteen to eighteen inches in thickness except in the north-west corner of the county, where coals Nos. 10 or 11 may perhaps be found from two to two and a half feet thick.

Economical Geology.

Building Stone.-Sandstone of a fair quality for building purposes may be obtained at sereral places in this county, and the quarry at Mc(inlLEX's, one mile south-west of McLeansboro, furnishes a good material for flagging and for cut stone, as well as foundation walls, ete. This quarry fimishes most of the stone used at McLeansboro and in the adjoining neighborhood. A similar sandstone is found outeropping on a branch abont three miles notth-west of McLeansboro, a tributary of the Skillet Fork, and several cuarries have been opened in the blutis of the stream. In the southern part of the county the supply of good stone is not abundant, but the bed of mieaceons sandstone nean 'squire Twiggs' place, three miles west of Reetorsville station, affords a soft rock in thin berls that is used for walling wells, for foundations, etc. The hard chocolate-colored micaceons sandstone at Hood's old mill, on the North Fork, near the south line of the comty, aftorls a very durable stone, but is too thin bedded for heary masomry. The only bed of limestone seen in the comnty is too thin to be of any practical value for buiding purposes, and is merenly bedded amd nodular in structure.

Coal.-The coal seams appeang above the surface in this comnty are mostly teo thin to be worked systematically, and no coal is mined in the connty at the present time except by stripping. The coal at Dr. WilkIE: just over the line in Jefferson comety, attains locally a thickness of about two feet and a half, and if that thickness shonld prove persistent it might be worked to advantage in the manal way be a tmonel or a shallow shaft. This salan probably muletays the morth-west comer of Hamilton comity, and would be fomed at a depth of fifty
to a hundred feet below the surface. The sean above it worked by Mr. Jines, uorth of Wilkie's, affords a harder coal, but it seldom exceeds a thickness of about eighteen inches, and can only be worked by stripping. The coal on Mog prairie ranges from eight to fifteen inches in thickness, and is not much worked at the present time. The main coals lay at a considerable depth in this cominty, and may be reached by deep shatts whenever the demand for coal shall be such as to justify extemsive mining operations. The approximate depth to No. 7 coal would probably not be more than two hmedred to tiro hundred and fifty feet in tho south part of the county, and from three handred and fifty to four handred in the northern portion, and No. 5 may be formd about a handred feet below No. 7. These depths will prove to be no serious obstacle in the way of coal mining whenever the demand for a large amount of coal sliall arise.

Lime.-The thim band of limestone below the coal on Hog prairie has been burned for lime, but the bed is too thin to furnish an adequate supply for the wants of the county, and the quality is inferior to that obtained from St. Louis.

Clay and Sand.-Clay suitable for brick making is abundant in every meighborhood, and may be obtamerl from the subsoil of the uphat almost any where that it is required, and sand suitable for mortar and cement is also abundant.

Mineral Springs.-There is a Chalybeate spring one aud a half mile east of McLeansboro, the water of which is strongly charged with carbonate of iron. The water in Dr. DeFob's well, in McLeausboro, is also highly charged with mineral snbstances, of which the following qualitative analysis has beeu furuished by Prof. Cox :

Neutral to test prper.	Sulphate of lime.	Sulphate of protoxyd of iron.
Choride of magnesia.	Sulphate of magnesia.	Carbonate of lime.
Chloride of sodium.	Sulphate of alamna,	Carbonate of maguesia.

Mr. J. M. McDaniel's mineral spring north of town, is a strong, saline, sulplureted water, that wonld probably prove beneficial in cases of general debility. The water in Dr. DeFoe's well probably derives its mineral properties from the shale overlaying the thin coal that outcrops on IIog prairie, as that coal and the overlaying shale was passed through in sinking the well, and the two springs above named may derive their mineral ingredients from the same source. Possibly this shale may be the same that imparts its mineral properties to the water at several localities in Wayne county, especially west and north of Fairfield.

Soil and Agriculture.-On the main branch of North Fork and on some of the smaller streams in this county there are belts of alluvial bottoms of variable width, that were originally covered with a heavy
body of most excellent timber. These lands possess a very rich soil, nsually a sandy loan, and when cleared and brought muder cultivation they are the most productive lands in the county. The pranies are small, and occupy the highlands forming the water shed between the streams. The soil is a chocolate colored chay loam of arerage quality, and produces fair crops of com, wheat, oats, grass, etc. Some of the best timbered uplands are equally as productive as the prairie, especially those on which the timber growth consists in part of black walnut, elm, linden, sugar maple, wild cherry, etc., in addition to the common varieties of oak and hickory. The oak ridges along the breaks of some of the streams hare a thin soil with a stiff clay subsoil, and need the frequent application of artificial stimulants, in the way of manures, or by fallowing and plowing under green crops, to retain their productivequalities. These lands will prodnce good crops of wheat and clover, and by judicions management may easily be made to repay the labor of the well skilled husbandman. As an agricultural region this county ranks farorably with those adjacent in Southern Illinois, and the completion of the St. Louis and Southeasteru railroad gives to the products of the county an easy access to the St. Lonis market, or that of the large cities on the Ohio and the Lower Mississippi rivers.

OHAPTER VII.

WAYNE AND CLAY COUNTIES.

Wayne eounty embraees an area of seven hundred and twenty square miles, and is bounded on the north by Clay and Richland eounties, on the east by Richland and Edwards, on the sonth by White and-Hamilton, and on the west by Jefferson and Marion. It is located on the southern border of the prairie region, and at least three quarters of its surface was originally timbered land. The prairies are mostly small, the largest being that in the northern portion of the connty between Elm ereek and Skillet Fork. The prineipal streams in the county are the Little Wabash, and Elu ereek, its prineipal westerı affuent, which drains the eastern division, and Skillct Fork, with its numerous small branches which flow through the south-western part of the eounty.

The surface is generally rolling and elevated from fifty to a humdred feet above the beds of the streams. The bottoms on Skillet Fork and Little Wabash are rather low and flat and heavily timbered.

The geological features of this county are very similar to those of Wabash and Edwards, the drift deposits and upper Coal Measures being the only formations exposed. In the southern portion of the connty the drift elays seldom execed a thiekness of fifteen to twenty feet, and in sinking wells the bed rock is often fonnd at a depth of ten or twelse feet below the surfaee. Towards the northern bonndary of the connty they are somewhat heavier, and on Elm ereek there are bluffis thirty feet or more in hight that seem to be eomposed entirely of drift. Here the lower portion consists of the bluish-gray hard-pan that has been more particularly described in the report on the more wortherly eountics, where it is sometimes fonnd from fifty to seventy-five feet or more in thiekness. The upper portion of these superficial deposits may be represented along the bluft's of the Little Wabash by a few feet of loess, but generally it consists of fellowish brown gravelly elays and sand, with numerous rounded pebbles and oceasionally bowlders of metamorphie rock of moderate size. Loeally the gravelly clays are tinged a reddish-brown color, with the red oxyd of iron, derived probably from the deeomposition of a ferruginous sandstone that forms the bed
rock in many places in the southern part of the county. The undulations of the surface often take the form of long ridges from thirty to forty feet in hight, with a direction nearly parallel with the courses of the streams. These ridges usually hare a nucleus of sandstone or shale, but their sides are so gently sloping and the drift clays cover then so evenly, that the bed rock is seldom exposed to view. The streams are sluggish and meander through wide, flat valloys, seldom showing any outcrop of the bed rock along their courses. This renders the construction of contiuuous sections very difficult, and the determination of the true sequence of the strata can only be made in a general was, by the examination of isolated outcrops.

Coal Measures.

At the iron bridge on the Little Wabash, on the stage road from Fairfield to Albion, the following section is to be seen on the east bank of the stream :

[^7]No fossils were found here that would enable me to fix the horizon of these beds, but they presented nearly the same lithological characters as the outcrop at Hamicker's old mill on the Bonpass, in Edwards county. At Beech Bluff, three or four miles above the bridge, the sandstone is more massive, and extends to the river level, showing no outcrop of the underlaying beds.

At Massillon, on the west bank of the Little Wabash, on the N. W. qr. of sec. 15, T. 1 S., R. 9 E ., the bluff is composed mainly of sandstone and sands shale, with a few feet of argillaceous shales near the ricer level containing several bands of clay iron ore. This outcrop seems to be identical with that at the old ford three miles above in Edwards county, and it is quite probable the thin coal found there is here a littlo below the river bed. A thin coal is found here in the sandstone some twenty feet or more above the river level; but it is probably ouly a local deposit or "pocket," such as may be frequently met with in the sandstones of the Coal Measures.

Mill Shoals is situated on the Skillet Fork, just over the line in White county, but the section made in this vicinity is partly in Wayne, and is as follows:

Feet.

Feet.
Space unexposed 5 to 20
Hard slaly sandstone in the bank of Skillet Fork 3 to 4
Haxcl, black laminated slate, passing lucally into clay shalo 6 to 8
Shale, with a thin coal 2 to 3
Hard, fine-grained limestone; without fossils 2 to 3
Greenish, pebbly shale 2
Sandy shale. 1
The three upper beds in the foregoing section are found in Waynecounty about three-quarters of a mile north-east of the village. Prof.Cox reports a section six miles south-east of Fairfield, which seems tobe nearly a repetition of that at Mill Shoals, as follows:Ft.
" Fellow clay and drift 15
Sandstone and lucally sume shale 45
Gray silicions shale. 10
Thin coal. -"These two sections will give a general idea of the prevailing characterof the rocks in the south part of Wayne commty. The following is asection of a well bored for oil by Major Collins on sec. 25, T. 2, R. 7 :
Ft. In.
Soil and subsoil. 3
Sandstone 50
Slate-(shale?) 27
Cual 6
Clay and blae shale 2
Hard gritty rock. 4
Hara yellow rock 4
Iarel sandstone 8 to 10
Dark slate-(shale?) 28
White sandstone 66
Black shato.6

It is proper to state here again what we have already said on more than one oceasion, that reports of oil wells are to be taken with due allowance, in consideration of the fact that the persons having the work in charge were seldom qualified to determine the true character of the beds through which their drill was passing, and we see in the above section that no attempt was made to define the character of two beds of hard rock, while the beds denominated slate were probably shale, with possibly a thin bed of slate intercalated thereiu. In this way bitummons slate is often mistaken for coal, and where the substance is reduced to an impalpable powder by the drill no one but an expert can fully determine the one from the other by the material bronght up in the sand pump.

At Mr. Black's place, about two miles north-west of Fairfield, there is an outerop of hard, dark, bluish-gray limestone, weathering to a buff color, which is overlaid by clay shale, with a thin coal or bituminors sbale interealated therein, as indicated by a streak of smutty material to be seen a few feet above the limestone. A thin coal, sometimes as
much as eighteen inches in thickness, occurs at another locality under a limestone similar to this, and the same may possibly be fomm here by digging a few feet below the roek. The limestone has been quarried here as well as on the atjoining farm for building stone and for lime, and ranges from two to three feet in thickness.

On Mr. J. H. 'Thomas' place, on sec. 17, 'T. 1 S., R. 8 E., a thin coal has been found below a limestone similar to that above mentioned. The coal was opened a few years since by sinking a shaft some 15 or 20 feet in depth, and the coal is reported to have been 18 inches thick, and the limestone two feet. The shaly portion of the limestone contained a few fossils, among which we identified Orthis carbonaria, sturifer cameratus, Chonctes Verneniliamss and Lophophyllum prolifernm.

On Mr. E. Pilemer's laud, on sec. 20 of the same township, a bed of black shate crops ont on a hill side at an elevation considerably above the coal shaft above mentioned, and was penetrated to the depth of fifteen feet in search of coal, but withont finding it. On the opposite side of the hill, and below the level of the black shale, a caleareosilicuons rock has been quarried for buiding stone. It has a slaty strmetme, and is filled with fragments of broken plants, and appears to be the exact equivalent of the arenaceous limestone fonnd at Mr. Boden's phace two miles and a half south of Flora. The bituminons shale at Mr. PILCIIER's place contains rounded bowlders of blark limestone that weather to a blaish dove-color, and similar concretions were seen at the exposure south of Flora, which leaves no reasomable doubt of the identity of the beds at these points. A short distance south of Mr. Phambr's land limestone was formerly quarried for lime-burning, but the outerop is now covered up. The relative position of the beds above described is imdicated in the following section :

Ithis is probally coal No. 13 of the gemeral section.
 about seven miles north-west of Failield, there is an onterop of 1510 20 fert of sandy and argillaceons shale, containing numerous bands of kidney iron ore of good quality. A thin coal has been passed throngh in digginge wells in this neighborhood, and either moderlays these shales entirely or is interealated in them. 'lhis onterop elosely resembles that at MoldANEAS' place near the north line of the combty, hereafter to be mentioned, and the well water in this vicinity is impregnated with repom sattis, like wells and shinge at the locality above mentioned. Between this locality and Fairfield, and abont three miles a little sonth
of west from the town, an even bedded sandstone is quarried for building purposes similar to that at Hoag's quarry north of Xenia. This sandstone probably underlays the shales ontcropping at the Williams place three or four miles to the westward, and the coal there is either a local deposit or else represents coal No. 14 of the general section.

On sec. 21, T. 2 N., R. 6 E , in the bluff ; of Bear cre k , near the north line of the county, a massire smdstone outcrops for some distance along the bluffis of the stream in perpendicular cliffs from twenty to thirty feet in higit. This sandstone was struck in the boring at Fhora at the depth of about sixty feet, and was penetrated to the depth of eighty-four feet. The outcrops on Bear creek probably represent only the lower portion of the bed.

On sec. 27 , T. 2 N, R. 6 E., argillaceous and sandy shales with bands of kidney iron ore erop ont in the slopes of the hills at various points, showing an aggregate thickness of twenty feet or more, with a bituminons shate or impure coal near the top of the exposure. A well sunk here struck a rein of water at the depth of twentrone feet so strong that it soon rose to the surface and has been flowing freely to the present time. It has a strong taste of epsoun salts, and prodnces an effect similar to that drug upon those who use it. At Mr. Eli McDaniml's phate, adjoming the above, a spring of the same kiud of water is found, somewhat strouger in mineral properties thau that in the well. The water here seems to derive its mineral properties from the bed of argillaceous shale which forms the bed rock in this vicinity, as wells sunk in the overlaying sandstone afford pure water.

The following additional notes and sections are reported by Prof. Cox in this county: "At Liberty they pass through sandstone in digging wells from ten to forty feet, and obtain good water. On sec. 30, T. 2, R. 7, limestone is obtaned for buidding and for lime. Bed three feet thick, upper part shaly, contains Productus longispinus, Mucrocheilus inhabilis, Athyris subtilita, Productus costatus and joints of Crinoidea. The same limestone is exposed at Whitaker's, on sec. '25, T. 2, R. 7. A thin coal is usually found beneath the limestone, and a thin, impure coal or bituminous shale is frequently seen in the shales above it. Clay iron ore occurs in a grayish shale seveu miles north of Fairfield, exposed by a wash on a hill side. On sec. 34, T. 1 S., R. 9 E., the following beds are seen:

Ft. In.
Heary bedded sandstono.. 25
Aronaceous slialo.. 10
Black, slaty shato... 2
Pyritiferous shale, with fragments of shells.. 3
Fire clay (good quality).. 1
Cliny shale .. 0
Shaly sandstone in river bed.. $2^{"}$

From the foregoing seetions and remarks it will be seen that there is but little diversity in the character of the rocks exposed in this county. They probably represent a total thiekness of one hundred and seventy. five to two hundred feet or more, eomprising mainly sandstones and shales, most of which decompose readily on exposure, and are therefore seldom found in bold outerops.

Economical Geology.

Building Stone.-Sandstone of a fair quality for building purposes is tolerably abnndant, and quarries have been opened in nearly every township in the eounty. Three miles a little sonth of west from Fair. field, an exeellent sandstone is quarried on a small branch tributary to Skillet Fork. The rock is in smooth even layers, and resembles the sandstone of Hoag's quarry, near Xenia. Along the Little W'abash a heary bedded sandstone is found thronghout its course in the sontheastern part of this comnty, which, from the bold cliffs it forms at many points along the bluft's of the stream will no doubt afford a large amonnt of durable building material. Six miles sonth-east of Fairfield a good flag sandstone is quarried in large slabs six inches thick. Three and a half miles north of Jefferson, ou see. 30, T. 1 N., R. 6 E., a grayish sandstone of good quality is quarried in large slabs from a foot to eighteen inches in thickness. A similar stone is also quarried by Mr. Phillips, on sec. 16, T. 1 N., R. 7. E. These are some of the most valuable quarries opened at the present time, but others equally good may be opened at rarious places in the eounty as the wants of the people may require. The limestone over the eighteen ineh eoal sean has heen quarried at almost every point where it ontcrops, but the bed is thin, and the snpply to be obtained from it, without too greatexpense in stripping, is rather limited.

Coal.-The only coal in the county that promises to be of any value for practical mining, is the cighteen inch seam north and north-rast of Fairfield. This might be worked in a limited way, either by stripping or by an inclined tumel near its outerop, but the seam is too thin to furnisb an atequate smpply for the general market. The main eoals of the lower measures may be reached in the southern portion of the eomity at depths varying from three to five hundred feet, and in the northern portion from five to eight humdred.

Irom ore-Bands of iron ore of good quality oceur at several places in the shales of this eomity, and have been noted in the sertions already given. They seem to be in sufficient quantity at several localities to eventually become of some economical value. In Great Britain, bands of six to eight inches in thickness are said to be worked successfully,
and we find many localities in our Coal Measures where from twelve to eighteen inehes of good ore ean be obtained from a rertical thickness of five or six feet of shate. The shale contaning the iron ore observed in this county underlays a considerable area in the central and western portions, mainly iu ranges 6 and 7 east. At Mrs. Willinise plaee, on the N. W. qr. of sec. 29 , T. 1 S., R. 7 E., iron ore of good quality seemed to be duite abundant, and also at several plaees on the ravines near Mr. McDaniel's place, not far from the north line of the comnts. Prof. Cox also notes an outcrop of elay iron ore in a grayish slate seren miles uorth of Fairtield, and also on see. 15, T. 1 N., R. 8 E.

Potters' Clay.-A good clay snitable for pottery or fire-brick wis fonud on see. 34 , T. 1 S., R. 9 E , hut at the outcrop it was only one foot thiek. Possibly it may be fount at some other locality near by, where it is thick enougl to be utilized for the manafacture of pottery or fire-briek.

Clay and Sand.-Materials for brick can be obtained from the subsoil of the uplands almost amywhere in the comenty, and from the abmunt supply of wood for fuel, brick can be cheaply made in sufficient quantity to supply all future demands for this indispensable building material.

Soil and Agriculture.-The soil in this comnty is mainly a dark ashgray or chocolate coloren clay loam, less highly chargen with organie matters or humus than the black prairie soils of Central Illinois, but sielding fair crops of corn, wheat, wats and grass, both clover and timothy, and with julicious treatment will retain its fertility without any expense for artificial fertilizers. The ridges afforl excellent fruit farms, and apples, peaches, pears, cherries and the small fruits may be grown here in the greatest abundance. The cultivation of the grape has only been attempted in a limited way, but the broken timberen lands conkd be profitably cultivated in rineyards. As an agricultural region this eomnty ranks farorably with the adjoining portions of Southern Illinois.

Clay County embraees a surface area of about four hmudred and sixty-six square miles, and is bounded on the north by Effingham and Jasper conuties, on the east ly Jasper and Richland, on the south by Wayne, and on the west by Marion and Fayette. The Little Wabash river runs diagonally across the county from north-west to sontheast, and with its afluents, Elun creek on the sonth, and Muldy ereek on the nortl-east, drain nearly the whole of its area. The surface of the eomity is nearly equally divided into prairie and timbered land, the latter forming wide belts along the streams, and the former ocenpying the highest areas bet ween them. The difference of level between the ereek bottoms and the adjaceut lighlands is not very great, probably nowhere exceeding fifty to seventry five feet. Locally the streans are bordered with precipitons bluffs from forty to fifty feet in light, and at other pomts
there is a gradually sloping surface from the bottoms up to the lerel of the adjaecnt prairie. The bottoms along the Little Wabash vary in width from one to tliree miles, and are subject to orertlow during the annual spring freshets, and henee have not been brought under eultivation, but are still eovered with primeval forests of excellent timber. The alluwial soil of these bottoms is exceediugly rich, aud if subdued aud brought under enltivation would produce abnudant crops of eorn, and all the cereals usually cultivated in this latitude.

Drift Deposits.-The uplands are eovered with blue and yellow drift clays ranging from ten to forty feet in thickness, and possibly along the bluff's of some of the streams they may attain even a greater thiekness than that abore indicated. The surface of the bed rock was often eroded into valleys of considerable extent before the drift was deposited, and being subsequently filled with these gravelly clays, the deposit is not uniform, but is much thicker in some places than in others.

In the borings at Xenia and Flora, the bed rock was struck at the depth of thirteen or fourteen feet, and generally upon the prairie in sinking wells, the drift clays and gravel beds are found to range from ten to twenty feet. In the bluffs at Elm creek sonth of Flora and at some other points in the connty, they attain a thiekness of thirty to forty feet. The upper part is generally a brown or buff gravelly clay with occasional bowlders of a foot or two in dianeter, and the lower part where the deposit attainsits greatest thickness eonsists of bluish or ash-gray clay or hard pan as it is usually denominated, from its being more compact and hatder to penetrate than the brown elay above itBowlers of granite, si nite, greenstone and quartzite are not uncom. mon, and occasionally uuggets of native eopper and small specimens of galena are to be met with in these gravelly elays in this county.

Stratified liocks-The roek formations proper iut this eonnty all belong to the upper Coal Measures, and the only seam in the county that las been worked to any extent is No. 16 of the general scetion, and the highest sean but one known in the State. There have been three borings made in the county, one at Xeuia and two in the vicinity of Flora, but none of them were carried down far enough to reach the main workable coals of the lower measures. The Flax mill boring on the eastern edge of Flora, is reported as follows:

[^8]1. Soil amb drift clay.. 13

2. Black shale and coal, No 14 ?. .. 3
3. Harl batmatone 8.1
4. Clay sliale (sиаритоие) ... 33

A shaft was commenced near where this boring was made, and carried down to the depth of one hondred and fifteen feet, mainly throngh saudstone and sandy shale. The flow of water in the shaft was so strong as to seriously interfere with the prosecution of the work, and finally filled it to within abont five feet of the surface of the ground, where it still remains. The shaft terminated in the heavy bed of sandstone No. 4 of the preceding section. Another boring two miles to the westward of this, near the Fair Grounds, was reported as follows:

It. In.

2. Sandstone ... 40
3. Clay shale (soapstone).-.. 7
4. Hard gray sandstonc.. 38

6. Saudstone ... 47

8. Black shale.. 8
9. Limestono .. 8
10. Clay shale (soapstone). 37
$\overline{20.5} 6$
These borings commence at least forty or fifty feet below the coal and limestone north-west of Louisville, and were discoutinued before reaching the horizon of ans workable coal. The boring at Xenia was carried to the depth of 450 feet passing through three thin coals, one of which was reported to be four feet thick. The following is the section of this boring as furnished by Captain Dyer:
2. Clay shale (soapstone) 92
3. Blnish-gray sandstone. 31
4. Coal, No. 13? 9
5. Crevice? (probably soft fire-clay) 16
6. Clay slate (soapstone) 3
7. Limestone 6
8. Conglomerato 3
9. Bluish-nray samdstone. 4
10. Hhue shale 64
11. Hard rock 1
12. Black slate, No. 12 ?. 9
13. Saulstone. 12
14. Blue shate 146
15. Coal, No. 11 ?. 4
16. Fire clay. 6
17. Sandstone. 15
18. Pebbly rock 2
19. Shale. 26
20. Blue shale. 29
21. Micaceous sandstone. 4
22. White sandstone 4
23. Rock with a fort fossils. 1
24. Coal, No. 10? 6
25. Firc-clay. 26
26. Saulstono. 16
27. Blue shate 4
2s. Sandstone 2
29. Black slialeFt. In.
30. Flint rock? 10
31. Shate. 23
32. llard rock 4
33. Shate 11
34. Sandstone 7
35. Clity shate 6
3f. Sandstone 11
37. 13lue shale 6
38. Gray sandstone 14

So far as it is possible to correlate this sect:on with what is known of the upper Coal Measure strata of Central Illinois, I am inclined to believe that the 10 -foot bed of hard rock deseribed in the boring as flint is the limestone of Shoal ereek and Carlinville, which is usually a very hard rock, and that the suceeeding coals are $10,11,12$, and 13 of the general seetion. The small coal outcropping north of Hoag's quarries aboint two miles, at Jacob Spriker's place, is probably No. $\mathbf{1 5}$, and the next snceeeding seam would be the Nelson coal of Effingham eountr, which outcrops in this county about two miles north-west of Louisville, and at several points north-west of there in the bhiffs of the Little Wabash and its tributaries, and will be more particularly deseribed further on in this chapter.

One mile nortl of Xenia a fine evenly bedded freestone is extensively quarried by Mr. Hoag. The roek is a rather fine-grained sandstone in even layers from two inches to two feet in thickness, and can be easily quarried in large slabs. It is partly brown and partly of a bluish-gray color, dresses freely and hardens after being taken from the quarry, and is the best bnilding stone known in this portion of the State. The roek is as evenly bedded as the magnesian limestone of Joliet, and the thin layers make good flagstones, while the heavier beds afford a fine quality of eut stone for ashlars, window eaps and sills, lintels, ete. A large quantity of this stone is fmmished to the city of St. Li-is, where it bears an excellent reputation as a superior building stone. Abont eight feet in thiekness of this freestone is worked in this quarry, the heaviest beds ranging from one foot to thinty inches in thickness. This sandstone is overlad in the rieinity of this guarry with twenty to twenty-five feet of soft brown shale with mmerous bands of iron ore, elosely resembling the shales on the waters of Raccoon ereek sonth-west of Flora and described in the report on Wayne comsty. The water of a well sumk in this shale, about half a mile north of Hoag's guarry, has the same taste as that at MeGamon's spring near the north line of Wayne county, and l have no donbt the shates are identical. The shate here contains mumons bands of iron ore of good fuality, and several points were observed on the small banches northeast of the quarry, and not more than a mile distant, where from twelre to sixten inches
of good ore conld be obtained from a vertical thickness of fonr or five feet of shale. The thin coal at Spiker's place orenlays this shale, and the beds exposed there gave the following section:

A few well preserved fossils were found in the septaria over the coal, amoug which were Nautilus occidentalus, Macrocheilus inhabilis, Productus pertcmuis, Spirifer cameratus, Myalina sub quadrata, Chonctes, joints of Crinoidea, ete. All the beds exposed from Hoag's quarry to this point are probably above those passed through at the Xenia bore.
At Mr. John Laminins' place about two miles north-west of Louisville, on the N. W. qr. of see. $20, \mathrm{~T} .4, \mathrm{R} .6$, there is an onterop of gray limestone underlaid by a eoal sean which ranges from twelve to eighteen inebes in thickness, and is worked by Mr. Lamins in a limited way, affording a coal of fair quality. The limestone over the eoal is a eompaet, hard, gray rock, ranging from three to four feet in thickness, containing nomerous fossils that mas be obtained from the ealeareous shaly layers associated with the limestone, in a fair state of preservation, The seetion here is as follows :

The fossils observed here inelnde the following speeies : Orthis carbonaria, Fusulina cylindriea, Spirifer cameratus, Spiriferina Rentuckensis, Lophophyllum proliferum, Productus longispinus, P. costutus, and P. punetatus.

On see. 10, T. 4, R. 5 , this limestone is found on Crooked ereek but little above the creek bed, and the coal if found here at all would be below the water level.

On the S. W. qr. of see. 25, T. $5, ~ R .5$, about two miles east of Larkinssille, the coal and the overlaying limestone outcrop in the bluffs of Dismal ereek. The limestone is here from four to five feet in thickiless, and the coal is reported to be about the same as at Lamkins' place. There is here from ten to twelve feet of sandy slate exposed in the bluti's of the ereek below the coal.

On see. 16, T. 4, R. 5, near the north-west eorner of the section, a bed of hard shaly sandstone outerops in the banks of a suall branch, oserlaid by a slaty bituminons shale a fuot or more in thickness, containing lenticular masses of black limestone or septaria. The shaly sandstone
was about three feet in thickness, and it probably orerlays the limestone and coal at Lamkins' place, thongh the exact connection between them. was not determined.

On the S. E. qr. of sec. 21, T. 4, R. 6, a sandstone quarry has been opened where the rock shows a perpendicular face from fom to six feet in thickness. The sandstone is overlaid by a buff colored shale suc. ceeded by a black laminated shale containing concretions of black or dark-blue limestone or septaria, containing a few fossils.

On section 16, in the same township, a hard saudstone is fomed in the blaffs of Crooked creek which resembles the rock at the quarry on section 21, and it is here underlaid by shaly sandstone and shale to the water level. If these sandstones are identical the section here would show the following order of snccession :

These berds onterop at intervals along the blufts of the stream from the month of Crooked creek to Lonisville, amd at the old mill dan we find nealy a repetition of the above section, as follows :

Ft. In.
Black laminated shale.. 2 tu 3
Coal.
Buftiond blue shales-partial oxposure... to 10
Itregularly bedded hard sandstone .. 4 to G
Sapdy slates extending belorv the river berl.. 10 to 12
The thin coal in the above section is locally orerlaid by a few inches of chocolate colored shate, passing into a havd blue limestone containing a few fossils, among which we were able to identify the following : P'roductus I'rutteniamss, Chonetes granulifern, Lingula umbonatu? I'lewrotomarie carbonaria, Macrocheibes, ete. This thin coal is probably identical with that at Mr. Sprikers three miles north of Xenia, and is either a local seam or else represents coal No. 15) of the genema section. The beds on the Little iVabaslo at Louistille muderlay the limentone and coal at Lamkins place adol on Dismal ereek, but the exposures were too isolated to obtain a complete section of the strata.

Four miles sonth west of Flora, on a branch of Raceoon creck, sand. stone and sumdy shale onterons along the bluff; of the stream for some distance. The bed is altogether some ten or twelre feet in thickness,
the upper part a sandy mieaceous shale passing downward into mieaceous sandstone inter-stratified with the shales. The sandstone strata vary in thickness from six to fourteen inches, and when freshly quarried the rock is rather soft, but hardens on exposure and becomes a durable building stonc. The quarry opened here belongs to Mr. John MoGannon, and is loeated on see. 3, T. 2, R. 6 E. On section 4, in the same tomnsiip, a massice sandstone onterops in the bluffs of Raecoon, in an apparently solid bed, projecting in some places several feet over the bed of the stream by the wearing away of the lower strata.

On Bear creek, another tibutary of Elm creek, just over the line in Wayne connty, on sec. 21, T. 2 S., R. 6 E., this massive sandstone is found in perpendicular cliffs of 20 to 30 feet in hight above the bed of the stream. This is probably a part of the sandstone passed through in the shaft and borings at Flora, aud it forms the bed rock over a considerable area in the sonth part of Clay and the northern part of Warne counties.

On Willow branch, about six miles sonth-west of Flora, a blue argillaeeons shale is found containing several bands of argillaceons iron ore of good quality. The exposure of shale is twenty fect or more in thickness, with a streak of smutty coal or bituminous slate near the top of the exposure. The water that percolates throngli the shale becomes highly impregnated with salts, and acts as an cffective cathartic on those using it freely. This shale probably overlags the massive sandstone on Raccoon creck, but we found no continuons outcrop that would enable any one to determine, detinitels, their trine relations.

The following notes of localities I did not visit are reported from the notes of Prof. Cox: "On a branch of Skillet Fork on sec. 32, T. 4, R. 5 , found the following beds:
\qquad Blue argillaceons shale 8

Crystals of selenite (sulphate of lime) of small size were found disseminated through the shale, and are reported to be abundant at many points on this branch and also on the main ereek.

On Mr. R. T. Ronerts' place, two miles and a half sonth of Clay City, a thin coal is found melerlaid by fire-clay and argillaceous shale. The seetion of the exposure here is as follows:

Ft. In.
\qquad

Fire clay ... 0 . 4

Siliciuus shale .. 2
In digging a well on the the top of the hill about a quarter of a mile from this outerop, Mr. Roberts went through from four to six inches
of fossiliferous limestone which probably belongs above the coal.
Three quarters of a mile south of Mayswille is a sandstone quarry owned by Hugh Mrller. The rock is of a Jellowish gray color, and the exposure from seven to eight feet thick. The so-called "salt pond" is on the south half' of sec. 4, T. 3, R. S, and is a bog surrounded by high gromud. Sticks may be thrnst into it through the spongy mass to the depth of ten or fifteen feet, and cattle, and formerly wild animals also, resorted here for water.

At Moore's quarry, on sec. 14, T. 4, R. 6, there is a fine grained buff sandstone that was used in the fonndation, and also for eaps and sills for the Masonic ilall building in Louisville. There are three layers of the rock exposed from 8 to 10 iuches thick, over laid by two feet of silisious shale.

At J. Elifins' place, on sec. 36, T. 5, R. 5, the following section was fomind:
Soil and drift It
Gray argillacenus shalo. 8
Limestone in the berl of the creek 3

Down the creek the limestone is two feet thick, the mpper part full of encrinite stems and Fusulinu cylimalica. The limestoue is quite compact and will take a good polish. Still lower down on the creek there is a thin coal below the limestone. This limestone is again seen on Limestone creek, on sec. 34, T. 6, R. 4 ? near the north line of the comnty."

The limestone above mentioned is moloubtedly the same as that found orer the coal at Lamkins' mine near Louisville, and on Dismal creek east of Larkinsburg, and a limestone very similar in appearance is fomed on Moddy ereck near the north-east comer of the comuty, where it is quarried both for lime and for building stone.
Economical Geology.

Coal.-The only coal seam in the county that promises to be of any value for mining operations is that at Mr. Lamkin's place northwest of Loniswille, and this is so mevenly developed that there are probably but few localities in the comnty where it will prove to be of any practical value. At some points it affords from 18 to 20 inches of good coal and possibl! may thicken at some localitics to a little more than that, while at others it thims ont to a few inches or is wanting altogether, and its place is only indicated by a thin streak of bituminons shale. Where well developed it aftords a very good quality of coal, and may be worked to advantage in a limited way to supply the local demand. I believe it to be the same as the Nelson coal fomd in the south-west corner of liffinghan comnty, which is No. 16 of the gencral section and the highest worlable coal in the state.

The main coals of the lower Coal Measures are probably from eight humbed to a thousand feet below the surface in any part of this comuty, and borings or shafts should not be encomaged unless parties are prepared to go to that deptli. The coal seam reported to have been fomm four feet in thickness in the boring at Nenia, could not have bern lower in the sem les than No. 11 or $1 \ddot{2}$, and if its thickness was correctly aseertained it is probably only a local thickening of one of these upper coals. Having been present at the time the drill passed through this coal in the Xenia boring, I can certify to the excellent quality of the samples brought up in the saurl pump, but I could not testify as to the thickness of the seam. The distance to the lower coals is, of course, no serious imperliment to their being mined successfully whenever the demand for coal shall be such as to jnstify such an expenditure of capital as will be required to open up a mine at this depth.

Building Stone-Sandstone of fair quality for building purposes is fonnd at several localities in the counts, and the quarries near Xenia, described on a preceding page, afford a freestone of superior quality, that is extensively quaried for exportation to St. Louis and other poiuts where a stone snitable for arehitectural display may be required. This rock has a very even texture, dresses freely, and can be easily cut into elaborate designs for ormanental work. A rock similar to this in appearance outcrops on Raccoon creck south of Flora, which probably belongs to the same berl, as the general trend of the strata appears to be from north-west to sonth-east. Other sandstones that affurd a fair quality of luilding stone outcrop in various parts of the countr, as has already been noted in the preceding pages. The limestone over the eighteen-inch coal seam in the northern part of the county will afford a very hard and durable stone, but requires a greater amount of labor to quarry it and prepare it for use than the sandstone found in the same neighborhood, and hence lias been but little used.

Lime.--The only rock in the comenty that seems at all adapted to the manufacture of lime is the limestone above mentioned as overlaying the eighteen-inch coal at Lamkins' mine, and outeropping at several other points in the north part of the counts. This rock varies in thickness from two to four feet, and seems usually pure enough to aftord a fair quality of lime, and has been burned for that purpose in a limited way at two or three points in the comnty.

Iron Ore.-Bands of iron ore of good quality intercalated in a bed of shale was observed in two or three places in the comnts, especially on the upper course of Elm ereek, and on some small tributaries of the same stream south-west of Flora and near the Wayne county line.

Clays.-Clay snitable for pottery oceur's on Mr. Bothwell's place, one mile south of Clay City, and good brick clays may be found in almost every neighborhood in the subsoil of the uplands.

Mineral Springs.-At Mr. Sailor's place, about eight miles east of Louisville, on the N. E. qr. of sec. 25, T. 4, R. 7, there are sercral springs, the waters of which have some reputation for their medicinal qualities. The springs apparently have their origin in the quick-sands below the drift-clays, and the water comes bubbling up very freely at numerous points along the raller of a small branch. Gas escapes quite freely from these springs at intervals, giving the water the appearance of boiling under a strong heat. After a short time the boiling motion ceases, and the water remains quiet until the escaping gas again sets it in motion. An analysis of this water has been made, and I was promised a copy of the result for publication in this report, but it has not come to hand.

Soil, Timber, etc.-The soil in this county presents no marked variation from that in the adjoining counties, and need not be discussed farther in this place. Although much of the timbered land has been subdued and brought under cultivation since the first settlement of the county, the rapid growth of the remaining portion, with the addition of the brushy lands, which, since the annual fires have been kept down, have been covered with a fine growth of young timber, has nearly or quite kept up the original supply, and there is probably about as much timber in the comnty at the present time as there was in its early settlement.

We are indebted to Mr. H. S. Watson and Mr. S. Johnson, of Louisville, for important information and personal assistance while prosecuting our work in this countr.

CHAPTER VIII.

CUMBERLAND, COLES AND DOUGLAS COUNTIES.

Cumberland county eontains eight full and four fraetional townships, making a total area of 336 square miles, and is bounded on the north by Coles county, on the east by Clark, on the south by Jasper and Effingham, and on the west by Effingham and Shelby. The Embarras riser trarerses the county from north to south, and this river and its tributaries are the only streams of any note within its borders. The eentral portion of the county along the river and its affluents is well timbered, while the eastern and western portions are mainly prairie. The bottom lands along the riser are usually from a half mile to a mile or more in breadth, and hearily timbered with the usual varieties of timber found growing upon the bottom lands in Central Illinois. The prairie lands are from seventy-fice to one hundred feet above the level of the river, and are generally rolling, though occasionally traets of level prairie are to be found.

The superfieial deposits of this county comprise the alluvial bottoms of the Embarras and its tributaries, and a considerable thickness of gravelly elays and liard pan which inereases in depth to the northward. In the southern portion of the county the drift deposits range from twenty to forty feet in thickness, eonsisting mainly of brown or buff gravelly elays with numerous bowhders; but to the northward this thickness is inereased to fifty or seventy-five feet, the lower portion being a bluish-gray hard pan similar to that seen in Clark, and described in the report on that eounty. Bowlders of considerable size are not uncommon, and native copper and also speeimens of the sulphuret of that metal are said to have been found in the drift gravel in this eounty. A bed of potters' clay of fair quality is found in the drift elays in the vieinity of Greenup from four to six feet in thiekness, from which a fair article of stoneware is made.

Coal Measures.-All the roek formations of this county below the drift belong to the upper Coal Measures, and include the beds intervening between the Quarry creek limestone of Clark county and the
Shelbyville coal of Shelby counts, making an aggregate thiekness of200 to 250 feet. Not more than one-half of these beds are exposed inthe county, and we hare to rely on the borings made at Greenup, and ageneral aequaintance with the outerops in adjoining eounties, for a fulldeseription of the strata.The following is a reeord of the bore made just north of the town ofGreenup, by Messrs. Dunlap \& Co., in 1866, for oil:Ft.

1. Shale 51
2. Sandstone. 11
3. Shale. 102
4. Black bituminous and gray shale 17
5. Very hard rock (limestone ?) 5
6. Gray shale and sandstone. 69
7. White sandstone and shale. 45
8. Sandstone. 35
The very hard roek No. 5 whieh was found here at the depth of 181 feet is probably the Quarry creek limestone. Another boring was subsequently made by Mr. Talibot near his mill at the railroad depot, for eoal, and the following is his report, given from memory :

> Ft. In.

1. Soft sandstonө.. 15
. Gray shalo. .. 65
Black shale.. 2
Hard sandstone... 8
2. Shale, dark colored towards the bottom ... 20
3. Hard sandstonө... 5
4. Shale ... 8
5. Dark hard rock .. 4
6. Shale ... 13
7. Hard rock, probably limestone... 3
8. Shalє. .. 17
9. Black shale.. 5

10. Clay sliale... 20
11. Black rock. ... 1

12. Black slate ...

20 Shalc with pebbles... $\frac{16}{\frac{1}{2}} \frac{-}{2}$

As this boring was made espeeially in seareh of coal, it is probable that closer attention was given to the eharaeter of the beds passen through than at the other, and the seetion reported eorresponds mueh better with the outerops in Clark county. The hard rock, which I presume represents the Quarry creck limestone, was found in the Talbot boring at a depth of 140 , while at the lunlap, well it was reported at 181 feet, although the latter well was commenced at a level at least ten to fifteen feet below the former: hence we may infer that the reported depth of the boring was mo more reliable than the character of the
strata that were penetrated. Both these borings commence below the Fusulina limestone which outcrops in the bluffs of the Embarras from the bridge mest of Greenup to the north line of the county.

In the bluffs of the Embarras, one mile west of Greenup, we find the following section at the bridge on the old National road:

A mile north of the bridge the limestone thickens to three feet or more, and is a nodular gray argillaceous rock, rather more calcareous than at the bridge below, nodular and thin bedded, but containing a fer of the fossils that are more abundant in it near the north line of the county. This is the ouly limestonc found in the county, and varies in thickness from 18 inches to S or 10 feet, or more, at the different outcrops examined. It is usually too argillaceous to slack freely when burned, and too nodular and irregularly bedded along the Embarras to furnish a good quality of building stone.

The sandstone menderlaying the limestone in the above section affords layers from 6 to 18 inches in thickness, aud was used in the abutments for the bridge at this point; but not being carefully selected, the shals layers soon gave way, endangering the whole structure so that it had to be abandoned.

On the branch north of the town of Greenup, where the oil well was located, the following beds ontcrop in the bluff on the south side of the stream :

	Feet.
Yellow drift clase.	10 to 12
Norlular, brown impure limestone	.13 to 2
	. 35 to 40

A short distance abore Ryan's ford, and about two miles below the north line of the county, this limestone is well exposed, showing a bench of rough, irregularly bedded, brownish.gray, nodular, argillaceous limestone, from 8 to 10 feet in thickness, outeropping just above the bed of the river. The upper part of the bed is of a brownish-gray, and the lower part a greenish gray color. Numerous small fossils were found in the limestone at this locality, among which were the following well known species: Athyris subtilita, Torebratula bovidens, Retzia punctrlifera, Rhynchonella Osagensis, Spirifor cameratus, S. lincatus, S. planocomexus, Fusulina cylindrica, some undetermined corals, etc. The limestone is underlaid here by a greenisl clay shale, of which not more than two feet in thickness was risible above the bed of the river. Descending the riser from the ford towards Greenup the limestone gradually
rises in the river bluff, and four miles below Ryan's it is found about twenty feet above the river level, associated with sandstone and slate, forming the following section :
Thin bedded, nodular argillaceons limestoneEvenly bedded sandstone6
Sandy shale, with thin layers of sandstone. 15Ft.

The Fusulina cylindrica and sereral other species of the fossils enumerated as occurring at lisan's ford were found here, but they wereless numerous than at the other locality.

On Mr. Cullum's land south-west of Jewett, the S. E. qr. of the S. W. qr. of sec. 26, T. 9, R. 8 , a quarry has' been opened in a hard bluishgray micaceous sandstone, of which some 8 to 10 feet is exposed. The rock is very hard, and affords a durable building stone. A quarter of a mile below this quarry, on the main creek, sandy slaales form the main portion of the bluff, overlaid by a hard, brittle argillaceous limestone, which was seen only in tumbling blocks, indicating a thickness of about 18 inches. The beds were nowhere well exposed, but seemed to hold the following relative position :

[^9]Following down the creek these lower shales appear at intervals in the bluffs of the stream nearly to the bridge south of Jewett. North of the bridge towards the town several quarries have been opened in the same bed of sandstone that appears on Mr. Cullum's place.

On Long Point, a tributary of the Embarras, which enters the main river from the eastward six miles south of Greenup, we were unable to find any outcrops of rock, the bluffs of the strean being composed, so far as could be seen, of drift clays from 30 to 40 feet or more in thickness.

On Webster creek, sec. 33, T. 9, R. 8, a thin coal is found from 4 to 6 inches thick, associated with the following beds:

The band of argillaceous iron stone, or more properly speaking an argillo-ferruginous limestone, contains mmerous fossil shells in a fine state of preservation, among which the Euomphalus sub-rugosus was most abmodant, associated with Aviculopecten carboniferus, Ioldia suld-
scitula? Plillipsia scitula, Pleurotomaria spherulata, P. Grayvillensis, Rhynchonclla Osagensis, Productus longispinus, P. Lasallcnsis? Entolium aviculatum, Bellcrophon percarinatus, Polyphemopsis peracuta, Macrocheilus inhabilis, Nucula, Orthoceras, Nautilus, Lophophylhm proliforum, etc.

The impure limestone, No. S of the foregoing seetion, I am inclined to regard as identical with the Fusulina bed, although I eould not find the eharacteristic fossils in it at this locality. This limestone thins out in the south part of the countr, and the most southerly outerops obserred contain few or no fossils, but the outcrops are so eontinuous on the Embarras and its western aftluents that there seems to be no doubt that they all belong to the same formation.

In Coles county this limestone eontinues along the valley of the Embarras at least as far north as the mouth of Brush creek, where it overlass a seam of coal, No. 16 of the Illinois section, while the 6 inch coal in the foregoing section most probably represents the thin coal, or highest seam of the general section.

Prof. Cox reports a coal seam about a quarter of a mile west of the county line in Shelby county, which from its thickuess and general character agrees rery well with the Shelbyville eoal, or No. 15 of the general section. "This is on Mr. Hancock's place on sec. 12, T. 10, R. 6 , where the following beds were seen:

Ft. In.

Coal ... 1 . 6
Slate parting. 0 . 1
Coal, hard and impure.
1
About 200 yards west of the point where the coal was opened, on a branch of the Little Wabash river, there was teu feet of blue argillaeeous shale above the coal, which further down the stream gives plaee to a thick bedded saudstone."

He also reports the Fusulina limestone on Bear ereek, see. 22, T. 10, R. S, near Mr. John Prather's, where the bed is 4 feet thick, overlaid by 20 feet of sandstone. At Prairie City the limestone was passed through in sinking the well at the mill, and found to be 4 feet thick, with shales above and below it.

The treud of the strata in this counts is evidently rery nearly north and south, as the course of the Embarras is on nearly the same geological level through this countr and Coles for a distance of 25 to 30 miles or more, and the dip, if any, is apparently to the westward. There are no streams in either county that intersect the general outcrop in an east aud west direction, and no connected section of the outcropping formations conld therefore be made. The small streams do not cut through the heavy drift deposits, and hence exposures of the Coal Neasures are only to be met with on the Embarras and the lower courses of its main affluents.

Economical Geology.

Coal.-No workable coal outcrops in this countr, unless the seam mentioned abore as occurring on the maters of the Little Wabash just over the line in Shelby countr may be found in the north-west corner of Cumberland. The coal below the Fusulina limestone in Coles county seems not to have been developed in Cnmberland, and the seam above the limestone is too thiu to be of any practical ralue. For deep mining in this county a shaft would have to be carried down from six hundred to a thonsand feet to reach the main coals of the lower measures. This would require an expenditure of capital that the present demand for coal in this county would scarcely justify, and hence it will probably be some years before any serions effort to reach the lower coals will be made. In the counties laying west of this, including Bond, Fayette, Moutgomery and Shelby, according to the report of Mr. Broadhead, it is about six hundred feet from the Shelbyrille coal (No. 15) down to the Danville seam (No. 7 ?), which mould be the first one of the main coals that would be reached liere, and if that failed to be well developed, about a hundred feet more would lrave to be penetrated to reach the next workable seam below.

Building Stone.-The best building stone met witlr in this county is the sandstone south and southwest of Jcwett station, and that quarried in the vicinity of Grcemup, in the blutts of the Embarras. The former is a hard, gray, micaceous sandstoue, that stauds exposure mell, and may be relicd upon for bridge abntments and culverts, as it will probably resist successfnily the influence of frost and moisture. The other is a rather soft, brown sandstone, that will answer well for dry walls, but liable to crumble on long exposure to the elements. The Fusulina limestone, where sufficiently thick bedded, will also furnish a fair quality of stone for rough walls, aud several quarries hare been opened in it in the northern and western portions of the county.

Lime.-The limestone just mentioned, which is the ouly rock of the kind found in the county, is too impure to make a good lime, though we saw one or two points where an attempt had been made to burn it, but evidently with indifferent success. It some points it looked as though it might possess hydraulic properties, and it is quite probable that by burning and grinding a very good water lime might be made from it

Iron Ore-Bands of kidney ore or carbonate of iron of a fair quality were found at several points in the shales over the Fusulina limestone, but in too limited quantities to be of any practical value for smelting purposes.

Sand and Clay.-Clays suitable for making brick may be found almost anywhere in the subsoil of the uplands, and sand for mortar or cement occurs abuudantly in the valleys of the streams.

Soil and Timber.-In the southern part of the county the soil is rather thin, with a subsoil of light drab-colored clay, but in the northern portion it is darker colored and more productive, and has a subsoil of yellow clay. Nuch of the prairie and a portion of the timbered land is rather flat and requires thorough draining to make it productive. The bottom lands on the Embarras are from a half mile to a mile or more in breadth, and were originally covered with a heary growth of timber, but portions of it have been cleared and brought muder cultivation, and are very productive, though subject to occasional overflow. The varieties of timber in this county appeared to be about the same as in Clark, and need not be enumerated again here. A supply of water may usually be obtained in the gravelly drift clays above the hard pan, but at some localities it can only be liad by boring or digging through the hard pan to the quick sauds below.

Coles County embraces an area of orer five hundred square miles, and is bounded on the north by Douglas county, on the east by Edgar and Clark, on the south by Clark and Cumberland, and ou the west by Moultrie and Shelby. The principal water courses in the county are the Embarras river, which traverses its eastern portion from north to south, and the Okaw or Kaskaskia, which runs diagonally across the north-western corner of the county. The greater portion of its surface is prairie, though there are belts of excellent timber skirting all the water courses, and the sontheastern part of the county along the Embarras and its tributaries is heavily timbered.

This county lays in that portion of the State where the drift deposits attain nearly to their maximum thickness, and bowlders of considerable size are quite commonly to be seen on the surface of the prairies but partially imbedded in the soil. The total thickness of the drift in this county ranges from fifty to one hundred and fifty feet or more, the upper part consisting of a variable thickness of browu or buff grarelly clays, and the lower of blue clays or hard pan, the latter sometimes underlaid by grarel and quicksand.

In the boring for oil at Charleston, fifty-fire feet of drift was reported as follows:
\qquad

Blue clay (hard-pan) 16
IBowlder clay... 13
At Mattoon, Tells have been sunk from seventy-five to one hundred and fifty feet without reaching bed rock, and all the way through drift
clays and grarel, and sometimes without obtaining even then an adequate supply of water.

At Mr. Theophilus Van Doren's, on Kickapoo ereek, there is a deposit.of chocolate-eolored sandy loam two and a half to three feet thick filled with fragments of partially decomposed or carbonized rege. table matter which was once withont donbt a surface deposit. It is associated with a bed of brownish-gray pipe-clay, and is overlaid by gravelly drift clays. This old soil has been passed throngh at other loealities in digging wells in this eounty, at a depth of thints to fifty feet from the surface, and its position appear's to be below the drift elays, and above the quieksauds that usually form the lowest part of this formation. The gras pipe clar at Van Doren's is apparently a good potters' clay. In digging and boring through the drift deposits in this counts, reius of inflammabie gas are sometimes struck about the horizon of this old soil, derived probably from the partially decomposed vegetable matters with which it is fillecl. Trunks of trees and smaller fragments of wood are frequently found in sinking wells through the drift deposits in this portion of the State, and these constitate the only fossils hitherto obtained from it in this county. Probably if the quick sands below the hard pan were accessible, some remains of fresh water or land shells might be obtained from them, but no traees of either fresh water or marine animals have as yet, so far as I know, been fomnd either in the brown clays or the blue hard pan of the drift.

Coal Measures.

The stratified rocks of this county all belong to the upper Coal Measures, and correspond rery nearly to those already described in Comberland, except that the Fusulina limestone is rather thicker and more evenly bedded in this comnty than it is further soutl. The conrse of the Embarras river still follows the trend of the strata, and the limestone alternately appears above and then sinks below the level of the river bed.

At Hanging Rock, just above the Cumberland connty line, a bed of soft concretionary sandstone may be seen at the base of the bluffs, extending from thirty to forty feet abore, and also projecting below the level of the river bottoms. It shows no regular lines of bedding in the lower part of its outcrop, and the rock is so soft and ermmbles so easily under a blow from the hammer that at some localities it is difficult to obtain a good hand specimen. A little further up the river there is about fifteen feet of dark-bluish shate cropping out beneath the sandstone.

At McCann's ford the same limestone apparently that was left at Ryan's ford just below the north line of Cumberland county, appears in a bench on the west side of the river, where it is underlaid by ten or twelve feet of sandy, micaceons shale. The full thickness of the limestone was not seen here, the upper part haviig been cut away in the erosion of the river valley. The limestone is said to outcrop again a mile above McCann's, but I did not find the exposure. No rocks are seen on the east side of the river above the ford for two or three miles, and the hills, which are from a hundred to a hundred and twenty-ive feet in hight, were mainly composer of drift material. The following section shows the relative position of the rocks found in the south part of this county :

Soft, brown, micaceons, slualy sandstone, passing down into an unstratified concretionary mass. 30 to 40 Sandy and argillaceous shales... 15 to 20 Rough, gray, unevenly bedded limestone.. 8 to 10 Dark gray micaceous shale. .10 to 12
The coal which is found beneath the limestone higher up the river seems to be undeveloped here, as it is also in Cumberland, and no indications of it were seen sonth of the road running east from Charleston.

Three miles a little sonth of east from Charleston, near the bridge on the road to Westfield, the sandstone which forms the upper division of the foregoing section crops ont at the foot of the bluff on the west side, where quarries have been opened in it for bnilding stone. This sandstone is considerably harder here than at Hanging Rock, and affords a very good material for bridge abutments, foundation walls, etc. The lower twenty feet of the bed here is but partially stratified, but the upper portion is evenly bedded, and as it hardens on exposure it affords a very good building material. Near the bridge there is an exposure of about fifteen feet of argillaceous shales with bands of carbonate of iron, and just at the water's edge below the bridge there is a partial out crop of the upper part of the limestone. The outcrop of sandstone at the quarry measures thirty-three feet in thickness including some shaly layers at the top of the exposure.

A half mile below the Westield road on the river, Prof. Cox reports the following detailed section, but whether above or below the main sandstone is not stated, though they are probably above that rock :

Ft. In.
"Gray, friable shale, with sereral bands of iron stone .. 20
Fossiliferous iron stone... 0
Friabie shale ... 1
Black shale.. 0 . 8
Gray clay shale .. 5
Impure coal.. 0.
Sandstone ... "
He also reports the following berls as occurring above the sandstone on the river three miles east of Charleston :
Ft. In.
"Drift 15
Buff argillaceous sbale 4
Calcareons shale, witb fossils 1
Gray iron stone, witb fossils 6
Brownish-black shale, with fossils. 1
Black hard shalo 8
PIue shale. 5
Brasl coal. 3
Saudstone, showing on the opposite side of a hill a vertical face of 35 "
Above Baker's mill, which is loeated on see. 25, T. 12, R. 10, hereports a similar section, that shows a thiekening of some of the beds:
Limestone, witb fossils Limestone, witb fossils. 140
Gray shals. 6
Black slate 8 to 10
Calcarouus pyrito band 3
Hlue shale. ?
Saudstone, thin bedded at the top and heary bedded below 20 to 30^{\prime}
On another ravine leading to the river he reports the following see-tion, showing still further ehanges in the lithologieal character of thebeds abore the sandstone:
Ft. In.
"Limestone... 0
Bituminons sbalo. 8
Gray shale 2
Decomposing gray slaale ?
Sandstone 3
Blue clay 3
Coal. $\frac{1}{2}$
Blice slate, 1
Blue argillaceous shale 3 to 5
Solid samdstone, not measured."
At the old mill on the Pole eat creek, known as the Whorl mill, thefollowing beds are to be scen :
Ft. In.
Sandstone, in thin beds, witb pobbles in lower layers. 10 to 12
Hard black shaio 10
Clay shalo 6 to 8
Coal 3
Sandy slaale 2 to 3

About two hundred yards to the westward of the mill the sandstone extended below the bed of the creek, showing a deeided dip of the strata in that direction. This locality was visited especially on account of the reported ocentrence of silver or some other valuable mineral at this point, but the reputed silver proved to be nothing more than the glittering seales of mica which was very abondant in the sandstone.

On the Embarras, abont a mile and a lalf or two miles below the mouth of Brinsln ereek, a hard brown argillaceous limestone from eight to ten feet in thickness outcrops above the bed of the stream and over-
lays a seam of coal that has been worked to a limited extent in this vicinity. This limestone is rather darker colored and more heavily bedded than the Fusulinu limestone of Cumberland county, and might be supposed to belong to a higher level, but on comparing liand specimens I fomd it resembled its equivalent, the limestone over tine Nelson coal in Effingham county, rather more than it did the specimens from Cumberland. However, these upper Coal Measmre limestones are somewhat variable in their litholological characters, and though I did not find the Fusulina cylindrica in it in Coles county, I am still inclined to beliere that it is a representative of that limestone. The fossils fomd here were Spirifer cameratus, S. lineutus, Produetus lomgispimus, spiriferina Kentuckensis, Athyris subtilita, Platyostoma Peoriense, a delicate coral allied to Cymethoxonia, and joints of Crinoidea. The section seen here was as foliows:

Ft. In.
Brownish-gray uuevenly bedded limestone.. 8 to 10
Dark shale... 1

Clay sbale .. 4
Higher up strean towards the mouth of Brnsh creek, some ten or twelve feet of sandy shale with bands of carbonate of iron are seen moler the beds in the foregoing section.

A shaft was sunk for coal in this vicinity on the S. W. qr. of sec. 21, T. $13, \mathrm{R} .10$, near the bate of the Embarras, the following report of which was furnished to Prof. Cox:
Ft. In.
Drift clay 20
Limestone ?
Coal. 1
Clay shale (soajstone) 3
Soft blue saudstone
Clay shale 1
Coal 8
Clay shale 5
Sandstone 56
Coal 7 .
Clay shate 2
Hand bluish sandstone. 3
Dark clay shale (soapstone) 6
The foregoing sections on the Embarras river and the boring atCharleston by the Charleston Petroleum and Mining Company, affordsthe only data for determining the geologital features of this county.The following is a correct copy of the record of this boring :
Ft. In
Soil and drift clays
Soil and drift clays
21
21
2. Jollow sandston
2. Jollow sandston 11
Shell rock (shale?)
Shell rock (shale?) 2 2
5. Conl, No. 16
5. Conl, No. 16 4 4
6 Hard slate (shale?).
6 Hard slate (shale?). 8 ! 8 !
7. Clay sbale (soapstoue)
7. Clay sbale (soapstoue) 13 13
Ft. In
8. Hard Hint? 3
9. White samdstone 12
10. Slate aud shaly slate 26
11. Coal, No. 15 2
12. Madshale 15
13. C'lay slate 10
14. Blne limestone. 8
15. Shale aud simdstone 14
16. Suft whito rock. 13
17. Shate and slato. 27
18. Sandstote. 31

The limestone No. 14 of the above seetion, I believe to be the Quarry creck bed of Clark comntr, and the distance between that bed and the limestone of the Embarras, (No. 3 of the section,) which is here only about 93 feet, while at Greenup it is 130 feet or more, shows the same thinning out to the northward of the beds above the Quarry creek limestone, that was observed in Clark eourty in the strata below that rock. Hence, the main coals, if fomml finly developed here, would be reached at a depth somewhat less than in Cumberland. The total thickness of the outcrops to be seen along the Embarras river, in this comnty, does not exceed a hundred feet of Coal Measures, and includes the horizon of coal No. 16 of the general section and the thin coal above it. Coal No. 15 should be found underlaying nearly the whole of this connty, if it has not been eut ont by denuding agencies. It is the thickest of the upper seams, sometimes attaming a thickness of $2 \frac{1}{2}$ to 3 feet. It has been worked for many years in the vicinity of Shelbyville in shafts and inclined tmmels, and affords a semi-block coal of good quality.

Economical Geoloyy.

Coal.-No outcrop of a coal bed thick enough to be worked to adrantage was found in the comnty, and moless No. 15 may be found beneath the heary drift deposits in the western part of the comnty, there is no hope of obtaming an adequate supply of this indispensable article of fuel withont sinking to the main seams in the lower part of the Coal Measures. A shaft from six to eight humdred feet in depth might reach No. 7 or the Danville seam, but it wonld require one more than a thonsand feet deep to reach the bottom of the Coal Measmes in any part of this rommty.
lamiding Stone.-Samdstone of a fair quality for bniding pmoses mas be obtained at varions points along the bluffs of the Embarams river, and the rock obtaned from the quaries near the We Wetfed road appears to be a durable stone, can be easily quarried, and has been very generally used for the smpply of the adjacent region. In the southern portion of the comity the rock is comparatisely soft, and at the few
outcrops examined did not promise well as a building stone. The limestone which outcrops along the river is thicker bedded than in Cumberland, aud between the railroad bridge and the mouth of Brush creek quarries have been opened in it at several points, where a hard brownishgray limestone in beds from four to eighteen inches thick has been obtained for building purposes. The western portion of the county is quite destitute of rock of any kind except the drift bowlders found upon the surface or in the vallers of the small streams.

Lime. -The limestone on the Embarras is too argillaceous to be successfully used for making quick lime, and as this is the only limestone of any considerable thickness found in the county, some other region must be depended on for a supply of this article.

Clay and Sund.-Brick clays are easily obtained from the subsoil in almost any portion of the upland, and a potters' clay of fair quality is found in the drift deposits on the Kickapoo. Sand can be readily obtained either from the beds of the streams, or may be found in many places moterstratified with the drift clays.

Iron ore.-Bands of tarbonate of irou in small quantities were found interstratified in the shales abore and below the heary bed of sandstone that forms the lower portion of the bluffs on either side of the Embarras river.

Soil and Timber:-The prairies in this connts, which constitnte by far the greater portion of its surface, have a deep, black, loamy soil, highly fertile, and ranking among the best prairie lands in the State. On the timbered ridges adjacent to the streams the soil is thimer, but nevertheless productive, and especially adapted to the cultivation of wheat and other small grains, clover and fruit. On these ridges oak and hickory is the prevailing timber, but as the surface becomes more level toward the prairie region, we also find clm, linden, hackherry, wild cherry and honey locust, and on the bottom lands along the streams cottonwood, sycamore, ash, red birch, willow, coffeenut, black walnut, white and sugar maple, etc., etc.

Douglas County is bonded on the north by Clampaign, on the east by Edgar, on the south by Coles, and on the west by Moultric and Piatt. It embraces eight full and seven fractional townships, which give it an area of about four hundred and ten square iniles. The Okaw or Kaskaskia river drains the western portion, and the Embarras the central aud eastern portion of the county. These streams are skirted with timber, but the greater portion of its surface is prairie.

The whole area of the county is covered so deeply with drift clays that there is no onterop of the underlaying Coal Measure strata in the county. From the exposures in the adjoining counties it is known that the underlaying beds belong to the upper Coal Measures, and probably
include two or three of the upper coals, but the extent to which they are developed here can only be determined with the drill. It is not probable that any heary bed of coal will be found short of six to eight hundred feet from the surface, though one of the upper seams, two or three feet thick, might be found at a moderate depth.

The drift clays are similar to those described in the counties of Edgar, Coles and Moultrie, but only the upper part of this deposit is to be seen in the natural outcrops in the bluffs of the streams. The soil is mainly a deep, black, regetable mould, characteristic of the prairie lands throughout the central portions of tho State, and is very productive, sielding annually heavy crops of all the cereals grown in this latitude.

CHAPTER IX.

WILLIAMSON AND FRANKLIN COUNTIES.*

Williamson eounty embraces a superficial area of twelve full townships, or four hundred and thirty-two square miles, and is bounded as follows : on the north by Franklin county, on the east by Saline, on the south by Johuson and Union, and on the west by Jackson.

The western portion of the county is drained by the Big Muddy and its tributaries, the main stram intersecting the north-western corner of the county, while Crab Orchard creek, its main southern afthent, traverses the central portion from east to west, passing out of the eounty near the eenter of its west line. The eastern and soutloeastern portions are drained by the main branches of the middle and south forks of Saline, which have their rise in this eounty, and with a westerly eourse discharge their waters into the Ohio, the highlands in the eastern portion of this and Franklin forming the water-shed that separates the waters of the Ohio from those flowing west into the Mississippi.

In the northern part of the county the surface is quite rolling, at.d in some portions broken and hilly, while the central part is generally level, and the southern part quite broken, especially near the south line of the county, where the eonglomerate and heavy bedded sandstones of the lower Coal Measures are the prevailing formations. There is, however, but little land in the county that is too much broken for eultivation, and as an agricultural region this county ranks among the best in Southern Illinois. Originally the surface was mostly eovered with a heavy growth of timber, the prairie lands covering but a small fraetion of its area. Some of the broken lands were originally but thinly timbered, forming what is known in the Western States as "oak openings," through whiel one could trarel with but little more difticulty than on the open prairie; but now where these lands have not been brought under eultivation, they are densely eorered with a heary growth of

[^10]young timber, whieh was previonsly kept down los the ammal fires that swept over the eounty previous to its settlement by the dominant race.

The principal varieties of timber notieed on the ridges were black, white and black-jack oak and hickors, and on the more level portions of the uplands in anditions to these we find elm, linden, black and white wahnt, sugar maple, black gum, wild cherry, honey locust, bur and post oak, pa-paw, persimmon, sassafras and poplar, and on the creek bottoms the prevailing varieties are eottonwood, syeamore, red bireh, eoffeenut, peean, ash, soft maple, redbud, dogwood, elm and hatkberry.

The geological formations to be found in this county belong to the Quaternary and lower Coal Measures. The Quaternary is represented by a series of bown and yellow elays, sometimes mixed with gravel and small bowlders, and ranging from twents to forts feet or more in thickness. These bells are generally pretty uniform both in their depth and general character, and seem to partake largely of the charaeter of the saudstones and sand y shales that form the underlaying bed rock. Locally they become quite graselly, and eontain small bowlders of granite, hormblende, quartzite and trap rock, seldom exeeeding six inches to a foot in diameter, though a few were seen in the eounty of more than twiee the size just indicated. Nothing resembling the bluishgray hard pan that constitutes the lower portion of the drift deposits in the more northerly counties was seeu here, but the yellowish sandy and gravelly clays that form the main portion of the deposit here rest directly upon the stratitied rocks of the Coal Measures.

Coal Measures.

All the lower coals are found in this county, the onterops embrasing a part of the conglomerate sandstone that underlays the hilly region along the sonthern lime of the county, and all the succeeding beds up to the horizon of coal Ňo. 10 of the general section. It Bainbridge, three miles south-west of Bolton, in the north-cast eormer of Johnson comity, a seam of coal has been opened abont three feet to three and a half in thickness, which is probably coal No. 1 of the general section, and from the trend of the strata, which is to the nortll of west, this coal must he found in the south-west portion of Williamson connty. In the bluff north of Bolton there are two seams that probably represent eoals 2 and 3 of the general section. The lower one has been opened at two or three points in the vicinity of the village by tumeling into the lifl on the onterop of the coal, which arerages about three feet in thickness, with a roof of bituminons shale. The coal has a parting of clay shate abont a foot above the bottom of the seam from three to four inches in
thickness. The mpper seam is from 15 to 18 inches thiek, and is moderlaid by a sandy fire elas with Stigmuria, passing into a hard nodnlar sandstone, below which there is a bed of dark steel-gray, tough limestone, weathering to a rusty brown color, and elosely resembling that muderlaying the upper seam at Murphysboro. It is from eighteen inches to two feet in thiekness here, and eontains joints of Crinoider and Spirifer cameratus. The coal is overlaid by a massive sandstone, partly coneretionary and partly in regular layers, that is quarried for building stone, for which it seems well adapted. The following is a seetion of the bluff at this point :

Ft. In.

Coal. ... 1

Hard steel-gray limestone. . .. 1

Coal. .. 3
Covered slope to the railroad level .. 20 to 25
The eoal obtained from the lower seam here contains a good deal of iron pyrites, and in quality is rather below the average of our Illinois coals, but it answers tolerably well for steam purposes.

At the erossing of Sugar ereek, about three miles north of Bolton, on the Marion road, a massive sandstone outcrops in the banks of the stream extending to the light of fifteen to twenty feet above the creek level, orerlaid by a thin bedded sandstone, of whieh about the same thickness could be seen. A coal seam has been onened here bencath the sundstone and some coal taken out for blacksmiths' use, but it was hidden by the high water when I was there, and henee I could neither determine its thiekness nor aseertain the quality of the eoal it afforded. This is probably eoal No. 4 of the general seetion.

At the water mill on the sonth fork of Saline river, abont two miles below the bridge on the road from Bolton to Marion, another seam of coal is found assoeiated with the following beds:

Ft. In.

Band of hard bluish-gray limestone... 0 is
Bituminous shale. ... 5

Nodular clay shale ..
The brown shale at the top of the foregoing section may be seen in a hill side near the mill where it is about twenty feet thick, and its full thickness is probably as mueli as forty to fifty feet. The coal at the mill is rather hard and splinty, but is said to work well in the forge. The upper fonr inches is a eamel coal. This mill is loeated on the S . L. qr. of the N. W. qr. of sec. 4 , IT. 10 S., R. 4 E.

At the bridge over the South Fork, two miles above the mill near the old town of Sarahsville, a thin eoal onterops by the side of the road,
associated with slate and thin bedded sandstone. This is abore the scetion scen at the mill. The following is the section here:
Thin berded sandstone 8 to 10Ft.Saudy shale
Coal No. 64 to B
Sandy shales to the water level 12 to 15

Daridson's minc, one mile and a quarter south of Crab Orchard, belongs to a still ligher level, and the coal is there five and a half feet in thickness orerlairl by bituminous shale and a dark binish gray impure limestone. A little to the eastward of the coal mine the orerlaying sandstone is well exposed in the bed and banks of a sliallow ravine, showing a thickness of twenty to twenty-five fcet. This sandstoue stands exposure well, and when found in beds of sufficient thickness for heary work furnishes a durable building stonc. About three quarters of a mile east of Javidson's mine the thin coal that outcrops at Sarahsville was found in the bed of a small brauch, and appareutly from forty to fifty feet below Daridson's coal. A section of the beds seen here show the following order of succession :

Ft.

Dark ash-nray limestone. . .. 2 to 3
Bituminons shale .. 1 to 3
Coal No. 7 (I)avidsnn's)... 5 to 6
Fire-clay...... ... 2
Unexposel... 30 to 40

Coal No. 6 ... 1 to it

On Mr. Wrifey's land, two miles aud a half southwest of Marion, a thin coal has been found on Crab Orchard creek, which is probably identical with the thin seam in the foregoing section.

At Mr. Motsinger's mine, one mile and a liflf west of Crab Orchard village, the coal is about five feet thick with a roof of bituminous clay shale. The coal is of fair quality, tolerably free from pyrite, and the upper cightecu inches is a good smith's coal. About a hundred yards to the south of the coal opening the hard, dark, ash-gray limestone usmally found above No. 7 coal has been quarried and burned for limr, though but poorly adapted to that purpose. The coal here and at Davidson's is mined by tunneling into the hill side on the outerop, of the seam.

On Mr. Frank Ensminger's place, one mile east of Crab Orehard, the following beds overlaying coal No. 7 were seen :

兂	Ft.
Hard sturdstone in thin beds...	8
thue sanily sliale.	410 C
l'rown shate: and samlstone	10 to 12
linue shale.	- to 10
Cimmammendored limestone..	1
lituminuma slinlı.	2 to 1
Coul, satil to lre: sis inchus thimk.	k

About a mile and a half north-east of Mr. Ensminger's, on the S. F. qr. of the N. E. qr. of sce. 16 , there is th outcrop of the same cinnamonbrown limestone mentioned in the foregoing section, and the coal below it is said to be from two to three feet thick, and has been mined in a limited way for blacksmiths' use. This is probably coal No. 8 of the general section, and has bcen mined by stripping in the valley of a small creck. Owing to recent heavy rains the holes from which the coal bad been takch were full of water, and the thickness of the sean conld not be measured.

Soutl of Mr. Ensminger's on sec. 32, T. 9, R. 4, coals No. 5, 6 and 7 may all be seen within a short distance. No. 5 is here from two to six feet thick, while No. 7 is piliched out to about three feet. The following section was seeu here:

One locality was noticed on the creek where the above section was made, where the massive sandstone beneath coal No. 7 seems to have pinched the coal eutirely out, but a half mile to the eastward it comes in again and ranges from two to five feet in thickness. The bituminons shale orer Ensminger's coal contains numerous large concretions of black limestone which weathers blue on exposure, but contain no fossils at this locality. This seam I belicve to be the same as that at the water mill on the south fork of the Saline, though it is much thicker here than there, and varies from one and a half to six feet in a distance of less than half a mile. Owing to the limited demand for coal, no systematic mining has yet been attempted here, but an extensive coal mining business could be easily and cheaply carried on whenever this portion of the county is provided with railroad facilities, or manufacturing cuterprises shall be established to create a market for the almost inexhaustible supply of coal now hidden bencath the soil.

At Dr. Suith's old place, south of Corinth, where a shaft was sunk several years since in search of silver, the following section was found:

Brown shalө .. 10 to 15
Blne shate, partly bitnminous .. 8 . 10 . 10

- It.
Fire-c'as: grool 2 to 3
Satudstome 10 to 15
Blue clay shale 4 to 6
Hadd brownish gray limestone 6 to 9
Bitumiuons alaile. 2 to 4
Coal, No. 9 2

The limestone exposed here I beliere to be the same as that at New Haren, on the Wabash, and the equiralent of the Camlinville and Shoal creek bed. The fire-clay abore the limestone was only partially exposed, and may be somewhat thicker than above indicated and appeared to be of a snitable quality for pottery or fire brick.

Abont a mile and a quarter north of Corintly, a shaft was sunk some years ago in search of silver ore, which passed throngh this limestone at the depth of about forty-two feet. I am indebted to Mr. Shaw, who smik this slaft, for the fol'owing data, given from memory, of the beds passed throngh in this shaft :

> Ft. In

Surface soil and clay.. 9
Sandstone... 22

Limestonө... 9

A few fossils were obserced in the fragments of limestone thrown ont of this shaft, but belonging to species common thronghout the Coal Measures. Au ontcrop of the tupper sandstone near by showed a bed of ferruginons conglomerate about two feet thick, composed in part of almond-shaped nodules of brown oxyd of iron.

At Dr. Mitcirell's place, on sec. 22, T. 8, R. 4, a bed of hard, brittle limestone occurs in a single layer abont a foot in thickness. It contained Nuticopsis centricosus, Productus longispinus, and joints of Crinoidea. I am inclined to regard this limestone and the shales associated with it as the highest berls to be seen in this connty, and probably the equivalent of the ferroginous beds usmally fomm associated with coal No. 11 in the Wabash valley. At Mr. Roberts' place, on the north side of the village of Corintl, coal was fomm in his well about fonrteen feet from the surface. It was penetrated, according to the report, about two feet without passing throngh it. On EliJan Muse's place, near the northeast comer of the comnty, an inferior quality of coal said to be two feet thick outcrops in the bed of a small creek. These thin coals probably belong above the limestone at Dr. Sutn's pace, and may represent the hori\%on of coals 10 or 11 of the general section, which are sehdom found of suffeient thickness to be of any economical valne. The foregoing sketch comprises all the coal seams probably ocemming in this connty, and it only remains now to note some of the most important onterops
of eoals Nos. 5 and 7 not lieretofore mentioned, as these are the only scams that are of sufficient thickuess to justify mining operations on an extended seale at the present time.

Sviller's mine, two miles borth of Marion, was the first one opened in this county, and has now been worked for about twenty five years. The coal is obtained by stripping along its outcrop on a small creek, aud the coal ranges from six to ten feet in thickness. The upper four fret is a good smith's coal and presents the irridescent appearance characteristic of the variety known as "peacock coal." The roof is sometimes composed of hard, black shale, but locally this is replaced with a darkblue elay slaale, succeeded by a dark, aslo-gray limestone which in this ribinty ranges from fom to six feet in thickess, and weathers to a bluish-drab color on exposure. The fullowing beds may be seen in the vicinity ot Spiller's mine:

The argillaceous shate over the coal entains mmerons small, irregn-lar-shaped nodules of pyritiferons clay, but uo fossil plants were found here, though they ocenr in the roof shales of this coal at Carterville. The limestone contains but few fossils and these belong to species common everwhere in the Coal Measures, such as Spirifer comeratus, Athyris subtilita, and I'roductus longispims. Neither the limestone nor bituminous slate are very regular in their development, and at some localities both are wanting, and the roof of the coal consists of clay shale overlaid by sandstone. The coal has a parting of hard black shale about an inch thick some two feet from the bottom of the seam, and there are also several other leaf-like partings of shale separating the coal into distinct layers or strata.

A shaft sumk some jears ago on the western borders of the town of Marion, is said to have penetrated a coal sean six feet in thickness at the depth of abont fifty feet below the surface. This was probably coal No. 5, as the outcrol, of Spiller's coal is two miles north of the town, and at about the same level as the surface on which the town is built, and the general dip of the beds being to the north-eastward, that senn would outcrop above the level of the town. A thin coal has also been found in sinking wells in the town, probably No. 6, which belongs some forty to tifty feet below the Spiller coal.

The Carbondale Coal and Coke Company have opened a mine near Carterville station and are working No. 7 with a sloping tumel carried down to the level of the coal, which lays about forty feet below the sur-
face. The seam is here from cight to nine and a balf feet thick of clean, bright, glistening coal, presenting the finest appearance to the casmal visitor of any mine we have risired in the State. The roof consists of abont fifteen feet of blue shale slightly bituminous at the bottom, and shoming the remains of munerons fossil plants where the coal has been removed. This coal is quite free from prite, cokes well, and the product finds a ready market at the Iron Furnaces at Grand Tower. The same parting of bitmminoms shale noticed at Spiller's may be sech here. It is abont an inch in thickuess and some two feet above the bottom of the coal, and there are some other leaf like partings that divide the seam into regular layers. The dip at this mine is satid to be about two inches to the yard in a north-westerly direction, but this is probably local. About half a mile nortly-east of the opening this seam crops out in the botton of a ravine, where the coal is much less than its arerage thickness and is underlaid by two feet of fire clay and a nodular gray limestone which weathers to a yellowish-buff color, and is from eighteen inches to tro feet thick. The seam was first opened in this ravine, and cousiderable coal taken ont by tumelling into the side of the hill.

At Crane station, a lialf mile east of Carterville, a slaft was sunk to the deptlo of abont forty feet to a seam of coal three feet eight inches thick, orerlaid by a heary bed of bituminons slaale. Operations had been suspended here when I risited this locality, and the shaft was partially filled with water, so that no satisfactory examination could be made except from the material thrown ont. The coal is said to berguite different from that obtaned at Carterville, being harder and contaning more pyrite. The coal is overlad by a leary bed of bitminous shate, with concretions of dark prritiferons limestone, and nothar masses of bluish gray limestone resembling those occmring over Ensminger's coal soutle-east of Crab Orelard. If the dip determined in the mine at Uarterville is contimons over any considerable area, that seam would be thrown ont here, and I am of the opinion that this is the case, and that the coal at this station is No. 5 , thomeh it is somewhat thimer liere than at Ensuringer's, and from some local cause contains a greater amonnt of lyrite. In the roof shales thrown ont at the air shaft we fomm several species of fossils, among which we recognized chonetes mesolobe, Productus longinpinus, P. Pratteninmus, Athyris subtilita, spirifer cumeratus, S. fineatus and joints of Crimoidou.

From what has already been said in regard to the development of the lower coals in this combty, and from the sections given on the preceding pages, it will be seen that the main coals from No. 2 to No. 7 inclnsive are fomb on tho eastern borders of the comuty, amel all but No. 4 distinctly recognized and examined. It is probable however that there is a gradual thimming ont of these lower measures to the westward, and it is
quite likely that some of these eoals may not be found at all in the western part of the county, or if found, will prove to be too thin to be of any practical valne ; but the outcrops are too meagre in that portion of the connty to enable any one to trace out the exact sequence of the strata successfully. Borings have been mate along the line of the railroad west of Carterville, and are said to have found no workable coal, bnt my efforts to obtain a reeord of the strata passed through in these borings for publieation in this report were unsnecessfnl.

Economical Geology.

Conl.-The great mineral resonrce of this eounty will be found in its eoal deposits, which are surpassed by but few portions of the State of equal extent. Nearly one-half of the connty, comprising its northern portion, is undertaid by eoal No. 7 , the thickest seam to be found in the State, and it is probably no where more than from 75 to 200 feet below the ssurfaee. -It outcrops at many points in township ! south, and ranges 2,3 and 4 east, and will be found muterlaying nearly all the area north of these outcrops. No. 5 lays from 100 to 1,50 feet below No. 7, bnt its development in the western portion of the counts is at present an musettled problem. It is however developed over a large area in the north-western part of the eounty. These two seams will yield from ten to twelve million tons of coal to the square mile, and they probably underlay nearly one-half of the entire area of the eounty. All that is required to make this one of the most prosperons coal mining regions in the State, is a ready market for the vast stores of mineral fuel that are now hilden beneath the surface, awaiting the eapital and skilled labor neeessary for their full development. This market could be obtained by direct railioad commmication with some large coal consuming eity like St. Lonis, Chicago or Cincimati, where the coal prodnets of the eounty could be sent at a minimum cost for transportation, instead of passing over two or three different lines of road as is now necessary in order to reach a reliable market, thus increasing the eost of transportation mutil it equals or exceeds the full valne of the coal on its delivery in market.

Building Stone.-Sandstone of fair quality for ordinary use may be fonnd in abundanee in nearly every township in the eonnty, and the brown sandstone overlaying coal No. 7 , north east of Marion and in the vicinity of Crab Orchard, dresses well and hardens on exposnre and forms an excellent material for caps and sills, and for all the ordinary uses for which a dressed stone is required. In the vicinity of Bolton, and throngh the sonthern portion of the comity, the sandstones associated
with the lower coals are abundant, and that overlayiug coal No. 3 affords an excellent material for dressed work as well as for heary masonry.

Lime.-Lime has been burned at sereral places in the county from the dark-gray limestone overlaying No. 7 coal, but it affords only a poor quality of dark colored lime that is mostly used as a top-dressiug for the poorer qualities of soil. The limestone which is sometimes found beneath this coal would probably afford a better quality of lime, if it should be found outcropping where it could be obtained at a moderate cost of labor. With proper railroad facilitics, however, lime could be obtained from Union county at a less cost than it could be manufactured from any of the limestones met with in this county.

Iron Ore.-There is a notable quantity of limonite or the brown oxyd of iron, occurring in the shales and sandstones of the lower Coal Measures, but often too much mixed with sand or other silicious matters to be of any economical importance. Bands of carbonate of iron or "kidney ore" also abound in the shales of the lower mcasures, but from the limited time devoted to the examination of the county I was unable to give as much attention to this subject as was desirable. Bands of good ore of this kind aggregating a thickness of sixteen to twenty inches in a depth of six fcet of shale, would be worthy of the attention of the iron manufacturer, in view of the unlimited supply of coal to be found here suitable for the use of the smelting furnacc.

Brick materials.-Good brick clays may be found in every neighborhood and ou nearly every farm, the ordinary subsoil clays affording a suitable material for this purpose ; and clean white sand of an excellent quality for mortar and cements is found in abundance about two miles north of Mariou. It is composed entirely of rather coarse angular grains of white quartz. Sand suitable for brick and for ordiuary purposes may be found in the creck beds, and also in the hillsides in almost every neighborhood.

Soil and Agriculturc.-There is considerable varicty in the quality of the soils in this county, and their relative valne for agricultural purposes may generally be determined by the growth of timber they sustain. l'erhaps the poorest quality of soil may be found on the post oak flats of whicl the area in this county is small, and next in order would be the oak ridges where the timber growth consists mainly of black, white and black-jack oak. These lands possess a thin soil, and if constantly cultivated require to be well manured, or fecquently sown to clover and the green erop turned under with the plow. They produce fair crops of wheat, oats and grass if judiciously managed, and are excelleut fruit lands. Next in value we would place the small prairies and the adjaeent uplands, where the timber growth consists of the usual varieties of
oak and hiekory interspersed with black walnut. elm, linden, wild eherry, sassafras aud honey loeust. The soil on these lands is a dark elocolate eolored elay loam with a yellowish clay subsoil, and they produce good crops of eorv, wheat tobacco, castor beans and eotton and exeellent erops of timothy and elover.

Tobaceo is one of the staple products of the county, and during the rebellion eotton was phanted extensively in this portion of the State, and was found to suceeed so well that it has continued to be one of the staples of this eountr, most of the farmers raising all that is required for home consumption, besides exporting ammally from eight hundred to fifteen hundred bales. The rolling lands are well adapted to the growth of fruit, espeeially peaehes, which seldom fail on the high saudstone ridges in the sonthem part of this county. Apples, pears and small fruits flourish well and produce abundant crops, and some rarieties of grapes would doubtless sueceed well, though the Catawba has not suceeeded well here, the fruit being subject to rot badly after a few sears eultivation.

There are but few eounties in Southern Illinois that possess a finer soil, or that present greater inducements for the inrestment of capital in agrieultural pursuits than Williamson. The extension of the railroad, now terminating at Marion, through the countr, giving increased facilities for the transportation of its agricultural products to market, would undoubtedly bring large accessions to the population and wealth of the eounty, and add largely to the present value of all the improved lands within its limits.

I take pleasure in aeknowledging my obligations to Dr. LODGE of Marion, and Dr. Mitchell of Corinth, for important information and for personal attention and assistance while engaged in the survey of this eounty.

Franklin County eontains nearly twelve townshins or about 420 square miles, and is bomnded on the north by Jefferson, on the east by Ilamilton and Saline, on the south by Williamson, and on the west by Jackson eounty and the Little Muddy river. This eounty lies on the southern border of the prairie region, and about one quarter of its area was originally prairie and the remainder heavily timbered, but much of this timber has been cleared off in the agricultural improvement of the counts. The prairies are small, seldom exceeding a breadth of two or three miles, and are mostly rather flat, and there are also wide belts of low flat bottoms on all the main water courses in the county. The rolling and hills uplands are heavily timbered with the eommon vaieties of oak and hickory, and the best soils also sustain a heary growth of elm, linden, wild eherry, black walnut, honey locust, ete.

That portiou of the county lying between the Big and Little Muddy's is generally quite rolling, and the abore naned rarieties of timber indicate a very productive soil, and this laud is undoubtedly equal to any in the county for farming purposes. Big Muddy river and its afluents drain nearly the whole area of the counts, the main strean runuing a little to the west of south through its central portion, while the Middle and South Forks drain the south-eastern, and the Little Muddy the north-western, forming its western boundary for about ten miles from the north line. These streams furnish an abundant supply of water for stock, but are too sluggish to furnish any valuable water power for manufacturing purposes.

The geological formations in this county, like those in Williamson, consist altogether of Drift and Coal Measures, the latter belonging mainly, however, to the upper instead of the lower division of that formation.

Drift.-The drift deposits of this connts differ but little from those observed in Williauson, and are found to cousist mainly of brown and yellow sandy clays, with gravel and small bowlders. Oceasionally those of a larger size were met with, the largest ranging from two to three feet in diameter. It is a notable fact that bowlders of metamorphic rocks similar to those found iu Northern Illinois, as well as specimens of native copper, are found in Southern Illinois beyond the sonthern limit of the bluish-gray "till" or hard pan that usually constitutes the lowest disision of the drift deposits in the central and northern portions of the State. Frankfort, near the sonthern border of the county, is located on a hill from eights to one hmedred feet above the level of the suronnding country. No outcrop of stratified rocks was found in any of the deep gulleys that furrowed its sides, though it probably has a nucleus of Coal Measure shales or sandstone. Otherwise the drift clays are much thicker here than they have been found in ans other portion of the comity. Their arerage thickness may be stated at abont thirty feet, though in many places the bed rock has been struck in sinking wells at the depth of ten to tifteen feet from the surface.

Coal Measures.

Wherever the streams cut through the drift clays they expose a series of sandy and argillaceons shates aud sandstones with an oecasional outerop of bituminous shale or thin seam of coal, all of which belong to tho Coal Measures and mainly to the mpper division of that formation. The lowest beds to be found in the comity onterop in the south west portion and comprise the sandstone shales and thin coal that intervenes
betwcen the Spiller coal two miles north of Marion and the limestone that nsually overlays coal No. 9. This limestone was met with on the S. E. (?) qr. of sec. 22, T. $7 \mathrm{~S}, \mathrm{R} .4 \mathrm{E}$, about two miles a little south of east of Frankfort, and from its nearest outcrop in Willianson county, which was at Dr. Suith's old place about two miles and a half south-east of Corinth, its trend scems to be nearly north-west, though it probably bends to the northward before reaching the west line of the county. It should be found on the Big or Little Muddy's, but owing to the excessive rains of the past season no examinations could be made on these streams while I was at work in this comety.

At Mrs. Ewing's place, on the S. W. qr. of sec. 23, T. 7 S., R. 4 E., the following beds were found, that must overlay the limestone above named:

Ft. In.
Sandy micaceotts shalo... 10 to 15
Band of ferruginous conglomerate... 1
Bituminous shale... 3 to 4

Brown saudy shale with fossil plauts... 3 to 4

Brown shalo... 10 to 15
The coal noted in the above section varies in thickness in this vicinity from two to eighteen inches, and is probably a local seam overlaying the limestone which outcrops about half a mile to the west of this point. This limestonc is here a hard even bedded rock of a steel-gray or brownish-gray color, weathering to a jellowish-drab. It dips gently to the north eastward with the fall of the small branch on which it is found, and only about three feet in thickness of its upper layers could be seen. The only fossils we noticed in it were Athyris subtilita, Spirifer lineutus, Rhynchonella Osagensis, and Productus longispinus. Coal No. 9 will probably be found a few feet below the limestone; but as it is usually too thin to be of any economical valuc, there is no inducement to expend either capital or labor in its development. Coal No. 7 (Spiller's coal) should be found lere at a depth of 125 to 150 feet below this limestone, and will be the first one of the main coals to be reached by a shaft in this county.

About two miles and a half west of Benton, and a mile south of the DuQuoin road, there is an outcrop of soft ferruginous sandstone overlaid by sandy shale. The beds exposed were about fifteen fcet in thickness, and at one point a thin coal was found below the sandstone. The rocks here have a strong resemblance to those seen in the vicinity of Shaw's shaft north of Corinth in Williamson county, and if the cquivalents of them, the Carlinville limestone will be found not very far below the level of the Big Mnddy river. A similar bed of sandstone outcrops on Dr. Llickman's place a mile and a half south-west of Benton, and the
thin eoal associated with it outerops on a small branch where eoal has been dug by stripping off the overlaying elay. The eoal dips to the westward a little more than the fall of the small braneh that ruus in the same direction. The coal on the outcrop of the seam is not more than six inches thick, but near by it was said to have been found from a foot to eighteen inehes thick. It is orertaid by a ferruginous sandstone, one layer of which is a conglomerate of iron pebbles.

Two miles north of Benton on a small branch emptying into Big Muddy there is an outcrop of sandstone interstratified with shale presenting an exposure of fifty to sixty feet of strata. Following down the brauch for about three quarters of a mile we found the following succession of beds:

Ft.

Micaceous sandstone interstratified with shale .10 to 15
Micaccous slıale. 00 to 25
Sandstone........... 12 to 15

Sandstone in ereek bed.
This locality furnishes all the building stone used in Benton and the surrounding neighborhood, and the quarries here furnish an exeellent freestone for foundation walls and for dressed stone, as it ents freely and has proved to be a reliable building stone. The beds appear to dip gently to the north-eastward, and probably overlay the thin eoal and sandstone seen at Dr. Hickman's place, south-west of the town.

At the ford on the Big Muddy, at the erossing of the road from Benton to Mulkeytown, there is an outcrop of about six to eight feet of brown sands shale overlaid by about twenty feet of brown and yellow gravelly drift clay, eontaining numerous small bowhders from an inch to a foot in diameter. South of this for about three miles no outerop was found on the east side of the Big Muddy, the bluffs forming low sloping hills that appeared to be composed entirely of drift material. Further to the southward, where the Frankfort and DuQuoin road crosses, a thin coal is said to outerop, but I did not visit the locality. This may be coal No. 8 of the general section.

A boring was made just on the western borders of the town of Benton whieh was suspended on reaching a hard gray limestone at the depth of one hundred and sixty-two feet. The reeord was earried away by the person in charge of the work, and so no details eould be obtained of the several heds passed through. The limestone found at the bottom of this bore was probably the same as that met with two miles east of Frankfort. This rock was nistaken for the Lower Carboniferous formation and the work consequently abandoned, when in fact it was really the bed which separates the upper and lower Coal Measures, and is at least six hundred feet abore the base of the lower measures. Two or thee thin seams of coal were reported in this bore, but none thick enough to be of any value.

Three miles and a half west of the Big Muddy bridge, on the road from Benton to DuQuoin, a coal about one foot in thickness has been opened at the outcrop and some coal taken out for the use of the neighboring blacksmiths. Still further west, in the barrens of Little Muddy, anofher outcrop of coal has been found about two miles sonth of the DuQuoin roall. None of the seams outeropping in this county are thick enongh to be successfully worked iu a regular way.

All through the northeasteru portion of the county sandstoues and sandy shales are the prevailing rocks, aul these onterop at mumerous points on the East Fork aud its tributaries, from the Shawnectown road east of Benton to the northeast corner of the comity, and nomerons quarries have been opened for building stone, in this poition of the county. Sandstone bas been found at the following points in the county in addition to those already mentioned :

On sec. 14, T. 6, R 1 ; on sec. 19, T. 5, R. 2 ; on sees. 1,2 and 26, T. 6, R. 2 ; on sec. 20, T. 7, 1., 2 ; on sees. 27,33 and 34, T. 5, R. 3 ; on secs. $4,8,9$ and 17, T. 6, R. 3 ; on secs. 12,13 and 14, T. 6, R. 3 ; ou secs. 20, 30 and 36, T. 6, R. 3 ; on secs. $1,2,3$ and 5, T. $\tilde{\text { a }}, \mathrm{R} .4$; on secs. 8, 10, 15 and 21, T. 5, 1. 4 ; on sees. 1,5 and 12, T. 6, R. 4 ; ou sees. 24 and 30, T. 6, R. 4 ; on sees. $1,2,8$ and 11, T. 7, R. 4 ; on secs. 12 and 30, T. 7, R. 4 ; on sec. 2, T. 7, R. 3 .

Limestone is also reported iu the north-east corner of the counts, on sec. 11, T. 5, R. 4. This may be the same bed that was fonnd underlaying the thin coal on Hog prairie, in Hamilton conuty.

Economical Geology.

Coal.-No coal seams thick enough to be worked in a regular way are known to outcrop in this county, yet its eutire area is underlaid by the main coals of the lower measures which outcrop in the adjoining counties on the west and south. In the sonthern and western portions of this county the Spiller coal (No. 7 of the general section) may be reached at a depth of one to two hundred feet, while in the central and northeastern portions it is probably from three to five hundred feet to this seam, and as mnch as eight hundred to a thousand to the base of the Coal Measures. At the present time there is but little inducement for the investment of capital in coal mining operations. in this county, nor will there be until some foreign demand shall be created by the construction of railroads throngh this portion of the State giving this connty direct and cheap transportation to some of the large coal consuming centers of the TVest.

Buildiny Stone.-Sandstone of fair quality is abnudant in the central and easteru portions of the county, and some of the quarries like that
two miles north of Benton afford an exeellent quality of freestone, that hardens by exposure, dresses easily, and beeomes a durable and handsome building stone. Sandstones of fair quality for common nse may be fomnd on nearly all the streams and more especially on the East Fork and its tributaries.

Lime.-The only outerop of limestone suitable for the lime kiln that we saw in this connty was found about two miles a little south of west from Frankfort- Only about three feet in thickness of the upper part of the bed was mecovered, but it is probably from six to ten feet thick when fully exposed. The roek is a hard. gray, rather erenly bedded limestone, and has been quarried in a suall way for bnilding stone, but I saw no evidence that any attempt had been made to manufactnre lime from it here. It seems to be somewhat argillaceous, and might not slack freely when burned.

Soil and Agriculture.-There is cousiderable rariety in the eharacter of the soils of this connty, though there is probably not a section of land within its limits that would not yield a fair return to the hnsbandman for the labor necessary to bring it into eultivation. The botom lands are rather low and subject to overflow, and are therefore somewhat neglected. The prairies are generally small and rather level, and are often surrounded by a limited area of post oak plats, which have a thin soil and are generally regarded as the poorest lands in the county. The prailies have a more productive soil, but are inferior to the best timbered lands. For all farming purposes the rolling timbered lands that mere originall! eorered with a growth of oak and hiekory interspersed with black walnnt, elm, linden, wild cherry, honey locust, sassafras, ete, are more productive, and will bear contimed cultivation without artifieial stimulants longer than any other uplands in this portion of the State.

The soil and agricultural products of this comity are very similar to those of Williamson, thongh somewhat less attention is given here to the cultivation of tobaceo, and cotton is only grown for home consumption. Stock raising, in the absence of railroad facilities for the transportation of flour and grain to market, is perhaps the most profitable branch of farming now, and beef and pork constitute a large part of the farm products of the connty at the present time. Well improved farms can be purchased here at prices ranging from ten to twenty-five dollans per acre, and at these figures should command the attention of those who are seeking to invest in lands already under cultivation.

To Major Wm. Mooneyman, of Lenton, I am muder obligations for mmeh valuable information in regard to points of especial interest in this comity.

OHAPTER X .

BOND COUNTY.

Section of the rocks belonging to the upper Coal Mcabures in Bond, Fayette, Shelby, Montgomery and Christian counties. By G. C. Broabiead.
Ft. In.

1. Shales and sandstone 45
2. Limestone 4
3. Fire-clay 30
. Limestone, with Allorisma etc. 4
4. Shales at top, sometimes chavging to argillaceous limestone. 55
5. Sandstone, plants at bottom 40
Shaly bituminous limestouc and bituminous shales 4 in. to 4
6. Coal No. $15,18 \mathrm{in}$, to 3 ft ., generally. 10
7. Fire-clay 5
8. Limestone, buff color 4
12 Shales and sandstone, 15 to 30 in Shelloy, in Fayette 75 (?) 50
9. Calcareous shales, fossiliferous 4
10. Shales 7
11. Calcareons and bituminous shales 22
12. Coal, No. 14, uear Pana; on Beck's creek 16 iu . to
13. Fire-clay 5
14. Sandy limestone 5
15. Sandstone and shales 50
16. Shaly limestone 4
17. Limestone 4
18. Shales
12 in. to 16
19. Fossiliferous shales 8
26 Sandstone and shales 75 to 85
20. Limestone, lead-blue
2 to 10 in.
21. Shales 10
22. Shales and limestone, fossils numerous 4
23. Limestone 16
24. Bituminous 17
25. Mostly shales 39
26. Blne aud bituminous shales 6
27. Calcareo-bituminous shales-fossils 7
28. Coal, No. 10 4
29. Sandy shales 3
30. Cone in coue, (tutenmergel) 2
31. Ironstone. 1
32. Argillaceous shates and flatteued ironstone nodules 20
Ft In
33. Sandy limestone, numerous fossils 2
34. Saudstone fossils 6
35. Sandy shates 30
36. Sandstono-fossil.s. 8
37. Gray shales and santstome 30
$\left.\begin{array}{l}\text { 48. } \\ 49 .\end{array}\right\}$ Shonl creek linestone 4
$\left.\begin{array}{l}\text { 50. } \\ 51 .\end{array}\right\}$ Clay and bituminous shales 166
38. Coal, No. 9 10
39. Fire clay 2
40. Saudy shales. 4Comected section from highest rocks of Effingham to lowest in theabove named comities, condensed:

Bond connty is bounded on the north by Montgomery, on the east by Fajetfe, on the south by Clinton, and on the west by Madison comity. Its area is about 380 sqnare miles. Its surface originally consisted of about half prairie and half timber, bnt at present all the prairie and some of the timbered land is in cultivation or moder fence.

Toporraphy, Timber and Soil.-The surface is diversified by mounds, lills, valleys and plains. It is mostly drained by Shoal creek and its tributaries; their general course is southward, with the Kaskaskia river and Hurricane creek on the east. The most broken part of the comntry is probably near bethel bridge on Shoal creck, where the hills are abont 100 feet high. In the sonthern part of the connty the hills are low. The conntry is generally somewhat broken for about a mile on each side of Shoal creek. The ravines are deep and somewhat abrupt, with hillsides corred with a growth of white oak, black oak and hickory, sloning back to poor llats, with a growth of post oak, black oak, backjatck and batak hickory. At the edge of the prairie on the west side of

Shoal creek the soil is rather thin, with a growth of black.jack and post oak; but further out on the prairie it becomes better. On the east side of Shoal creek, between the forks, near the edge of the prairie, there are some wet pin-oak flats blending into flat prairies.

Near East Fork the hills are lower than those of Shoal creek. Near the stream there is generally a good growth of white oak, black oak, hazel, hickoly and sassafeas. This is good wheat land. Eastwardly the country changes, and occasionally there are high sandy mounds, often a hmdred feet abore the creek bottoms, which, when not too sandy, are quite productive, supporting a natural growth of dog-wood, sassafras, white oak, white walnot, hickory, black oak and ash, and on the shaded hillsides there are many ferns. Near the east county line a series of these mounds extend from the southern to the northern part, generally rising to about 50 feet above the surromuding plains, with which they almost imperceptibly connect by exceedingly gentle slopes. Sometimes these mounds extend into connected ridges, where we may find a luxuriant growth of vines, red and white elm, cherry, hickory, sassafras, ash, hazel, mulberry, black oak, red oak and local groves of sugar trees. Occasionally they present a beantiful and picturesque view, gently rising and falling in the distance, resembling a low range of monntains. The plains are often four or five miles wide, generally with a rery sandy soil, inferior to that of the mounds.

The banks of Beaver ereek are low, not often more than 10 to 15 feet high, and the adjacent country is generally flat. Along its margin may be found pin-oak, laurel oak, persimmon, crab-apple, hazel, plun and elim.

The smaller creeks generally go dry during the summer. The beds of all the streams are very sandy; their bottoms are wide, rich and heavily timbered, among which may be fonnd, bur oak, red oak; sugar tree, black walnut, white walnut, hackberry, elm, honey locust, lickory, sycamore, birch and mulberry. On the lills there is an abuudant supply of white and black oak timber.

Drift.-The bowlders seen in this county were all small, but among them were granite, quartzite; greenstone sienite, firagments of coal and fossils from the Devonian. In the western part of the county the drift is not well developed, but is best seen near Greenville. At the bridge on East Fork, three miles north-east of Grcenville, fragments of coal were found, which was a sufticient bait to the inexperienced to induce searching for more coal in the drift deposits. A shaft was smek 87 feet to rock, when the water broke in and checked any further work. The upper ten feet passed through was yellow clay; below it blue clay extending to the bottom, becoming darker as they descended; at 25 feet a large lump of coal was found, and wood at 20 feet from the surface. The creek bank here shows:

1. Red clay with some sand

Ft.
2. Beds of clay with some redlish sand, somewhat stratified, with blne sandy clay at bottom..... 30

At Greenville the drift extends from the creek to the summit of the hill, a distance of about 100 feet vertically; on top there is a deep red clay. The road washings disclose beds of coarse sand, pebbles aud bowlders. The washings on the hillside filter the sand very much, and towards the bottom there are deposits of rery fine clean sand.

At John Hall's, three miles east of Grecnsille, there was found in his well conglomerate masses of rounded drift pebbles, evidently comented together loy the silicious matter in solution in the infiltrating water. 1 noticed a fragment of magnesian limestone with many small. pebbles and some sand closely adhering to it.

It is evident that over the whole of this part of the State, including all of the counties I have examined, the surface was formerly 50 to 100 feet higher thau at present, the missing portion having been composed of sands, clays, pebbles and bowlders; that this continued until near the close of the drift period ; that the Pleistocene sea still spread over the country, with the exception of a few of the highest mounds; that the sea subsided at a rate sufficiently rapid to wear away most of the upper clays and bear them awas, leaving finer sands strewn aloug the surface just as we see exemplified at present at the Greenville hill.

Coul Measures.

Outcrops are seen on Shoal creek, Locust Fork, Dry Fork and Lake Fork. The total thickness in this county is about 220 feet, all belonging to the upper series, from No. 26 to No. 53 , and include about three coal beds. The following is a general section of the Coal Measure rock in Bond county: [Note.-the numbers used correspond to those used in my general section in this and adjoiniug counties, see page 128 , et seq. 1
No. 26. Clay shalo 08
No. 27. Dark shals limestone 10
No. 28. Coal, No. 12. 3
No. 29. Slate 13
No. 30. Sirale and limestone 8
No. 31. Limestone 13
No. 32. 131uc and bituminous shalo. 4
No. 33. Coal, No. 11. 17
No. 34. Mostly shalo. 39
No. 35. Blue and hituminous shale 1놀
No. 3\%. Galcareo-lituminous slale, fossils 2
No. 37. Conal, No. 10.7
No. 38. Fire clay. 4
No. 32. Sandy shale. 3
No. 10: 'J'utenmergel 2
No. 41. Iroustone 1
No. 42. Argillaceous slate and flatened ironstono nodules 20
Ft. In
$\left.\begin{array}{l}\text { No. 43. } \\ \text { No. 44. }\end{array}\right\}$ Sandy limestone and sandstone, fossils 4 $\frac{1}{2}$
No. 4.5. Sandy shale 30
No. 46. Sandstonc, fussils 8
No. 47. Gray sbale and sandstone 30
No. 48. \} Shoal creek limestone 4
$\left.\begin{array}{l}\text { No. } 50 . \\ \text { No. } 51 . \\ \text { No. } 52 .\end{array}\right\}$ Clay and bituminous shale $16 \frac{1}{2}$
No. 52. Coal, No. 9 10
No. 3t. Fire clay 2
No. 55. Sandy shale. 4
The rocks occupying the highest genlngical position are those seen on
Dry Fork and Lake Fork. On a branch of Lake Fork, near McCrack-en's, l observed the following beds:
Ft. In.
No. 26. Brown and drab clay shates. 8
No. 27. B'ack shaly limestone, with Bryozoa 10
No. 28. Coal, No. 12 3
No. 29. Clay shales, the lower part a nolular limestone bed 7
On the head of Dry liork the same beds occur, thas:Ft.

1. Limestone, with fossils, Hemipronites cressus, Athyris subtilita and Synocladia biscrialis ?
2. Shales, with brown iron stone nodules 5
3. Shate 8
4. Limestune, No. 31 10
Part of the same section, one mile down stream, appears as follows:
Ft. In.
5. Dark coarso shaly limastone, abounding in Polypora, Synocladia biserialis, contains also Productus Nebrasconsis, Aviculopecten and Apiriferina Fentuckensis. 4
6. Drab clay shale 8
7. Buff limestone, referred to No. 31, with many remains of Crinoids, contains also Productuslongispinus.5
On Lake Fork, near McUracken's coal bank, limestone (No.31) isthirteen feet thick and has many minute jarticles of calcareous spardisseminated; the bottom bed of one foot consists of dark ash-coloredlimestone ; beneath this is four feet of bituminous and blne shale restingon seventeen inches of coal. This coal I have marked as No. 11, count-ing npward, and its place in the section is No. 33.From this downward, according to the record of the Litchfield boring,there is thirty-nine feet vertical thickness to the next rocks comingnuder my observation. In a descending series we next observe on thetributaries of Dry Fork, in sec. 19, T. 6 N., R. 4 W.:Ft. In.
No. 34. Clay sha'e 12
No. 34, Rough calcaren-ferruginoms bed, with Bellerophon carbonarius, Pleurotomaria sphu. rulate, ams Mfacrocheilus 3
No. 35. Lead-blue calcareons shale 8
No. $35 \frac{1}{2}$. Bituminous shale 8
Nu. 36. Lead-hlue calcareous shale, fossiliferons; it is sometimes a limestone, contains l'ro- ductus longispinus. Chonetes variolata? Ch. Vermewilianus and Lophophylhum prolife- rem 2
No. 37. Bituninous coal 7
No. 3r, Dark olive fire clay 4
No. 39. Green saudy shales, containing rougl brown nodules 3
Ft. In.
 $0 \quad 2$
No. 41. Four inches ironstone at top and hottom, separated lyy four inches of dark slales, con- tains Ifemipronites crasxus, and I'roductus l'rattenianus 1
No. 42. Argillacems shale, with Hattencd iroustone concretions. 20
No. 43. Aslogray silicious limestove, upper surface samely and shelly, urade up ahfoost entirely of fossils, inchnling Aviculopecten accidentalis, Itemipronites crassus, Productus Nebrasconsis, 1 thyris subtilita, tngether with Myating Suallomii, Euomphalus sub- rugusus, Jlyalina sub-quadrata, J'inna por-acuta, Chonetes granulifera? and Jtcekellu striato.costata 2
No. 44. Brown sandstone, fracture, sometimes shows a greenish drah, contains Pinna per-aculte aud Bryozon. This is sometimes merged into that ahove, aud they then hoth pre- sent the characteristics of a fertugideus saulstone. 22
No. 45. Dralu-clay sbale, with flattened concretions of ironstone 30
No. 46. Dark-dral) malurated sandstone, with some remains of a few fossils, could scarcely dis- tinguish species, A ciculopecten occidentalis 8
Two miles above Bethel bridge, on Shoal creek, there are thin layersof No. 46 containing Jryalina Suchllorii, Aviculopecten occidentalis, withfragments of plants (Culumiles). Just below, on the creek, No. 47appears tbus:Ft.
8. Shaly ferrmginous sandstone, with ironstone concretions. 6
9. Blue sandy shale. 2
10. Sandstone, иpper palt sometimes gray, induratod helow, and loright hrown, lower part dark-gray, with carbonaceons bands 4
11. Gray micaceons samly shale and sha? sandstome 3
Half a mile east of Bethel bridge the following beds are exposed :
Ft.
Xo. 42. Drab armillaceous shale, witl concretions of uronstove 18
No. 43. $\}$ Sandy limestonc and sandstone No. 44. \} Sandy limestonc and sandstone 3
No. 45. Argillaceons slate 17Sast of Fairview, near the east county line, on a branch of Inrricanecreek, there is exposed about six feet of chocolate colored sandstone(1)art referred to No. 46), containing Productus Prattenianus, Acienlo-pecten occidentulis, and remains of plants (Culumites). The position ofthis rock wondd indicate that the easterly dip of the rocks in this countydoes not exceed thirty feet atross its whole breadth. Below No. 46 areseen on Shoal creek occasional outcrops of thin bedded gray sandstoneamounting to about thirty feet in total thickness:
Shoal Creck Limcstone.
No. 49. At many places on Locust Fork there crops ont abont four feet of an ash-hlue lime. stone, with a somewhat splintery fracture jointed vertically, the upper part shelly On expesure: contains Produches longispinus, Spirifer lincatus, Sp. cameratus, Iro- ductus (linonensis?), Ilhynchonella Osrgensis, Retzia punctulifora, 1thyris subtilita, Chonetes variolata? and Jemipronites crassius. 4
Below this are seen ou Locust loork:
No, 50. Glernish-dial clay shate 난
No. 50\}. lihno shate, somewhat bituminoos 2
No. 51. lsituminous shato. 2
No. 52. Bhace elay shalr, with occasional flattrnod concretions of pyritiferous ironstons and septaria 10
Nio. 53. Conl Nio. 9 , gool except lower 2 in. 10Nu. 5!. Light-bhe firreclay, from a few inches thick to two foret. Noxt helow in three tere offrellow and lnown sandstome in one inch layer, then aroflaceons shale. lassinganst warlly down the croek, the rocks dip alomat twonty fect per mite. One malesonth-west, at the county line, there is a local dy worth of four feot in a limendred.

Economical Gcology.

Coal.-McCracken's, on Lake Fork, is the only place where coal in any (fuantity has been taken ont, and it is only when the creek is dry that this can be adrantageonsly worked. The coal is seventeen inches thick and of good quality ; it is dug out at sereral other places ou Lake Fork, and has also been found on the head of Dry Fork. The other coal beds seen in this comnty are too thin to be worth working. Shafts hare been sunk in the drift clays for coal east of Greenville, but in order to reach any valuable coal bed they will have to go about 225 to to 300 feet or more below the general surface of the comty.

Building Material.--The ouly really good buidding rock is the Shnal creck limestone, of which Tobias Files and Mr. Reams have goorl quarries. The sandy limestone No. 43 is also good for building purposes, and it mas be procured one mile sonth-west of James YallenTINE'S, on a branch of Dry Fork. Plenty of good limestone for lime can be procured on Lake Fork, on the head of Dry Fork and on Shoal creek near the north county line.

Fire-clay.-No. 38 may prove to be a good material for fire-brick, and good clay for common bricks can be everywhere procured.

Wreter:-Springs are scarce. Good water can generally be procured at twenty to thirty feet beneath the surface.

Soil and Agriculture.-On the mounds and white oak ridges the soil generally inclines to a red color; on the flats it is of a whitish or gray color and often quite sandy. The richest soil is that of the bottoms, next the high mounds, then the prairie in the sonth-west part of the county, and next succeed the white oak lands and the flats. There is a small area of rery good limestone soil near Locast Fork, with a growth of red oak, white oak, shell bark hickory, elm, hackberry, laurel oak, black oak, black walnut, mulberrs, red bud, sassafras, and honey locast. The average yield of wheat is good, occasionally varging from fifteen to thirty bushels per acre; of corn, thirty to forty, very rarely on the best mound slopes reaching sevent five bushels per acre.

CHAPTER XI.

FA YETTE COUNTY.

This county is bounded on the north by Montgomery and Shelby, on the cast by Effingham and Clas, on the south by Marion and Clinton, and on the west by Bond and Montgomery. It cmbraces an area of 720 square miles. It is intersected by the Kaskaskia river from the northeast to the southwest, nearly equally dividing it. Dismal creek flows south-eastwardly through T. 5 N., R. 4 E. All the other streams are tribntaries of the Kaskaskia river, ineluding East Fork, Flat, Carson, Richland, IIickory, (three forks,) Sand, Canp, Linn, Sugar, Rock, Big, Moccasin, Wolf and Waller's erceks on the east, with Hurricane, Buck, Bear, Buckmaster, Ramses, Asher's, Beck's and Mitchel's creeks on the west.

Topography and Timber.-In passiug from the streans to higher laud we gencrally ascend by winte oak slopes to post oak flais, thence to flat prairies, around which there is generally a margin of pin oak and sometimes black jack and post oak. Between the varions streams there are flats and mounds, the latter rising from fifty to seventy-five feet abore the flats. There is a low mound in T. 4 N., R. 1 W., another in T. 7 N., R. 1 E. The monnd just west of Tandalia is abont ninety feet abore the plains. Occasionally they occur along the prairic between Hurricane ereck and Kaskaskia river, and there is one large monnd north-west of lowling Green. East of Beck's treek the rise is gentle from the post oak flats to the white oak mounds about sixty feet above. On the post oak flats and that prairie we often find swampy plates and sometimes ponds. In the uorth part of T. 5 N., R. 1 W., there is a remarkable chain of ponds several miles long trending east and west, and mostly comected. Their margins are mazish, with a growth of Cephetlunthus occidentulis or button bush, pin oak, rose, maple iris and rnshes. Some are said to contain fish. Nothwardly towards Vandalia there are several other ponds. Toûnship 5 N., R. 4 Li, is generally very gently molulating. Dismal creek rizes from very gentle depressions in the flat pranies; no blnffs appear for sereral miles, but near the Chicago ratroad they are sixty to serenty feet high and rise by long gentle slopes.
T. 4 N., R. 1 W., east of the river, is mostly flat with a gradnally rising low mound in the south part. Near Carson, Flat and Richland ereeks the eountry is gently molulating, with low hills near the streams, passing from rich land with pin oak, laurel oak, cornus aud willow near the prairie, to land with elm, ash, pig-unt and common hickory, hazel and plım; thenee to open post oak flats. Near Hiekory ereek the eountry is somewhat broken into short white oak rilges blending into post oak and white oak flats. Near the creek the hills are not orer fifty feet high. East of Timdalia to the prairie the eonntry undulates very gently, having mostly a gray soil with sometimes an abundant growth of hickory, varied by richer land with black oak, white oak, shell bark hickory, lamrel oak and flats with post oak and black oak. Passing thence along an undulating prairie down the gentle slopes of Sugar ereek to Big creek and London City, there are broken white oak hills spreading out into tlats with post oak, black oak, black jack and blaek hickory. On Rock and Wolf creeks the hills are sometimes sixty feet high, and ou the bottoms as well as those of Sugar creek sugar trees are rery abundant. The bottoms of Big and Wolf creeks are tolerably wide and flat aud sustain a growth of red bireh, sycamore, bur oak, eoffee tree, ash, red mulberry, hickory, cormus coral berry and amorpha fruticosa. Beek's creek is rather a slıggish stream with wide and often wet pin oak bottoms; thence to the higher lands there are long slopes reaching to the flat post oak ridges. The neighboring prairies have a margin of pin oak, lanrel oak and swamp whiteoak. Ramsey is a clear stream with a sandy bed; its bottoms are wide and high enough for good farming lands. On its bottoms may be fonnd linden, buekeye, white walnut, bladder nut, hornbeam, hackberry, sugar tree, with irou wood, service berry and Spanisl oak (?) on the hill sides. Lower down the stream the hills are low, but above the railroad they are more abrupt. From Vandalia westwardly to the eomnty line the comntry is mostly flat with oceasionally small prainies, a few low drift monnds, some ponds and some good timbered land with white oak, black oak and hiekory, and occasionally poorer land with post oak, and richer land with sassafras, elu and ash. Hurricane creck is rather a sluggish strean; its bottoms are rich and often wet, rarying in width, sometimes being a half mile wide and increasing near the Kaskaskia river. On its bottoms I observed sassafras trees one and a half feet in diameter and rose bnshes twenty feet higli, and the trees generally are very tall. Other trees observed on its bottoms were bur oak, haekberry, red bud, ash, elm, slıell bark and pig mut hickory, hazel, wild allspice and grape vines. East of Fairview the growth on Ilurricane bottoms consist mostly of pin oak and swamp white oak. The trees are larger and taller near the Kaskaskia river; one hickory growing on a hill side
was noticed, four inches in diameter and sixty fect high. The Kaskaskia river (or Otaw, as it is commonly callerl, has a deep chamel and often sandy banks. Its bottoms below Tandalia are generalls two niles wide, diminishing to one mile at the north county line. On the bottoms there is a heary growth of timber, including jin oak, waluut, red oak, bur oak and cotton wool ; and in wet places opposite Vandalia I noticed Catalpa bignonioides. The hills south of Vandalia are from fifty to serenty-five feet high. Towards the northern part of the county they are generally highcr, being about 80 fect near the north county line, and 150 feet near the mouth of Beck's creek. On the other streams the hills are lower. On Buck creek are found cornus florilla, white walnut, hornbeam, sugar tree, black gum, red oak, ash, linden, cotton wood, sycamore and white oak.

Stratigraphical Geology.

In this county the formations consist of the Quaternary and the Coal Measures.

Alluvium.-The wide flat bottoms of the Kaskaskia cmbrace an exten. sive area of allusium.

Prairic Formation.-The prairio near Dismal creek has a grayish soil containing a few small concretions of oxide of iron. Nine miles east of Vandalia on the national road the prairie soil contains a good deal of iron ore.

On Flat prairie, ten milcs south-west from Vandalia, the roadside washings expose:

This I consider older than the alluvium, and may be equivalent to the Bottom prairie of the Mo. Gcol. Report.

On the north side of Big creek there is exposed six feet of dark and buff clays, containing small nodules, probably locss.

Drift.-This formation is well developed in this county. A well near Ramsey was dug 100 fect deep through clay and gravel to solid rock. The mound west of Vandalia is about 100 fect above the general surface of the surrounding country, and 55 feet of drift is exposed on the bank of the river at the National road bridge. This would make the total thickness of the dift in this county not less than 150 fect; probably a little more, but not over 200 fect.

On the bank of the Kaskaskia river, at the National Road bridge, the upper 15 to 20 feet consists of red clay with coarse sand and gravel
below, with 30 to 35 feet of blue clay at the bottom. The blne clay is very hard and compact, and contains numerous small rounded pebbles. One mile south-west the railroad cut exhibits red clay, sand and pebbles at the top; below, gray and brown beds, with alternations of beds of sand and pebbles, the latter sometimes partially cemented together.

The mound west of Vandalia has ash-colored clay at the top, and darker colored clay and pebbles below; then brown sand, pebbles and bowlders; two-thirds up the hill side there is a fine spring of pure water issuing out of the brown sand. One and a half miles south-west of Vandalia the river bluffs are formed of steep, broken drift hills, with blue clay and bowlders at the bottom, overlaid by brown sand; towards the upper part there is a tiwo foot stratum of ferruginous sandstone passing into a hard irou ore. Its firm hard appearance might induce one to think it belonged to an older age than the drift, but it lies at, about the same horizontal level along the hillside, and is also found cropping out in other ravines at the same elevation, with drift sands below. Furthermore, its frequent occurrence in this county, and also in others, associated with the same drift beds, shows that it must belong to this formation. The blue clay at this place is quite hard, and the water passing over it forms a tufaceous deposit on the surface. In the ravines there are maly fine springs of water issuing from the base of the sand beds.

On Buck creck, near the Kaskaskia bottoms, there is a dark gray clay and sand conglomerate, which when struck emits a dull hollow somud. A good spring of water flows from just over it, and a tufaccous deposit is there formed.

Twelve miles south-east of Vandalia masses of ferruginous conglomerate were observed similar to that found near Vandalia. A well here shows 8 feet of sand at the top, and 18 feet of sand and pebbles below. In the road north of Greenland I observed-

Ft.

2. Ferruginous sandstone.. 4
3. Buff clay and pebbles... 4

In sec. 31, T. 6 N., R. 2 E., on the land of George Phifer, a broken stratum of coal $1 \frac{1}{2}$ inches thick occurs in the drift, with blue clay and pebbles both above and below. One unacquainted with geology might imagine a perinanent coal bed to be here.

A similar place was examined on Bear creek, five miles from Vandalia. The hill is here 27 feet high, and near the middle there is a thin stratum of black sand; beneath this are streaks aud fragments of coal enveloped by red sand and small bowlders, and near the base of the hill there is a mass of Coal Measure fire-clay. There are also masses of sandstone and limestone not much worn, all evidently drifted but a
short distance. Other bowlders found here are of granite, sienite and quartzite.

At the mill on Beck's creek, in sec. 10, T. 8 N., R. 2 E., Coal Measure limestone is seen apparently resting on a bed of drift; some of the sand and pebbles are even cemented to the limestone, which must have been overhanging when the drift was deposited, and the latter washed beneath.

Mounds.-In the western part of the county there are many mounds rising above the general surface of the country 50 to 90 feet, and occasionally there are a few east of the river. The various clays, sands and pebbles found on these mounds, and entering into their composition, present the same character peculiar to mounds found in other counties.

Among the drift bowlders found in this county are sieuite, granite, hornblende rock, greenstone, quartzite, sandstone, limestone aud clays from the Coal Measures. No very large bowlders were found.

Coal Measures.

On account of the non-appearance of certain intermediate beds necessary in the connection, wo can only approximate the thickness of the Coal Measures in this county; but there is sufficient data to assume that the total thickness may reach 350 feet, ranging from No. 1 to No. 46 , of the section of upper Coal Measure strata, and include the horizon of four coals, viz: $13,14,15$ and 16 , although the latter has not jet been found in the county.

The rocks occupying the highest geological horizon in this county are probably those on Dismal creek, of which the following is a section :

Ft.

Ne. 2. Buff limestone, upper part nodular, middle in eren layers; no fossils seen..................... 5
Ne. 3. Clay shales with nodules, niddle red, remainder olive colured....................................... 12
No. 4. Sandy shales and thin beds of hard, gray sandstone... 24
The next highest beds are found on Hickory and Rock crecks : On Hickory Creck.

Ft.
No. 1. Sandy shalcs ; in the middle arc dark micacoons and carbouaceous partings, belew there are occasional thin beds of sandstoue, color yellow, drab and gray.
No. 2. Sandstone, hard, gray, and brown, ferruginons and yellow; part of it for 100 feet horizon. tally is a vermilion red, contaiuing Lepidodendron and Sigillarie............................... 5
No. 3. Slaty con and bituminous shale, passing into a cannel coal, at Odell's contalns Solenomya radiela ind Aviculopecten Whitei, equivalent to No. 15 Shelby coal..............................
No. 4. Dark blno clay shales, stained brown .. 1
No. 5. Yollow clay... 2
No. 6. Soft yellow sandstone and shales.. 3
No. 7. Greenish-blue clay shales... 2
In passing down stream a quarter of a mile the rocks rise 1 foot in 60.
Ft. In.
No. 8. Ono and a half miles down stream thero is exposed as feet of clay sliales, they maybe as much as 50 or 75 fect in thickess. Men boring at Odell's report 80 feotbelow No. 3 (coal No. 15) without reacbing ady coal. In the road near tho creakat Slabtown the following leds were sem:
No. 9. Dark grayish-blue shay limestone, sometimes in solid layors suitable for bniding purposes, contains remains of fossils. 8
No. 10. A few inches of sbale. $?$
No. 11. Coal-smut in the road-in a well. 1
No. 11 $\frac{1}{2}$. Firoclay covered by debris at this place 4
No. 12. Ochrey-bown sandy shales with uodules of ironstone and some hard rough masses of sandstune. 25
Below this there may be 25 to 50 feet more of sandy shales, to thenext lowest rock seen at Richardson's coal bank, in see. 27, T. 6 N., R.3 E .
Ft. In.
No. 14. Tellow clay sbales 6
No. 15. Dark gray shelly limestone passiug into a calcaroous shale, rery fossiliferons; contains Hemipronites crassus, Chonctes Flemingii, Spirifer cemeratus, Iroductus Nebrascensis, Aviculopceten occidentalis, Myalina ampla, Myalina Saallovii, Leda areta, Monopteria gibbosa, Schizoders, Macrodon, Edmondia, Phillipsia Sengamochsis, Poteriocrinus? wear I. hemisphcricus, stems of Crinoids, Synocladice biscrialis and Fistulipora. 4
No. 16. A fow feet of clay slate and a fow inches of dark shale.
No. 17. Covered by delris-Bituminous coal (13) said to be 16Below tho forks of Hickory ereek there is exposed 8 feet of thinbedded sandstone. On the South fork of Hickory, part of the abovesection appears thus:Ft. In.

1. Bituminous shale $?$
2. Dark bue slaaly limestono 6
3. Bitmminons coal (coal No. 14) 10
4. Olive clay sbale 2
5. Nodular arenaceons limestone, contains I'roductus' Prattonianus, Allorisme and a largo I'leurotomaria 2
6. Dark red and olivo clay sbales with nodulos and concrotions of ironstone. 4A quarter of a mile down the ereek there is about 40 feet of hardsandstone and samdy shales.On Rock ereek and Wolf ereek coal No. 15 (Shelby eoal) with theadjacent roeks is found. At Phifer's and at Joel Blakely's the sectionis as follows:
7. Tellow and brown sandstono, containing remalns of plants, with a few red ochrer bands atthe lower part35
8. Soft black shalcy18
9. Coal (13). 4
10. liongh looking fine grained bntl limestone, no fossils oxcept a few Crlnoid stems 4
11. Saudy sbale 8Below the forks of Moceasin there is exposed 25 feet of shates, theupper 5 feet sandy, below dark bluisholive clay slale. At 12 feet fromthe bottom there is a 5 -inch caleareous stratum, aboming in Myalinasulb-guadratn, also contains Leda arata, Schizodus, Linguln, Macrodon(large Spo), and fragments of erinoids. This bed is probably 30 or 40feet below eoal No. 15.
Near lloward's Point the following beds are below coal No. 15. Insec. 36, T. 7 N., R. 2 E., there is an outcrop on the bead of Camp creekof about 2 feet of hard grayish-blue fucoidal sandstone, which turnsdark-brown on exposure.
At Howard's Point part of the same sandstone appears thus:Ft.
12. Fellow slaaly sandstone 1
13. Hard bluish gray sandstone 1

- Saudy sha'cs aud thin beds of choco'ate colored sandstone 10
A quarter of a mile down the creek, there is 15 feet of dove coloredclay shale. In the lomer part are concretions of sulphuret of irou andcarbonate of iron and lime.
Ft. In.
No. 2. Dark shales, lower part bituminons; sometimes there is a bed of dark shaly lime- stone 16
No. 3. Bitmminons coal (No. 14) 10
No. 4. Dore colored fire-clay 4
No. 5. Thickly laminated soft chocolate colored and red sands shales 4
On Kaskaskia river, in sec. 28, T. 9 N., R. 3 E.: Ft. In.

1. Slope from hill top about
,
2. Olive clay shales with some ferrnginons concretions ?
3. Dark blue shaly limestone 4
4. Brownish aslı calcareous shales, contains Athyris subtilitu, Chonetes Flemingii, crinoid arms and columns. 2
5. Bituminous coal (No. 14). 14
6. Fire clay 4
7. Conrse, rough, uodular, sandy shales. some hard nodular, sandy and calcareous beds con- taining P'roductus Prattenianus, 4 viculo-pcten, etc- 6
Down the river 300 yards the same sandstone appears at the water'sclge.
'At Brown's coal bank on the west fork of Beck's creck, at the countyline, in the south part of sec. 22, T. 9 N., R. 1 E., the coal is said to be16 inches thick, capped by dark slate. The scetion is:
Ft. In.
8. Dark lead-blue limestone, dull appearance, weathers ash blue 1
9. Lead blne calcareons shales, abonnls in Productus Nebrasconsis, Orthis carbonaria, RetzicePunctulifera, Athyris subtilita, also contains spirifer ylano-convexus, Spiriferina Ken-tuckensis2
10. Coal (14) 16 to $22 \frac{2}{2}$ inches.
A half-mile down the creck there is found:
Ft. In.
11. Ferruginous lirnestone rather shaly", contains remains of crinoids and Lophoplyyllum pro- lifertern 6
12. Jight urefoish clay shates 2
13. 'Thinly laminated sandy shales 4
14. Jard bluish-way or drab calcareous sandstones 1
15. Urab and blue elay shales 8
In sec. 30, T. 9 N., R. 2 E., (known as the Gooden coal bank) we have :
16. Hrift slopen 3
17. Dall ash blne slaly limestone, weathers to a divty drab, fossils are Productues Nebrusecnsis, I'. I'rulterianus, and Chonctes 16
Ft. In.
18. Clay shales 8
19. Thinly laminated clay slanles with plants 1
20. Clay shales in thin layers in tho creek; heneath there is said to be a thin seam of coal. 8An intercsting group of rocks occurs on Ramsey creck, comparatirclyisolated from auy other gronp in this county, no other outcrop beingobserved within six miles, but from the topography of the country it isapparent that their position is below that of the rocks previonslymentioned. Their position is near No. 22 of section on page 128.
Section at the railroad on Ramsey creek and just bolow :
Ft In.
21. Sandstono and saudy shale 21
22. Clay shales with compact nodules of iron ore 7
23. Suni-hitumnons dark slate 2
24. Indurated clay shale, a few inches. \&
25. Even bed of iron stone, ontsido brown, fractnro purplish-drab, abounds in Estheria, also contains A viculopecten 2
26. Light-blue aryil acouus shato 4
27. Drab-colored clity shales or firo clay 4
28. Hrab elay shales, nodntes in the upper part, lower part talus of abovo, about. 15
29. An के to a mile down the creek wo have an ash-hlue limestone, upper part turns brown andshells off on exposuro.3The lower part is sometimes shelly ; abounds in Syntrilasma hemi-micata, also contains Meekella striato-costata, Chonetes, Spirifer cameratus,Sp. linentus, Spiriferina Kentuclensis, Athyris subtilita, Terebratula bovi-dens, Hemipronites crassus, Prorluctus longispimus, P. costatus, Neutias,Stenopora lepidodendroides, Polypora, Synocladia, and Lophophyllum pro-liferum; it has also dark fucoidal veins passing irregularly through it.Ft. In.
30. Clay. 1
31. Coarso gray limestone, contains only a fow crinoid stoms and a few remains of fish teeth.... 6
32. Yellow clay and nodules of linestone ?

About two miles down the creek there is an outcrop on the hillside of about two feet of even bedded chocolate colored and ycllowish sandstone, with twenty-fire feet of sandy shale beneath, and towards the foot of the bluff, two inches of blne, compact limestone with a pot metal ring; this is probably near No. 4 of above section. One and a half miles further down the creek, at a ford, the following appears:

[^11]No. 4 of this section is near No. 5 of the section at the railroad bridge. The course of Ramscy crcck is generally south-east. From the above it will be seen that the rocks have a slight dip down stream.

On Beck's creek at the mill, in sec. 10, T. 8 N., R. 2 E., there appears 6 fect of butf limestone abounding in Syntrilasma homiplicata, and Lophophyllum proliferum, also contains Athyris subtilita, Productus costatus
and P. punctatus. This bed of limestone is seen extending along the creek for 100 feet, and has a regular local dip of 17°. On Hurricane creek, near the line of Bond county, east of Fairfield, beds of sandstone occur containing fossils resembling those of No. 46.

Economical Geology.

Coal.-Much anxiety was manifested by the citizens of Vandalia on the subject of coal. At present their supplies are brought by rail from Perry county.

Coal 15 or Sheby coal is only found near the head of Hickory creek $2 \frac{1}{2}$ miles from the east county line, and northwardly near the county line on Rock creek and Wolf creek.

At Jas. P. Odell's, in sec. 34, T. 6 N., R. 3 E., a slaty coal has been taken out, but as yet is not much used. A shaft was in process of being sunk, and had reached 80 feet, without coming to any other coal.

On the land of Joel Blakeley, near Rock creek, an 18 inch seam has been worked, the upper and lower two inches pyritiferons and 14 inches of good coal. At Blakeley's bank part of the coal bifurcates, and insinuates thin veins into the overlaying sandstone.

The neighboring hills are low and the coal can be easily reached. Mrs. Mary Grant and Mrs. Phifer also have coal banks in the same vicinity. This coal crops out one foot thick at the edge of the water of Wolf creek, in sec. 12, T. 8 N., R. 3 E.

Coal No. 14 crops out on the Kaskaskia river at W'm. Thomas' in sec. 2, T. 9 N., R. 3 E, 14 inches thick; at Jas. Brown's near the north comety live on the waters of Beck's creek, in sec. 21, T. 9 N., R. 1 E, 16 to 22 inches thick; a half mile north of Howard's Point 10 inches. On the south fork of the Hickory, in sec. 10 , T. 5 N., R. 2 E., it is 10 inches; at Col. Forman's 18 to 20 inches.

Only at Brown's and Col. Forman's has there been much mining.
At Brown's a drift $2 \frac{1}{2}$ feet high has been rminto the hill, but recently nothing has been done. At Forman's, in sec. 1, T. 5 N., R. 2 E., a good many pits have been dug at various places on the bottom and a good deal of coal taken therefrom at different times. On the bank of a branch the coal appears rery well, extending nearly horizontally along the stream for about 50 feet, and 20 inches thick, with 4 feet of fire clay beneath; at one place the coal measures 2 feet in thickness. Δ trace of this coal appears in the road at "Slabtown."

Coal No. 13.-Banks have been opened at two places on Little Mickory creek, viz: at Win. Hamilton's, in the S. W. qr. of the N. W. qr. of sec. 26, 'T. 6 N., F. 2 E., and at Wm. Richardson's, in see. 27, T. 6 N., R. 2 E. At Hamilton's several pits have been dug on low ground
near the creck, but they are now filled with debris. At Riehardson's the eoal was taken from the side of the bluff, but is now hidden from view by the talus from above; the thickness of the seam is reported to be from 16 inches to 2 feet, and the coal of good quality. These places ean be worked without much eost.

On Beek's ereek, about a mile above the Shelbyville road, a good deal of coal has been taken from the ereek, but the water is generally in the way. This is known as the Gooden coal bank. A bed of eoal is reported to be at the bottom of the Kaskaskia river, in the S. E. coruer of T. 9 N., R. 2 E., but the water is generally at.least 6 fuet over it.

The western boundary of coal No. 15 is a north and south line tro miles from the east county line. The western boundary of eoal No. 14 is nearly parallel to the last and three miles west of it, with an outlier of a few miles square near the north eounty line, east of the railroad.

The western boundary of coal No. 13 passes northwardly near the midulle of R. 2 E., erossing Kaskaskia river near the mouth of Beek's creek, and thence north-westwardly. West of this line no coal beds have appeared in the county.

The coal muder the Shoal ereek limestone is about 230 to 240 feet below the lower Hickory creek coal. Coal No. 7 is 375 to 500 feet below coal No. 13. From this I would suppose that in order to reach a good workable eoal, a shaft wonld have to be sunk 300 to 500 feet at Vandalia ; at that depth coal No. 7 (6 to 8 feet thick) might be reached.*

Iron Orc.-Thin beds and eoncretions of carbonate of iron ore are common in the Coal Measure shales, but were not found sufficiently abundant to work in this eonnty. On the National road, niue miles east of Vaudalia, I noticed a deposit of very dark eolored oxide of iron in prairie elay or soil; it crops out about 4 inches thick, in a rongh massive stratum around the margin of a washed place of 50 feet sqnare ; on one side it is 6 inches beneath the surface and on the other 2 to 3 feet. The elay at this place is probably of older age than the soil or alluvium ; probably nearly, it not quite as old as the loess. Simall coneretionary nodules of a similar variety of iron ore are often found washed out of the prairie clays.

The ferruginous sandstone, previously spoken of under the head of "Drift," may sometimes be considered an iron ore; it is abundant near Vandalia, and is also found near Greenland and at William Porter's on Little Hickory.

Building Rock:-There is a good sandstone quarry near Ramsey ereek, two miles below the railroad; the rock is generally about 2 feet thiek and of good quality; part of the stone areh culvert on the I. C. R. IR. at Vandalia, was procured here.

[^12]The Syntrilasma limestone on Ramsey creok has been very exton sively used on the railroad, and also in bridge abutments on the National road. Part of it seems to stand the weather well, but a good deal has been cracked by frost. The lower bed under that containing Syntrilasma, has the appearance of being a very durable stone, but I am not aware that it has been used.

The buff limestone, on Beck's creek near its mouth, would probably make a very good lime.

In sec. 10, T. 5 N., R. 2 E., there is a quarry of hard brownish-gray sandstone, rather irregular in its character, changing color on exposure. It has been used in some bridge abutments on the National road, but has not proved durable.

At Wm. Yokes', north of the National road, nine miles east of Vandalia, there is a good sandstone quarry. The rock is thin bodded, tolerably hard, but works frecly and is of even thickness. On Dismal creek, near Laclede, there is a fire foot bed of buff limestone, which makes a tolcrably good building rock and good lime.

Road Material.-At Vandalia there are very extensive beds of sand and rounded grarel, rery suitable for road beds and much used for bal. lasting on the railroad. Several lumps of native copper have been found in this county; one a half pound and another 10 ounces in weight.

Soil and Agriculture.-The Kaskaskia bottoms embrace a large area of, as yet, untilled lands, being subject to anuual overflows, which has heretofore becu a drawback to their cultivation, but there certainly will be a time when these lands will be sources of great wealth. The prairies in the southern and south-east parts of the county probably contain the best upland; the other prairies have generally a thin soil, similar to that on the post oak flats but probably richer. Much of the timbered land is poor, but there are occasionally very rich spots of elm and cherry land, for example, on the Vandalia and Carlyle road.

The best uplands will produce 40 to 50 bushels of corn per acre; other lands 25 to 30 .

A good arerage of wheat is 20 bushels per acre, the timbered land producing the best crops.

Recently the bugs have beeu quite destructive to the potato crop; but generally, with proper culture, very fine crops can be raised. I would suppose that on the broken ridges fine rineyards could be made, but none have yet beensitarted.

Wells and Springs.-There are some very good springs in this county, generally originating in the drift sands, and are sometimes a pleasant chalybeate.

On the land of Geo. Phifer, in see. 31, T. 6 N., R. 2 E., there are several ehalybeate springs issuing from the sands of the drift, and Mr. P. says that ther always have the same flow of water. In the hills south of Vandalia there are a good many fine springs of mostly very pure and clear water.

In the north part of the county, the wells are 12 to 18 feet deep, with weak reins of water. 4 well on Roek ereek prairie was dug 39 feet and plenty of water olbtained.

One mile south of Vandalia a well was dug 30 feet, mostly through sand with some elay at the top, and plenty of water procured. On a hill, at an elevation of about forty feet above, another well was dug 60 feet deep, through similar material, with no water; near the latter, another was dug 65 feet deep, mostly passing through sand, to water. A half mile north is another well, 30 feet deep, through elay and sand, with plenty of water.

Antiquitics.-There are a good many aneient mounds of human construetion in this county; a few near Vandalia, some on Huricane creek, and some near Ramsey. But few of them have been opened. I obtained only a few flint arrowheads and a stone hatchet made of sienite, and picked up a fen broken fragments of pottery near the site of a mound that had been opened.

A particular examination of these mounds might develop some interesting relies.

In conclusion I would state that I am under many obligations to Mr. Tevis Greathouse, of Vandalia, for assistance in furnishing maps, and am also particularly indebted to Dr. G. W. Bassert, of the same place, for assistance in making collections, in getting information, and for speuding several days in assisting me.

Note.-Sinee the foregoing report was made by Mr. Broadhead, a shaft was sunk at Vandalia to the depth of 377 feet 3 inches, and a boring from the bottom of the shaft to a total depth of about 574 feet.

The following section of this shaft and boring was furnished by Dr. G. W. Bassett, of Vandalia :

This shaft and boring reaches a depth of 574 feet without finding a workable coal. The shaft at Centralia was sunk to the depth of 576 feet, at which depth a seam of coal 7 feet in thickness was fonnd. This coal is 373 feet below the Carlinville limestone in thot shaft, and if the strata
retain the same thickness at Vandalia, their boring terminated 80 feet above the Centralia coal seam. It seems from these shafts and borings that there is a very decided increase in the thickness of the strata asso. ciated with the lower coals in the central portion of the State, and that they will be found at a greater depth here than at points nearer the borders of the coal field. The parties interested in the matter at Vandalia should prosecute their boring at least to the horizon of the coal seam at Centralia, to determine, if possible, whethor that coal extends into Fayette county.
A. H. W.

OHAPTER XIT.

MONTGOMERY COUNTY.

This county is bonnded on the north by Christian, on the east by Christian, Shelby and Fayette, on the south by Fayette, Bond and Madison, and ou the west by Macoupin. Its superficial area is $19 \frac{1}{2}$ townships or 702 square miles.

Topography.-On Ramsey creek the hills are low and the country gently undnlating; near Nokomis there are several mounds, with long, gentle depressions between, stretching off into rich plains. Westwardly, across the country, through townships 10,11 and 12 N. , the country is for the most part rather flat. Ncar the East Fork of Shoal creek the hills are generally low, becoming higher as we descend the stream; in the south part of T. 8 N., they are 40 to 50 feet high. On Shoal creck and Middle Fork the hills are 40 to 50 feet high, and rise by long, gentle ascents.

On the West Fork of Shoal creek the country is generally broken for a few miles from the strcam, and the hills are 60 to 70 fcet high. Near Lake Fork the hills are not very high. In the south half of the county between the main streams there are occasional moumds, of ten a mile or more across their base and abont 50 feet above the adjacent plain, with which they are comnected by a long descent.

Timber and Prairie.-Probably a little less than two-thirds of the area of this county is prairie. The northern part is mostly prairie; the sonthern has a large proportion of timber. Near Hurricane creek there are post oak flats, changing to low white oak hills near the creek. At the edge of the prairie the growth is mostly lanrel oak, sumach, hazel, phun, etc. Near Ransey creek the upland growth consists of white oak, black oak, post oak, laurel oak, hazel and sassafias. The East Fork hills have mostly pin oak, black oak and post oak, changing near the prairies to laurel oak, black oak and hazel. Shoal creek hills have mostly white oak, black oak, sassafras and hickory, changing to poorer flats, with post oak, black jack and black hickory, often cxtending to
the prairie. Near Millsboro the growth is principally black oak with some white oak, hickory, sassafras and hazel.

Near Walshville and Lake Fork the comotry is gently undulating, with a growth principally of plum, black walnut, honey locust, wild cherry and grape vines. Wild vines loaded with grapes were observed nearly everywhere in the woods, proving the soil to be uaturally well adapted to the grape.

Post oak flats occur near West Fork as far up as T. 10 N.
Sugar trees are occasionally found along the Middle and West Forks, and some extensive groves are found on the bottoms of main Shoal creek.

The following comprises a list of such trees and shrubs as were observed occurring in this county: erab apple, ash, prickly ash, red birch, bladder nut, buckeje, box elder, button bush, bitter sweet, blackberry, coralberry, choke cherry, common cherry, coffee tree, cornus, (2 species), cottonwood, Clematis Tirginiana, elder, grape, (4 or 5 species,) gooseberry, black liaw, hackberry, honey locust, hop tree, hazel, shellbark and thick shellbark hickory, pig nut lickory, black hickory and common hickory, iron wood, linden, white maple, sugar tree, red mulberry, pa-paw, persimmon, plum, black, red, white, post, laurel, pin, chestnut, blackjack, bur and swamp white oak, red and American elm, red bud, raspberry, rose, red root, poison oak, sassafras, service berry, sarsaparilla, sumach, trumpet creeper, Virginia creeper, willow, (several species,) and black and white walnut.

Geological Formations.

Washings in the road at Walshville show 8 feet of brownish buff clay with but few pebbles. Along the various streams are occasional exposures of sand and pebbles with some beds of brownish-yellow clay. Five miles northeast of Litchfield, 45 feet of drift is exposed, the lower part a compact bed of dark clay, with some sand and pebbles. In sec. 8, T. 8 N., R. 3 W., the following description was given me of the various clays passed through in well digging :
1.-Soil. 2.-Yellow clay or hardpan ; at 24 feet reached a 3 foot bed of sand, then soft moist clay.

Secenty-five yards from this another well was dug, showing in the upper part brownish-yellow clay at 20 feet, and at 38 feet was a 2 foot bed of sand, and at 42 feet, specimens of wood.

On the head waters of Ramsey there are many springs slightly challogeate, and some containing sulphate of iron, issuing from beds of drift sand and pebbles.

There is certainls evidence that at some former period of time the whole surface of the county was 50 to 75 feet higher than at present; that since the original drift deposition (it may have been just at the close of the Drift period) large masses of these deposits were washed off, learing occasional mound like elevatious, several of which may be seen near Nokomis, a few between the East and West forks, and the hills between Hillsboro and Butler.

Coal Measures.

The upper Coal Measures appear in part in this county, aud underlay all the superficial deposits, and include coal beds No. 11 and No. 13, with a trace of No. 12 , and embrace about 150 feet of rocks, reaching from the base of No. 33 to No. 20 of upper Coal Measure section.

Nos. 20 and 21.-In sec. 12, T. 10 N., R. 1 W., there crops out along the creek 8 feet of saudy shale and blue limestone; close by is an out. crop of brown shaly soft limestone, containing Hcmipronites crassus and Crinoid stems; a Machrochcilus and Spirifer cameratus were also found. The exact thickness between 21 and 22 is unknown; the outcrops are ten miles apart with no evidence of a continnous easterly dip, but it is probable that 25 or even 50 feet may intervene.

Kocks on the East Fork of whoal creek.-In sec. 24, T. 8 N., R. 3 W., we hare:

1. Mostly dark lead-blue shales, upper part sandy with brown nodules of iron stone, the lower two-thirds ealeareous with many fossils, Productus Nebrascensis, Spirifer cameratus, Poteriucrtures hemisphericus, Bellcrophon nontfurtiamus, B. Carbonarius, Orthoceras cribrosum, Leda bella-striata, a fossil near Soleniscus typicus, Bryozou and a few branching corals.................. 10
2. Ash blue limestone, jointed and shelly on top ; contains Productus Prattenianus, Chonetes, Aviculopecten, Pecten? A vieulatus aud Prod. Boonensis..
The last named limestone I regard as No. 22 of my ulper Coal Measure section. Nurth-east of Irving on East Fork, and down stream for a mile, there are occasional outcrops of an ash blue hard shelly lime. stone, abounding in a large variety of Productus Prattenianus; it also contains P. costutus, P : ${ }_{0}^{a}$ punctutus, P. Nebrascensis, Spirifer cemeratus, Avieulopeetcn carboniferus, Chonetes Verneuiliana, Ch. Flemingii, and a branching coral.

In sec 7, T. 8 N., R. 2 TV., obtained the following section :

1. Masses of tumbled limestone with Hemipronites erassus, Productus Nebruscensis, Sdmondia Ft. and Bryozoa
2. Dove and brown clay slıaloв.. 4

3. Greenish blıo fire-clay.. 2
4. Olive shales changing to darker colored below, contains a few brown ironstone coneretions, tho middlo part abonnding in a largo Pleurotomario similar to one found by Mr Moek, at Jinlo, in Nobraska; tho fossils aro vory fragilo; a species of Machrocheilus is also found; thickness uxposed about.

A quarter of a mile up stream the limestone appears in a regular layer, stretching across the bed of a small branch.

Three miles up stream many fossils were collected, weathered out of the shale beds in a fine state of prescrvation, including beautiful specimens of Pleurotomaria spharalata, P. tabulata, Orthoceras, Macrocheilus paludinaformis and one like the M. primigenius, but with botly whorl and spire more clongated; Goniatites globulosus, Bellerophon carbonarius, Leda bella striatn, Nucula Ventricosa, Astartella vera, Counlaria, Leda Oweni, Enomphalus sul-rugosus, and Polyphemopsis per-acuta. These shales contain round and oblong clay and ironstone coneretions.

In sec. 28, T. 10 N., R. 3 W., a few fossils were obtained indicating the presenco of the same beds as those last named.

The upper blue limestone, named above, undulates along East Fork for abont eight miles, and I regard it as equivalent to No. 22 of my general section. Near sec. 36, T. 8 N., R. 3 W., on the east fork of Shoal creek, there crops out eight feet of sandy shale and sandstone. On West Fork, at the bridge on the Hillsboro and Walshville road, there is a bluff of 35 feet of bloish gray sandy shales, with a thin bed showiug markings resembling those of Fucoides cauda galli, and containing one Bellerophon. East of Litchfield, at the creek blufts, is seen 30 feet of sandy shale, and below that 10 fect of thick bedded sandstone resting on limestone. Four miles up stream this sandstone is quite ferrngimous at the base and contains many remains of plants, calamites, sigillarice, etc. One mile further up stream there was obscrved 45 feet of dark-ash micaceous sandy shale. On Five-mile crcek, in sec. 26, T. 10 N., R. 5 W., there is 12 feet of sandy shales with a thin bed of partially carbonized wood contaiuing a fossil fern. A quarter of a mile up the creek there is an exposure of 16 feet of olive-drab clay shales with ironstone norlules. Thesc shales are evidently continnations of the same beds and make the total thickness of No. 26 not less than 85 feet.

No. 27 to 33 inclusive. -The best exposnres of these beds are on Lake Fork and at Litchfield. The section on Lake Fork at the Bond county line, near McCracken's coal, is as follows:

Ft. In.

1. Drift slope .. 20
2. No. 27-Lead blue limestone, with crinoid stems and Athyris subtilita........................ 2

3. No. 20-Blıe clay shalos .. 10
4. No. 30 -Shales and shaly limostone abonnding in fossils, but many are much crished, incluling Spivifer cameratus, Productus purctotur, P. Nebrascensis, Spiriferina Kentuckensis, Memipronites crussus, I'roductus Irattenianus, Athyris subtilita, Terebratula bovidens, Myalina sub-qualrata, a Macrocheilus, a Plourotomaria, and one fish tooth
5. No. 31-Ash gray limestone, in the lower part there is from ono to one and a half feot of lark ash colored linestone often traversod by fine lines of calc-spar ; fossils not abun. dant, contains Productus longispinus.
6. Bituminous shalo .. 4
7. No. 33-Coal No.11... 17

Part of No. 27 appears two and one-Lalf miles north-west in the bed of the creek, containing Spirifer cameratus, Fistulipora, Proluctus costatus, P. Icbrascensis, P. Prattenimus, and Myalina subruadrata. The 1ussils here have a well preserved and nacreous appearance. On Rocky brauch, east of Litclifield, No. 31 appears thus:

[^13]One and a half miles south-west of Bethel part of No. 31 crops out along the creek, the upper portion an even bedded bluish-gray sub-crys. taline limestone; but below it is more irregularly bedded. Prorluctus longispinus abounds, associated with Ariculopecten carboniferus. Four miles N. E. of Litchtield the upper part of No. 31 is a thick bedded brown-ish-gray limestone abounding in Rhyuchonella osagensis.

Economical Geology.

Coul.—On J. Wilson's land, sec. 7, T. 8 N., R. 2 W., coal No. 13, (No. 24 of upper Coal Measure section) has been mined; that used was from near the out-crop and does not appear very favorably; the quality and thickness might improse by thorough openiug. The same coal has also been taken out on the land of Jno. L. Newsman, in sec. 28, T. 10 N., R. 3 W . I was informed that it was 18 inches thick, but I could not thoronghly exanine it on acconat of the overlaying debris. On the land of Mr. McCracken near the south county line (probably in Bond county), coal 13 is 17 inches thick. Occurring as it does below the bed of the creck, it can only be reached at low water, and even then the labor of one man is required most of the time to keep the pit sufficiently dry for two others to work; but with this trouble it will repay very well to work for neighborhood purposes. The same bed has also been worked at Ross' old mill, on Shoal creek, at the south county line, and may also be reached just below the surface of the water on Shoal ereck above Long bridge. At the limestone quaries on the creek near Butler. it may be reached at about 10 to 14 feet beneath the bed of the creek; also about 4 feet beneath the darker colored limestone at the base of Michael Cleary's quarry east of Litchfield.

Section of the Litchfield shaft, conducted by Andrew Howard:
Light blue limestone ${ }^{\text {In. }}$
Gray limestone 4
Plack shale (probably coal) 1
Limestone with fossils 6
Black slato and coal. 3
Fire clay 3
Clay shale 1
Limestone. 4
Soft slaty sandstone 30
Blue shale 12
Black and white sandstono 4
Black slate and bituminous limestono 2
Coal (No. 10.)06
Fire-clay 6
Hard and soft limestone--dark-ash color 12
Soft sandstone 6
Slate. 5
Hard black and whito sandstone 7
Black slate and coal 1
Blue and red sandstone. $\stackrel{2}{2}$
Shaly sandstone 38
Blue slate. 10
Black slate and coal 1
Fire-c'ay 6
Soft limestone (Carlinville bed ?) 5
Sandstone 18
Coal impure-No. 9 0
Sandstone 23
Bituminous shale 1
Coal-NO. 8 4
Blue shale
6
Limestone
Shale. 21
Shale with numerous iron bands8
Black slate b
Shale. 1
Limestone-hard 3
Shale and iron bands. 6
Limestone-solid. 6
Shale.
6
Nodular limestone.
Shale with nodules of black limestone. 4
Black shale with fossil shells 12
Fire-clay 3
Gray shale 19
Coal 3
Fire-clay6
Nodular limestone. 4
Shale and sandstone, ahout. 40
Coal.1 G
Saudstone and some shale. 45
Coal, with shaly parting, No ? 5
Building Rock.-On East Fork, about sec. 26, T. 8 N., R. 3 W., there is a tolerably good bed of hard bluish limestone. On Rocky Branch, east of Litchfield, there are extensive quarries of pretty good limestone, the beds are rather irregular, but the rock is very extensively used for ordinary stone work and makes very good lime. North of the railroad, on the West Fork, there are several outcrops of a brown and gray lime-
stone in three feet beds. The same rock is also fond four miles further up stream. At the latter place part of it presents a beautiful bluishgray variegated appearance. I regard this limestone as possessing much durability, and, being in a thick even bed, may become in time very nseful for large columns. I believe it to be equivalent to that used in the construction of the old State House at Springfield.

West of Butler there are good quarries of limestone for lime, and it is also much used in the neighborhood for ordinary building purposes.

Soil and Agriculture.-The richest land lies in the northern part of the county mostly north of the line between Tps. 9 and 10 N . East of Nokomis there are a few high mounds quite rich on top and along their sides, and especially so in the valleys between. The northwest towuships have a rich soil and are capable of producing heavy crops of corn and wheat. Southwardly, ou the prairie, good wheat crops and occasionally good corn crops are produced. In many places fresh plowing will disclose rich spots alternating with poorer land. This is due to the existence of what are commonly called "scalds." These "scalds" are spots of very thin, poor soil, with naturally a very scanty vegetation, mostly Ambrosia bidentuta. Good manuring and deep plowing might make these barren spots more productive. With careful tillage, deep plowing and thoronghly rolling or harrowing, so as to render the soil quite loose, good crops of wheat can be raised on most of the whitish soils. On ordinary land, by good preparation and sowing with a drill the farmer may feel sure of twenty-five to thirty bnshels of wheat per acre.

CHAPTER XIII.

OHRISTIAN COUNTY.

This eounty is located near the center of the State, is regular in outline execpting the northern boundary, is twenty one miles in width from east to west, and thirty-two in greatest length from north to south, and is bonnded on the north by Macon and Sangamon, on the east by Maeon and Shelby, on the south by Shelby and Montgomery, and on the west by Montgomery and Sangamon connties. Its superficial area is about nineteen and a half townships or seven hundred and two square miles.

General Features, Soil, Timber, etc.

On the north it is drained by the Sangamon river, and the eentral, southern and western parts of the comnty are watered by the South Fork of Sangamon and its tributaries, Bear, Loenst Fork, Prairie Fork and Flat creeks. The smaller streams sometimes are nearly dry, but the two main forks of Sangamon generally flow the year round. The South Fork is rather a sluggish stream, with maddy bauks, but oeeasionally, as at Taylorville, the water is elear and fresh, indieative of lateut springs.

The topographieal features of this connty do not vary mueh in different localities. The prairies in the southeast are rolling, often rising into mounds. In every other part of the eonnty they are flat or very gently undulating. Near the streams the slopes are often very gentle. In the southern half of the county we very rarely find a bluff twentyfive feet high, and in passing down the South Fork no broken nor hilly land is seen until we get below Taylorville. Four miles worth-west of Taylorville the country is rather hilly, the hills about sixty feet high, but not often too steep to admit of cultivation. A few miles further down, there is a gradual descent from the prairie to the river, the bluffs of whieh are about twenty feet high. In the northeast the slopes are often so gentle as to render it impossible to traee a line between the upland and lowland.

On the North Fork of the Sangamon there are occasional drift bluffs thirty to fifty feet high, eapped with a leary growth of white oak, but the white oak lands do not often extend more than a quarter of a mile from the river, giving place to a more mindating surface, with a growth of elm, hickory, oak, sassafras, eherry, hazel, etc.

This county consists mostly of prairic, the timbered land being confined to a narrow belt along the streams. On the South Fork of the Sangamon the timber belt is generally about three miles wide, and along the other streams from one to two miles. The prairies are generally flat, with a luxuriaut growth of resin-weed, two species, viz: Silphium laciniatum and S.*terebinthinaceum, golden rod, solidago, several species, Liatris or blazing star, two species, and the beautiful and delicately colored Physostegia Tirginima and Gerardia tennifolia. Decasionally, on the basin-like depressions or flat marsly spots on the prairies, I fonnd Iris versicolor and Vernonia fusciculata.

There is not much difference in the quality of the prairie soil, it being all a ricli black loam of from one to two and a half feet in deptls, and in the northern part of the county slightly sandy. The soil along the edge of the prairie near Taylorrille is quite sandy ; eastwardly for six miles there are occasional spots of poor sandy soil, with postoak and black jack, but this often gires place to better land, witl white oak, black oak, hazel and sassafras, or cherry, laurel oak, hazel, pin oak, hiekory, plum and crab apple. Along Locust Fork its whole length, and on South Fork above the mouth of Locust Fork, both on the bottoms and hill sides the soil is deep and rich, with prineipally a growth of Amei an eln and cormus. On Bear ereek the soil and growth is similar. On and near Musquito creek the soil is rich and blaek, with a growth of elm, linden, eoffee tree, cherry, red oak, hickory, red bud, spice bush, laackberry, blaek walnut, honey loeust, ash, mulberry, ete. West of Misquito ereek, on the slopes leading to the North Fork, the timbered land is ruite sandy and the growth rariable; on some soil blaek oak predominates; where there is muel clay mingled with sand there is a growth of red elm, sassafras, etc., when there is still more clay, laurel oak, Ameriean elm, white oak, black hickory, shell bark hiekory, red bud, black oak and sassafras.

On the soutlo side of South Fork, below the mouth of Bear ereek, the prairie land often approaches the stream, and the adjoining woodland growth reaching to the river bank consists of laurel oak, elm, lickory, linden and sassafras.

Nortl of the South Fork there are white oak hills oceasionally spread. ing out into flats. only found it on the post oak and black.jack barrons in tho southern portions of the stato.

Along the Sangamon river and adjacent hills there is a good supply of very good timber, consisting of white oak, bur oak, black wahnt, red oak, elm and linden.

Out on the prairies the farmers have planted many hedges of Osage orange, and they seem to thrive very well. Near Rosemond I noticed a thrifty berberry hedge.

Crops.-This is an excellent corn producing county, generally averaging forty to fifty bushels per acre, and often sixty to seventy-five can be raised. Fall wheat gives a fine return to the farmer, but requires the ground to be well broken and grain put in with a drill. It will average fifteen bushels and often reach twenty-eight to thirty-two per acre. As yet there have not been many orchards planterl, but the apple crop is generally sure aud the peach trees often bear two years in succession. Where the prairies are grazed down ilue grass naturally springs up and soon affords excellent grazing.

The Geological Formations of this county include the Quaternary and the Coal Measures.

Quaternary.

Under this head were recomnized the alluvium, loess and drift. The allurium includes the soil and recent deposits from the streams, and the black clays of the wide rich Sangamon bottoms are good examples of alluvium. On Musquito creek the exposures along the banks show as much as six feet of dark rich loam. On the south fork of the Sangamon the black loam is often ten feet or more in depth.

The loess is but partially developed, and is searcely recognized as separate from the drift.

East of Taylorville the washings in ravines exhibit about ten feet of buff and brown elays and sand which may be referred to the loess; and in digging wells, about ten to fifteen feet of similar clay is passed through, reaching beds of sand and gravel, in whieh good streams of water are generally found. Sand beds are often reached within eiglit feet of the surface. The well at the hotel in Taylorville is thirty-eight feet deep, passing through eight feet of dark and light clay; then sand, gravel and clay to the bottom. Good streams of pure and pleasant tasting water are generally reached at a depth of from twelve to sixteen feet on the prairies, sometimes as much as twenty feet, and very rarely they have to dig deeper; but in the timber wells have to be dug deeper, often twenty to thirty-five feet.

Bluffs of well marked drift deposits are often seen along the streams, and consist of brown sand with rounded pelbbles and bowlders, and brownish-yellow and blue elay.

On Prairie Fork of Bear creek, teu miles south of Taylorville, the washings on the hillsides exhibit at the top soft brown clay, aud below clay with many small rounded pebbles. On the North Fork of the Sangamon, one mile west of the east county line, the river bluff is fifty feet high, the upper portion of blue and dark-brown clay with sand and pebbles; below there is a loose mass of sand and pebbles, sometines cemented into a rough sandy conglomerate, at times sufficiently firm and regular to make rough walls. Below this there is a dark colored bed of finely comminuted sand and clay. Two miles further down stream there is a low bluff of dark drift clay with pebbles and small bowhers at the bottom and brown clay at the top At this place I observed a quantity of bituminous shale, a little coal and some fiagments of limestone, all associated with the drift.

The drift bowlders in this county are generally small, and their character aud composition various. Among them may be found greeustone, quarizite, granite, sienite, epidote rock, corals from the Devonian and limestone from the Silurian, but no peculiar drift fossils.

At Pana, the I. C. R. R., passing through a mound, exhibits the following section :

[^14]This section is similar to what may be found in all the monnds of this part of the State.

Coul Measures.

This fomation as seen in this comnty embraces a thickness of about 230 feet, in which are risible two coal seams, onls one of which is of workable thickness. These measures underlay the whole of the county, althongh there are no ontcrops in the south-west, nor do we find any in the north-east duarter of the comity, they being restricterl to a small district sonth of P'ana, to Locust Fork, to South Fork for ten miles up the strem from the west comnty line ; on North Fork for three miles from the west line of the comity, and one other onterop between the forks. The deep drift deposits cover the rocks in other places. 'These rocks belong to the mper Coal Measures, and their position in my mper Coal Measure section is from No. 12 to No. 32 inchnsive.

The highest rocks (geologically spaking) we the beds sonth of Pana at or near White's coal bank, of which the following is a section :
3. Blma and bituminots shalc, pat quite calcareous, pasing into a dark colored lime-
Ft. In.
16 to 22
5
Fire clay.. 5
Rough looking lard gray saudstone, sometimes in thiu even beds, No. 20 of the sec. tion. 4

7. Sandy shales, with iron stone concretions. 15

There is here a regular southerly (lip at the rate of thirty feet to the mile, extemding from Pana for four miles south. It is probable that near or north of Pana the rocks are horizontal and soon dip north-westwarlls, which thes evidently do ten miles north-west of Pana, although the dip is slight.

The next rocks in descending order crop out ou Locust Fork on sec. 2, T. 11 N., R. 1 W., and just north. They belong near No. 21 of the section, and appear thus:

1. Dark blue clay shales, with some remular layers of lenticular concretions of iron stone and occasional strata of brown fermginous shales, coutaining romains of fossils, meluding Prod. longispinus, Bellerophon, Crinuid stems, etc., part exposed, remainder in slaft-iotal.
2. Ash gray limestono, weathers drab, has butf shaly partings, abounds in Irod. costutus, P'. longispinus, Athyris subtilita; also contains I'rod. Tebrascenis; Sp, cancratus, I'rod. Iratteniomus, a fish tooth aud one specimen eacb of Syntritasma hemiplicata aud Allorisma subcmeata were obtained from it.
I regard the rocks of the above section eqnivalent to the Ramsey creek Fayette county beds. The limestone (No. 2) contains the fossils of the Syntrilasmu limestone of Ramsey creek, although but one specimen of that fossil was fomd. The lithological character, thickness and fossils are the same as beds found on Beck's creek, Fayette county, and the overlaying shales (No.1) are similar to corresponding beds at the railroad bridge on Ramsey creek. Down the creek three miles there appears in the creek four feet of lead-blue argillaceons limestone, equisalent to No. 22 of the section. The upper beds are shaly, the lower part a firm, even, thick bed of subcrystalline fine grained deep-blue limestone, having a conchoidal fracture. The mper shaly part is traversed by fucoidal makings aud contains many fossils, mostly Prod. I'rattenianus, P. Nebruscensis and Sp. eameratus; but fragments of a Nautilus and Bryozoa were also fonnd here.

A mile further down stream rocks near No. 25 crop out in the bank of the creek, of which the following is a section:

Fect.
. Soft, Yellow, ochrey, caleareous sbates ... 5

Deep blue fucoidal sandstone aud sand y shale.. $1 \frac{1}{2}$

Fossils found in Nos. 1 and 2 were Pleurotomaria sphecrulata, Spivifer eameratus, Sp. plano-convexus, Produetus longispinus, 1'. Prattcuismus, Orthis carbonaria, Retzia punctulifera, Lophophyllum proliferum, Macrocheilus, (amall spo), Bellerophon, crinoid stems, and one fine specimen of I'lourotomair tabulatu.

The nextin descending order is 12 feet of sandstone (No. 26), seen on South Fork, five miles below Taglorville. The upper part is slaly, the lower beds thick, hard and gras, and a softer brown with dark specks ; contains remains of Calamitcs, Sigilloria, and other coal phats.

Nos. 27, 28 and 29.-Iu sec. 29, T. 14 N., R. 3 W., a quarter of a mile above Greeuwood's mill, I observed at the top-

Ft. In.
Fied shales.. 1
Dark olire calcareous sbales, containing Athyris subtilita. a small Macrocheilus, Nucula ventricosa, and crinoid stems

21
Coal, No. 12... 10
Slope to limestone No. 30 of general section
Three miles above Ralston's bridge, on the South Fork of the Sangamon, observed Nos. 30 and 31, as follows:
Ft. In.

1. Ash-gray, compact limestone, sbowing facets of calc-spar, very few fossils. 82. Shales, with nodules of buti limestono abounling in tossils, Productus costatus, Proluctuslongispinus, Spirifer camerulus, Spiriferina Kentuckensis, lthyris subtilita, Chonetesvarioluta? Crinoid stems, Fistulipora and Synocladia biscrialis.3
At Ralston's quarry, in sec. 3, T. 13 N., R. 3 W., we have-
Feet.
2. Slope from top of hill 20
3. Gray limestone, fossils are Productus costatus, P. punctatus, Spirifer cameratus, Spiriferin Kentreckensis, Hemipronites crassus. 1
4. Like the last, bat more shelly, fossils about the same. 1
5. Green shales 1
6. Brown slales, with nodules of limestono; abonnds in Athyris subtilite, Orinoid stems and plates, Lophophyllum proliforum, sp. cameratus 1
7. Gray or drab limestone, bnt fev fossils; thoso seon wore Athyris subtilita, Productus longi- spinus, P. Prattenicnus and Lophopyllum proliferitm 9
Part of the same at Greenwood's mills, as follows :
8. Clay and saudy alluvium Ft
9. Clay, with norlules of brown limestone, containing Chotetes, Fistulipora, dthyris subtilita, Productus Nehrascensis, P. costatus, I ' Prattenionus, P. puenctatus. 2
10. Gray or brown and buff limestone; contains Productus longispinus, P. Prettennianus, I^{\prime}. punc- tatus, P. costatus, P. Ncbrascensis, Sp. cameratus, Hemipronites crassus, Athyris subtilite and Lophophyllum proliferum. 12
11. Bitnminous shale (No. 32) in sight. ,
At North Fork mills, on the North Sangamon river, in see. 13, T. 15N., R. 3 W., we have-
Ft.
12. Slope, clay and sand-drift 50
13. Limestone, upper part gray and nodnlar, lower part more firmly bedded, soon weathers lorown; fossils: Iroductus longispinus. I '. costatus, I, I'rattonianus, P. Ncbruscensis,Athyris subtilita, Spirifer cameratis, JPmipronites crassus.8
14. Clay slales, contains a C'rinond allied to loteriocrinus hemisphericus. 24
15. Limestone weathering brown 4

Three miles down stream, near the west eounty line, the lower part of the last section appears 7 feet thick, with brown shaly partings between the beds, which abomd in Athyris subtilita; the other fossils are P. costatus, P. Nebrescensis, P. Prattenianus and Lophophyllum proliferum.

The limestones abore described (Nos. 30 and 31) correspond to similar beds at Litchfield aud on *Lake Fork in Montgomery county.

Economical Geology.

Coal.-South of Pana coal has been taken out at several places along the head waters of Coal creek; but at the time of my visit the only place worked was White's bank, on sec. 34, T. 11 N., R. 1 E. The seam here is about 22 inches thick, of good quality, and obtained by drifting into the hill side at an eleration of about 30 feet above the level of the creek. The position of this coal in the geological series is about 420 feet above coal No. 7 , and corresponds to No. 14, counting from lowest coal upwards, and is numbered 17 in my general section of this and adjoining counties. A ten-inch seam crops out a quarter of a mile up) stream from Greenwood's mill, but the coal is of poor quality. Beneath the limestone at Greenwood's mill, and a little below low water, a 17 inch seam ought to be found; the same bed also probably exists beneath the limestone at North Fork mills, probably six feet below low water. This coal is probably about 365 feet above coal No. 7.

Building material.-South of Pana Mr. Burke has a quarry of hard gray sandstone, which appears to be very durable. At Mr. Willil. er's, six ailes north-west of Pana, on Locust Fork, there is four fert of ash.gray limestone, weathering bluish-drab. The beds are rather thin, but the rock is of good quality. On Jas. P. Durban's land, two miles north-west of Walcher's, there is a very good quarry of deep blue limestone; the lower bed, if properly quarried, would make a pretty and durable buildjing stone.

Ralston's and Greenwood's quarries, on the South Fork of Sangamon, each contain several good beds of buildiug stone, and make excellent lime. There are similar quarries at the North Fork mills, and three miles west.

The lower two feet at Stokes' quarry, in sec. 16, T. 14 N., R. 3 W., would probably make a pretty marble; it is a fine-grained, even-textured, dove-colored limestone, with many lines and specs of calc-spar.

[^15]
CHAPTER XIV.

SHELBY COUNTY.

Shelby county is bounded on the north by Christian, Macon and Moultrie, on the easi by Moultrie, Coles and Cumberland, on the south by Effingham and Fayette, and on the west by Montgomery and Christian. It embraces au area of about 755 square miles, about two-thirds of which is prairie land. Its surface is agreeably diversified by mounds, hills, valleys and plains.

Streams.-The principal streams are the Little Wabash river in the soutlreast, and the Kaskaskia and its tribntaries in the central and western portions of the countr.

Topography.-The hills skirting the "Okaw" or Kaskaskia river are generally 60 to 70 feet high, but 4 miles north east of Shelbyville they attain a hight of 130 feet. For the distance of a half mile to a mile from the river the country is somewhat broken. The growth on these hills cousists for the most part of white oak with some black oak and hiekory. The bottoms vary in width from a quarter of a mile in the northern to threequarters in the southern part, and are generally from 14 to 16 feet above the ordinary stage of water in the rivers, with sometimes a second bottom a few feot higher. During wet seasons the river often extends over the first bottom several feet in depth. Near the margin of the stream are found birch and willows, on the lower bottoms elm, maple and sycamore, and on the ligher bottoms sometimes sugar tree and bur oak. Other trees oceurring here are ash, pin oak, coffie tree and honey locist. Where the bottoms are low and the soil rery sandy mixed with river drift, Ternonia fasciculata is the most abondant plant.

The south-east portion of the county is flat, between the streams. The timbered part of townships 9 and 10 consists mostly of flat post oak ridger, with thin light ash soil changing locally to better land with an abundant growth of hickory; and at the edge of the pranie pin oak and lanrel oak, with hazel molergrowth. Along the hillsides white oak predominates. The hills near Green ereek attain a hight of about 40 feet; on Little Wabash generally 25 to 30 feet. Passing
northwardly along the west fork of Little Wabash, the ehange from low to high ground is very gradual, the eountry at the same time inereasing in fertility. The growth in the south part of township 11, R. 6 E ., eonsists of elm, grape vines, wahoo, laurel oak, blaek haw, arrow wood, hazel, and honey locust. Farther north the land eontinnes rich, with a growth priucipally of bur oak, shell bark hickory, black walnut, ehestnut oak, pignut hiekory, sassafras, red bud, ash and mulberry, and a earpet of pennyroyal and goosegrass. Near Windsor the surface is either flat or gently undulating, with a deep rich blaek soil. From the high ground at Windsor there is an exeeedingly easy deseent towards Sind creek. At the edge of the timber north-west I notieed four speeies of Cratugus, also laturel oak, elm, pin oak and hiekory, and the surfaee of the ground was eorered with pennyroyal. On Riehland and Brush creeks the hills are not generally very high—about 50 feet near the mouth of Richland, becomiug lower further up stream; its bottoms are oneeighth to one quarter of a mile wide and not too low to be cultivated, and have a growth of white walnut, elm, black walnut, sycimore, eoffee tree, bur oak, sassafras, red bud, coral berry, and raspberrs. From the bluffs the ascent is gentle to white oak and post oak flats and small prairies. In the southern part of the eounty on the west side of the Kaskaskia river, broken and flat ridges extend to the flat prainies; towards the eentre of the county these gradually rise to the momuds.

Between Mitchel's and Beck's creeks there are a series of monnds extending from the southern part of the eounty as far north as Mud ereek. Northwardly near Prairie Bird there are several low mounds. The soil on the highest is of a reddish color, sometimes contaning a good deal of gravel and sand. The high timbered mounds near Williamsburg lave on them a good growth of white oak, blaek oak, shell bark and common hickory, red bud, sassafras and hazel. The mound slopes are very rieh, and sustain a growth of elm, cherry, walnut, hickory, mulberry, hackberiy, red bud and hazel.

The bottoms of Beck's creek are one-quàrter of a mile wide, low and Hat, with mostly pin oak, laurel oak, elm, ash, hackberry, buckeye, maple and sugar trees; the hills are low, sloping at 15° to 20°, and sustain a growth of white oak, blaek oak, shell bark hickory, plum, hazel, etc. Near the edge of the neighboring prairie the surface is flat and sometimes swampy, with pin oak and button bush (Cephalanthus occillentalis.)

Robinson's and Mud creeks are sluggish streams with muddy banks and wide bottoms and generally low hills, the highest not above 50 feet in hight. On the liills the timber for the most part consists of white oak, black oak and oceasionally post oak and black jaek ; sometimes there are low ridges where black oak and blaek hickory prevails,
with shell bark hickory, white oak, sassafras and hazel, and locally thm land. Skirting the prairie are found elm, hackberry, boney locist, laurel oak, black haw, arrow wood, cornus and hazel.

From Prairie Bird northrardly there is gently undulating rich land, and occasionally there are small thickets with elm, plum, honey locust and hazel.

Near Flat branch there is some gently sloping and very fertile land with a growth mostly of red and American elm, black waluut, shell bark and pigntut hickory; mulberry, bur oak, red bud, cornus, hazel, buckeye, red oak, prickly ash and grape viues. There are occasional spots with a luxuriant growth of Impatiens fulva and I. pullida, indicating a rith moist soil.

The prairie in the northern part of the county is either flat or very gently undulating, with some wet or swampy depressions, and possesses a rich soil.

The ricer bottoms and neighboring hills aftord an abundant supply of good timber.

> Geological Formations.

The formations in this comnty include the Quaternary and upper Coal Measures.

Quaternary.-A well on Kaskaskia bottoms, 2 miles below the month of Jordan's creek, presents : 1st, soil and dark clay-5 feet; 2d, sandy material with some pebbles- 11 feet.

The hills at Shelbyrille exhibit about 50 feet of sand and clay, with many rounded pebbles of various sizes, including mica slate, sienite of various colors, granite several kinds, inclunding graphic granite, quartzite, greenstone, chert, etc. At an old well 3 miles above Shelbyville, a drift bluff is well exposed. At this place the sand and pebbles have partially united, forming disconnected lajers of rather firmls cemented conglomerate. At Lilly's mill there is a brown couglomerate in the drift similar to that above named.

On the Wabash river the drift is only partially developed. Below the forks I observed 12 feet of chocolate and buff colored clays, the lower part sandy, with a few small pebbles. .Near Williamsburg the washings expose a reddish-brown clay, with rotinded pebbles on the north side of the ridge. A well was dug by Mr. Draper on J. Gallagher's farm \boldsymbol{i} feet deep. He states that the first 38 feet was through clay to sand, then a muddy sand, with occasional leaves and sticks and one log; from 52 to 72 feet he bored to stiff clay.
Coal Measures.

In this county there are exposures of about 175 feet of upper Coal Measures, from No. 1 to No. 20, in which are included about two workable coals, Nos. 14 and 15 . The following is a condensed section of the rarious beds:

No. 1 of the above section was not recognized in this county, but occurs in Moultrie. No. 2, fire miles from Windsor, at a mill on Sand creek, extends quite across and down strean for 200 feet. Four miles north-east of Shelbyville, on and near the river, there is seen 4 to $4 \frac{1}{2}$ feet of limestone, the upper one foot sometimes shaly and fossiliferous, containing Spirifor cameratus, Sp. lineatus, Spirifcrina Kontuelensis, Productus punctutus, Athyris subtilita, Hemipronites crassus, and crinoid stems. The lower part is of a gray or dove color, and contains few fossils. In the same neighborhood we find just beneath the fire-clay (No.3) 20 feet of sandy shales. At various places on the river there are beds of buff sandstone, making the entire thickness of sandstone and shales (No. 4) amount to 30 feet. No. 5 is 4 inches of tough and very coarse dark gray limestone, mottled with dove colored spots, abounding in fossils, including Myalinu subquadruta, Pinna per-acuta, Allorisma subcuncatu, Prod. Prottenianus, Nautilus oecidentulis and Aviculopecten occidentalis. At an old mill on the Kaskaskia river, four miles above Shelbyville, it is foumd about three feet above low water; one mile up stream it is seen sticking out of the bank at about the same distance above the water; at the latter place it is easily recognized, and very good fossils can be procured; lut at the former it is not so firm, and the fossils are almost bleuded with the rock itself.

Below the last, and iucluded in Nos. 6, 7 and 8 of my section, there is about 96 feet of sand y and argillaceous shale, sandstone and argillaceous limestone, with calcareous and bituminous shale. The upper part consists principally of argillaceous shale; below, the beds are not all persistent, and are interchangeable. The argillaceons shale sometimes assumes the form of a deep blue argillaceous limestone. It crops out near Kaskaskia river, one mile above the mouth of Long brauch, 25 feet in thickness, with 15 feet of thin-bedded sandstone separating it from coal No. 15. Near the railroad one mile west of Robinson's creek it is 30 feet in thickness. Its beds are very irregular, with buff shaly partings. Its fracture is smooth, conchoidal, the thinner beds shaly, and the only fossils found were two specimens of Chonetes variolata?

The sandstone (No.6) is also changeable, both gradually and abruptly. Sometimes it is entirely absent, its place being occupied by sandy shales, as on Little Wrabash riser; at other places it is a thin-bedded sandstone. Two miles south-east of Shelbyville it changes rapidly to a shale, again to a sandstone, and again to a shale. Sometimes it rests on the coal as at Smith's, then it is separated from the coal by bituminous shales, which I have seen begiuniug at 0 , and in a short distance increasing to $i \frac{1}{2}$ feet in thickness.

At Lilly's mill a calcareous shalc orerlays the coal, which, in 200 feet distance, thickens frour 0 to 3 feet; it is divided, after a short distance, by 2 feet of clay shales, and the upper part becomes a tirm bed of limestone.

There are but few fossils in these sereral beds; in the saudstone, Sigillarice and Calamites, and probably Cordaites in the shales. In the calcareous shales the fossils are very much erushed, but I could distinguish A thyris subtilita, Sp. Ientuckensis, Prod. Pratteniunus and Bryozoa.

The following sections were obtained at the various outcrops of coal, from which the changeable character of the adjacent rocks will be seen. On Copperas creek, west of Nıoga, at J. Young's coal bank-

[^16]
2. 13itumiиоus coal... 0 to

20

4. Slope... 10 to 15
5. Chocolate and drab colored arenaceous limestono... 6

7. Samistono, hard and rough...

On Little Wabasl, one mile above the mouth of Copperas creek- In.

1. Clay and drift...
2. Clay sha'0.. 14
3. A littlo black slato.
4. bituminoнs coal.. 0 to
5. Fireclay at top for a few feet, then clay slales, with nodules of ironstone, ono nodule with
ziuc-bleme, etc.

A mile up stream the coal is four feet above the water, and a quarter of a mile further it is two feet above, and capped by 12 feet of gray slate, passing into thin beds of sandstone.
J. Gallagher's coal on Richland creek, in sec. 33, T. 10 N., R. 4 E., is capped by about 30 feet of sandy and argillaceous shales. South of this on Brush ereek we have shales above, with dark lead-blue shaly limestone, containing remains of fossils, just over the coal.

At Win. A. Rudy's, in the north half of the south-east quarter of sec. 14, T. 9 N., R. 3 E., the coal is 18 inches thick, with clay shales abore, aud blue fire clay beneath. The hills here are about 50 fect high.

At Mrs. Matthews', a quarter of a mile east, the coal is capped by 2 inches of dark lead blue calcareous shale. Half a mile down Richland creek it is 20 feet above the water, with 5 feet of yellow clay bencath, resting on 16 feet of thin-bedded, dark gray and browu sandstone.

In sec. 6, T. 9 N., R. 4 E., the section is-
Ft. In.

1. Olive clay shales .. 4

2. Butf limestone, fracture gray .. 4

The coal at this place is scen occupying the bed of a sinall dry branch, and is easily taken out. On land of S. Syfert's, near by, the coal is a little thicker. On Mrs. Fancher's land, in the S. E. qr. sec. 32, T. 10 N., R. 4 E., we have-

Ft. In.

I saw a very good grindstone that had been made from the last named sandstone.

The following is a section at Lilly's mill, in sec. 1, T. 9 N., R. 3 E.:
Ft. In.
Slope gentle.. 60
Drift clay; sand and pebbles ... 10
Ash-blue clay sliale... 4
Calcareous shale, chavging to shaly limestone.. 0 to 3

Fire-clay .. 3
Hard and soft slales, shaly and thiskly-bedded gray aud grayish-blue, very changeable within a short distance. . 20
No. 4 at one place is separated by a two-foot bed of clay shale from No. 5, and becomes a firm but thinly laminated limestone. At the mouth of Long Branch in sec. 10, T. 10 N., R. 3 E., we have:

[^17]A mile up stream the coal is twelve feet above the water in the river. One mile south of Shelbyville the coal is at the water's edge, and we have:

		Ft.
1.	Sandy shates	55
2	Coal, thin seam.	0
3.	Calcareons shale	1 to 2
4	Bituminous coal	2

Two hundred fards down stream a sandstone begins in the lower part of No. 1 and gradually thickens to four feet.

The following are the results of observations on Robiuson's creek. At a coal bank on the S. hf. of the S. W. qr. of sec. 21, T. 11 N., R. 3 E ., the section is :
Ft. In.
1 Gray sandstone. 25
2 Ferruginous bed. 5
3. Black shale. 10
4 Coal 8
One hundred yards south of the last locality :
Ft. In.

1. Limestone with thin laminæ of coal traversing the lower part
0 5
0 5
2 Ochrey ferruginous stratum.....
3 Bluo and dove-colored clay shales 04
2. Coal $2 \frac{1}{2}$
The hills at this place are about fifty feet high. Near the railroad inthe south part of the S. W. qr. of sec. 17, T. 11 N., R. 3 E., at WilliamIloward's :
Ft. In.
3. Sandstone
4. Dark gray calcareous shale thinning out ; at the old opening it appears forty feet from tho eutrance 2
5. Coal. 18
At Minto's, a short distance north :Ft. In.
6. Saulstone
7. Ferruginous couglouserate. 1 to 4
8. Dovecolored clay shales. 16
4 Coal. 18
9. Fire clay. 15
10. Mard limestone. 2
One hundred and fifty yards further up: Ft. In.
1 Sandstone.
4
Coal 20
4 Fireclay.One mile west the sandstone appears in a branch on the north side ofthe railroad, and further up the branch there is thirty feet of deep blueargillaceous limestonc.

At Smith's coal bank on sec. 5, T. 11 N., R. 3 E., the coal is capped by about forty feet of thick bedded soft gray and brown sandstone. Occasionally there rests upon the coal about four inches of bituminons or
blne shale. At one place the shale commenced at 0 and thickened to $1 \frac{1}{2}$ fect within 100 feet distance. Below the coal there is not over one and a half feet of fire clay, and then a hard nodular limestone.

A half mile west of Prairie Bird on sec. 30, T. 12 N., R. 3 E., on Brush creek :

Ft. In.

1. Soil and buff clay.

2 Soft buff sandstone ... 8
3. Thinly laminated light-blue sbales... 4

5. Fire clay ... 2
6. Coarse rongh nodular calcareous sandstone.

The hills near this place are abont thirty feet high and of easy slope. Down the creek a half mile the coal is serenteen inches thick and capped by ten feet of chocolate-colored sandy shales.

On the land of J. Armstrong, on sec. 35, T. 12 N., R. 2 E., there is orer the coal four or fire fect of firm gray or brown sandstone containing plants.

Below the hard sandstone on Copperas ercek, preriously mentioned, there is two feet of bituminous shales resting on two feet of dark-blue clay shales. These beds are probably near the horizon of coal No. 14.

Between coal Nos. 14 and 15 there is abont forty feet of sandstone and shale. Coal No. 14 was only found on the waters of Beck's creek.

On Mrs. Sides' land, one and a half miles south of the railroad, we have:

	Ft. In.
Sandstone, at one place very hard, at another soft	5
Ferrugivous shales passing into a conglomerate.	4 to 12
Lead-thuo calcareous sitales.	2
Coal..	13 to 15
Fire clay..	
At one place the sandstonc is scarce e south part of sec. 2, T. $10 \mathrm{~N} ., \mathrm{R}$.	

Ft. In.

Besides the above named fossils there is found on the Fayette county line: Prod. Nebrascensis, Prod. Iongispinus, Retzia punctulifera, S'piriferma Rentuckensis, and Orthis curboneria.

```
Ft. In.
    20 to 22
```

6. Fire clay, calcareons nodules in the lower part.
7. Fire clay, calcareons nodules in the lower part. .. 5
8. Hard rough calcareous sandstone containing Productus Pratfenianus.

No. 3 of the above section sometimes reposes on the coal. These rocks preserve a slight southerly dip for teu miles, and are found on Beck's creek at the south comity line about the same distance above the creek; but northwardly for four or five miles they rise more rapidly.

Economical Geology.

On a small branch of the Kaskaskia rirer, four miles north-east of Shelbyville, I was informed that there was a six-inch seam of coal. A small pit has been dug here and some coal taken out, but the place was filled up with debris at the time of my visit. The limestone No. 2 of upper Coal Measure section crops out very near, so that it is probable that this coal is the equiralent of that found on Limestone creek and at Nelson's in Effingham county.

Two coal beds are worked in this county ; the upper, sometimes spoken of as the "Shelby coal," I refer to No. 15 coal; it varies in thickness from eighteen iuches to three feet, but is generally about twentr-two inches thick. It crops out on Copperas creek and at several places above its mouth near Little Wabash river; at the water's edge, near Shelbyville, and occasionally for ten miles south; on Richland creek and its tributaries, on Robinson's creek near the railroad, above on Mnd creek and Brush creek below Prairie Bird, and on Beck's creek at the railroad. It is generally a firm, good coal, tolerably fiee from impurities. A good deal of labor and mones has been spent at varions places in mining for it. The following are the principal places that have been worked:

At J. Young's, in sec. 24, T. 10 N., R. 6 E., several pits have been dug, but at present the place is abandoned. On the west side of Little Wabash river, in the north half of township 10 north, there have been several workings for coal, but at present all are abandoned. In sec. 10, T. 10 N., R. 6 E., Cornelius Barrett reports liaving passed through three feet of coal in the lottom of a well thirty feet from the surface. Coal has been taken out from several of the neighboring ravines. W'm. Rudy's, J. Gallagher's, Hemry Allen's on Richland creek, and the railroal bank on Brush creek, have been worked at various times. The coal at these places is above the ordinary stage of water in the creek. At Mrs. Matthews', the coal was taken out of pits sumk in the bed of a branch of Richland creek. Coal erops out at many places within three miles of Lilly's mill, and is generally of easy access. A good deal has been taken ont on land of the heirs of Middlesworth, in and near sec. 6, J. 9 N., li. 4 E . At these places it is easily mined. On sec. $3 \leq$, 'J. 10 N., K. 4 E., they have drifted a short distance in the hill
side and got very good eoal; a spring of water issues from beneath. At Lilly's mill it oceurs very farorably for side drifting, but no work has yet been undertaken there. Formerly a very good quality of coal was dug a quarter of a mile below the mill. A good deal of side drifting las been done on the land of Nichols and Whitfield, on Long branch. A few years ago quantitics of coal were taken out at low water, one mile south of Shclbyville, but at present the miners have retreated to a short distance back on the bluffs and sunk shafts. Sam. Kelly's, on Jefferson Brewster's land, is fourteen feet deep to coal; the coal is twenty four to twenty eight inches thick and of good quality, with three feet of underelay. Near this there are two other shafts.
J. J. Cline has run in two drifts, one for one hundred and fifty feet, with six rooms at the side from sixteen to twenty one feet wide, one of them fifty feet long; it was opence in October, 1866. Since then he has taken out one hundred and fifty thousand bushels of coal. He has to haul it one mile to the railroad, or abont four miles to Shelbyville.

Near Robinson's crcek station and one mile from Cline's coal banks, a good deal of coal has bcen taken out, mostly by drifting into the hillside.

Litton Smith's coal lies mostly beneath the creek bed; a great many pits lave bcen dug and abont forty-three thousand bushels taken away. The creck only runs a fer months in the jear, so that water is no serious drawback to the miner. At the other openings up the creck, near Prairie Bird, but, little mining lias bcen done. At Elliott's, ou the Terre Hante railroad, they hare drifted and also sunk pits, where the coal is ouly sixteen inches thick.

I now come to speak of the Beck's creck or Pana coal, No. 14. On a small branch leading into the West fork of Beck's creek, in the south part of section $1 \overline{0}$, township 9 north, lange 1 east, on land of the heirs of Sammel Roberts, some mining has been done. I observed several old pits, now filled with water aud rubbish; the coal was said to be sixteen inches thick. On Beck's creek, in see. 31, T'. 10 N., R. 2 E., twenty-one feet of shales and thin bedded sandstone were observed resting on two feet of bituminous shale at the water's edgc. I was informed that coal had been taken out of the creek at this place. Six miles north the coal appears a few feet above the water in Coal Bank creek. None of these places are now worked.

Building Stone.-The silicious limestone on Copperas creek appears to be excellent and durable for heavy work. For the coustruction of eulverts on the Illinois Central railroad a good deal of sandstone was quarried on the west side of the East fork of Little Wabash river; the rock appears to be durable, but is hard and irregularly bedded. Two miles south-east of Shelbyville good gray sandstone has been quarried.

The linestone occurring on Sand creek and west of Kaskaskia river, four and five miles north-east of Shelby ville, affords a superior building rock; it was used in the construction of the Shelby ville railroad bridge. The deep-blne argillaceous limestone west of Robinson's creek has been used for common culverts and rip raps on the Terre Maute Railroad. It seems durable, but is very irregularly bedded, and often has too much clay in its composition. Some of the sandstoues of this county will make rery good coarse grindstones.

Sand and Material for Roads.-Good sand for plastering can be procured on Little Wabash and Kaskaskia rivers, on Sand creek and from some of the drift exposures. The sands and numerous rounded pebbles of the drift are destined to be of great utility in the construction of roads, especially at Shelbyville, where there is an almost inexhanstible supply of it. Good clay for bricks occurs everywhere. Limestone good for lime can only be procured four and five miles above Shelby ville and on Sand creek.

Soil and Agriculture.-A pretty good idea of the soil of this county may be gathered from the first part of this report. The soil of most of the northern laalf of the county is a dark rich loam, the broken land near the streams being not so rich. South of the Terre Haute railroad and in the southwestern part of the county, the soil of the flat prairie and timbered lands is thin; on mound slopes it is rich and rery productive. Near Windsor, and south and west for six miles, both prairie and timbered land is rich. The woodland near Flat branch is all very good and capable of producing all crops raised in this latitude. Most of the northern part of the county and the timbered land and mound slopes in the south are good wheat lauds.

The general arerage of fall wheat is 20 to 25 bushels.
The finest crops of corn are raised in the northern part of the county, generally averaging 45 to 50 bushels per ace, and according to Mr. L. Smith be has raised on rolling upland 80 bushels per aere. The flat prairies and post oak and white oak flats in the south prodnce indiffer. ent crops of corn.

Wrater.-For supplies of water, the people chiefly depend on wells. Their depth is variable, from 20 to 50 feet; on the flat prairies not so deep as on the hilly lands.

One aud a half miles north of the sonth county line, on the west side of Jeeck's creek, I observed a number of chalybeate spuings, some inpregnated with suphor, others gnite sweet. Tere is a fine spring of excellent water at Mr. Johmson's a half mile north of Williamsburg.

In sections 5 and 6, T. 10 N., R. 3 E., a lako possessing the euphonious mame of Miuntonomuh extends over an area of several limudred acres. Around its margin are many broad leaf water plants, and Ceplue-

Janthus occidentalis is also abundant. It is a clear fresh water lake and is nearly level with the upland flat prairie. Lake Emtah, in sec. 5, T. 9 N., R. 5 E., is another quite large body of water.

Before closing I will mention a natural curiosity in sec. 32, T. 10 N., R. 7 E ., on the west side of Little Wabash river, a quarter of a mile above a saw mill. Two elm trees grow close to each other, relatively 3 and $2 \frac{1}{2}$ feet in diameter; from the latter a large limb branches off about 4 feet above the ground, crossing to the other tree, to which it soon unites, then separating again, but solidly uniting at 40 feet from the ground, forming one truuk of three feet in diameter.

OHAPTER XV.

EFFINGHAM COUNTY.

This county is bounded on the north by Shelby and Cumberland, on the east by Cumberland and Jasper, on the south by Clay and Fayette, and on the west by Fasette. It has an area of 486 square miles, probably more than one-half of which eonsists of timbered land.

Streams.-The Little Wabasli river passing southwardly nearly equally biseets the connty. Its tributaries are : on the east, Lueas, Big Bishop with its forks, Little Bishop and Ramsey crecks, Big and Little Salt creeks and Brush ereek, Green ereek and Sugar Fork; on the west are Fulfers and Limestone, Big and Brocket's creeks, Second ereek, Fuukhouser, Blue Point and Shoal creeks.

Topography.-The higher surface land is either flat prairie or flat wood land, some post oak, some white oak, some hickory and oak, and some pin oak flats, changing mostly to white oak on the breaks and slopes. Above the flats there are a few low mounds, not so abundant nor so elerated as in the counties west; one or two in the eastern pat, Blue Mound in the north-west, and the low ridge at Mason. The monnd or ridge at Mason is probably two miles across its base and but little orer fifty feet high, descending very gently for over a mile to prairie flats which are soon merged into post oak flats.

Near the south eounty line the Wabash blufts are sometimes 80 feet high, near the railroad bridge they are 30 to 40 feet, near Ewington about the same, and 50 to so feet near the north comety line.

The bottoms of Little Wabash are an eighth to a quarter of a mile wide.

The hills near Salt creek are often quite abrupt, sometimes 75 fect ligh; its bottoms are low and narrow, and its chamel full of quicksands. Near Sugar creek, Shoal ereek, and (ireen creek, the hills are somewhat steep, bottoms very narrow and beds of the streams very sandy. Near the other streams the hills are generally low and of easy ascent and the bottoms rather wide.

Timber and Prainic.-The prairie in the western part of the county is very flat with occasional ponds, on the margin of which may be fonnd

Cephelanthus occidentalis and Iris versicolor; at the border of the prairie we found red oak and some laurel oak; on the flats west of the prairie post oak and shell bark hickory; in the woods between the prairies and Ewington hazel, laurel oak, hickory, sassafras, ash, etc.; and near the river white oak is more abundant.

On the prairie north of Ewington there are occasionally small willows and a low species of cormus.

On the bluffs of Sugar Fork we fom white oak, Spanish oak, iron wood, sugar tree; and on the bottoms buckeye, sycamore, ash, bur oak, red oak, red bud, elm, hornbeam, and linden.

On the flats near Shoal creek we found white oak, shell bark lickory, post oak, and black oak; and on the hills and flats near Funkhouser's and Big creeks white oak, shell bark hickory and black oak.

The streans west of the Little Wabash river take their rise in very gentle depressions in the prairies.

The banks of Fulfer creek, on the prairie, are muddy and fringed with cornus, plum, cherry, grape viues and willow.

Lower down strean we found on the bottoms, white walnut, sugar tree, elm, grape vines, clematis, trumpet crecper, red birch, ash and syammore.

Geological Formations.

Quaternary.-At the top of the drift there are beds of brown clay, which may probably be referred to the Loess. West of Little Wabash there is exposed in the National road 4 to 6 feet of brown clay resting on blue clay with bowlders.

Drift.-On the bank of Green creek near the north county line a deposit of altered drift is exposed thus:

1. Brown soil
2. Brown sandy clay ... 6

3 Brown samdstone...in. to 1
4. Sand aud pebbles .. 1

Other drift sections were observed, as follows :
In the railroad cut sonth of Watson :

Ft.

1 Browи clay (Loess ?)... 8

On Bishop's creek:
Ft.

1. Brown and buff clay (Loess? ... 12
2. Blue clay and bowlders ... 15

On Salt creek:

[^18]On National road, 3 miles west of Ewington :Ft.

1. Brown clay. 6
2. Brown clay and grarel 6
3. Sand and gravel, blue and brown clay and gravel in a tolcrably even bed, partly formed into a conglomerate 6
4. Drift of sand and bowlders, some of the latter very large 25In sections 17 and 30 , T. 8 N., R. 5 E., there are regular beds of ferru-ginous drift conglomerate 2 to 3 feet in thickness. In the first namedlocality a coral was found of Lower Silurian age.
Six miles north-west of Effingham a pocket of black clay was observed, resembling the black humus deposits of the drift mentioned in my report of Moultrie and Macon counties.
A citizen of Effingham engaged in well digging gave me the following general section of wells :
Ft.
5. Soil and subsoil 1. Soil and subsoin. 1
6. White, buff and blue clay (loess ?) 10
7. Red clay and gravel-hard-pan 3 to 4
8. Hard-pan, blue or gray clay and gravel, as much as 24 feet, general average 12
9. Sometimes black clay.

He generally found good streams of water in the sand and gravel beneath the hard-pan, lumps of coal and pieces of wood were found at twenty feet from the surface. One well at Effingham, forty-four feet deep, had brown and black clay at the bottom and afforded plenty of water.

The surface of this county, like that of others which I visited, gave eridence of having once been much higher than at present, and the few low mounds scattered over the county are not connected, as we found them in other counties, but are isolated, often many miles apart.

Coal Measures.

There are 285 to 300 feet of upper Coal Measure rocks in this county; the highest beds about 190 feet above the highest rocks of Shelby county. They include the lorizon of three coal beds, viz: 15,16 and 17. The following is an approximate section of the beds in this county:

[^19]Ft. In.
12. Similar to No. 11, with fossils 13
13. Bitnminous shale and pyrituferons limestono 9
14. Gray pyritiferons sandstene 30 to 40
15. Shale. with fucoids 40
16. Cherty beds 4
17. Limestone 4
18. Calcareous and bituminous shale 16
19. Nelson's coal, No. 16 16
20. Fire-clay $\} 40$
22. Sandstone 30
23. Coal No. 15, or Sholby coal 1
24. Firc-clay 3
95. Nodular limestone 2
The rocks on Salt creek include the upper part of the section Nos. 1to 11 , inclusive, and are more particularly described as follows :

1. Jnst sonth of Effingham, the road passes orer irregular beds of mostly hard gray sandstone, with some shaly beds. Ft. to 20
2. In a ravine lower down the branch, sandy shale, with coal smnt 6
3. At the quarry bclow, Jellow and brown sandstone. with many plants near the upper part, including Calamites, etc. 30
4. Dark gray pyritiferons sandy shale and sandstone, probably 12 or 15 feet in sight 8
5. Up a branch to the west, bituminous shale, with thin coal laminie, contains a calcareo-pyri- tiferons bed of septaria, changing to a broad, flat, 5 -inch bed of rock, perpendicularly jointed, forming rhomboirlal blocks; it contains a fow rery pretty tossils, I'leurotomaria spherulata, spirifer plano-comexas, Rhynchonella Osagensis, Netutilus oceidentalis, and Nautilus ferrata? 6
6. Dark-olicoshale and clay. 4
7. Dirk ash-brown slaly and nodular limestone, abounding in a Myatina, liko Mr.sub-quadrata, nartow and regularly rommed at the anterior margin ; also contains d viculopecten oceiden- tulis, Bellerophon Montfortianus, Edmondia, a small Plearotomarid, Leda (coarso'y stri- ated), Macredon (like M. carbonaria), and a small univalve 13
8. Black and olive shale 1
. Olive clay shale 4
9. Kough thinly bodded gray sandsteno and sandy shalo. 3
At a quarry half a mile further down the creek, Nos. 4 and 5 crop out with the rocks below to No. 11:Ft.
10. Hard blue and gray evcn bedted sandstone. 6
Two miles southwest, on a western branch of Salt creek :
11. Mostly dark-olivo or chocolate-colored sandy and clay shale 17
12. Dark shalo, with two 1 -inch oven bels of gray limestono, abonnding in remains of fossils, including Hemipronites crassus, Spirifer plano-coneexus, Ohonetes Flemingii, an Edmondia, a T'sịlobite, crinoid stems and platos, Stenopora lepidodendroides, otc. 1
13. Dark o ivo and slate-co'ored shalos. 4
14. Bituminous coal (No. 17) 01
15. Light dove-colored tire-clay, nodule in the middle. 5
16. Sandy shalo, with brown nodules 2
17. Down the samo branch, and on Salt croek, are occasional ontcrops of thick and this bedded gray, buff and drab sandstone and shale, No. 10 of the connty scetion; in all about. 20
18. On Sig Salt creek, half a mile above its junction with Littlo Salt, are twenty feet of clayshale; near the middle are two fossiliferous beds of carbonate of iron, with calcareo.argillaceons shalcs between, and abounding in very pretty fossils, viz: Leda bella-striata,Astartella vera, Nuculu ventricosa, spinifer plano.convexus, Chonetes Flemingii, Jyalinasub-quadrata, Macrocheilus inhabilis, I'leurotomarie Girtyvillonsis, Bellerophon JIontforti.anus, Bellerophon carbonaries, Bellerophon Sp.? and Orthoceras cribrosum.

In sec. 27, T. 6 N., R. 6 E., on a small branch tributary to Ramsey,
we get:

1. (10 of county section.) Brown, snft sandstone, towards the bottom hard and gray ; plants in the upper part; at the bottom there is a calcareous bed containing Vautilus occidentalis, Hacrocheilus (small sp.), Diplodus, etc.

8

This limestone is also found on P. H. Hume's land, in sec. 35, T. 7 N., R. 6 E., containing only Productus longispinus. On Shoal creek there is a limestone which may also be its equivalent.

5. (14 of county section.) Hard saudstone and shale .. 10

On the Wabash river, near the south county line, the last named sandy shales are thirty feet thick, containing, in the upper part, lentic ular and regular beds of ironstone, with ferns and Culamites. It is often very pyritiferous, as seen at the old mill on Fulfer creek, one mile from Little Wabash river, also in the Wabash bluffs at the railroad, where it contains some finely striated stems of plants. On Big creek we find the sandstone containing similar stems and some ferus. There is also on Big creek twenty to forty feet of drab, dove and dark-colored sandy shales containing ironstone concretions, some of the latter with spherical shaped small brown balls embedded in the side of the coneretion.

On Little Wabash river, in sec. 35, T. 7 N., R. 5 E., there is an out. crop of rocks as follows (Nos. 11 and 12 of county section) :

1. Rough dark calcareous shalc or shaty limestone and shales, abonnds in Spirifor plano-convexues, I'uculu ventricosa, I'roductus longispinus; also contains Athyris subtilita, I'roductus costatus, Bellerophon, etc

2. Dark-bluish olive argillaccous shalo ... 7

A quarter of a mile below, thirty feet of hard, gray and yellow sandstone forms the river bluff; in it are found plants, Culamites and frnit. On a small branch of Fulfer creek, in see. 2, T. 6 N., R. 5 E., there are thick beds of brown and buff sandstone (No. 10); tracing it aronnd the bluff to the creek it is high up in the hill; a little finther, on a lower borizon, there are ontcrops of bituminous shale and limestone, evidently belonging to No. 13 of county section. Oue mile up the ereek, at an old mill site, a fine section, including parts of 12,13 and 14 , was obtained, as follows:
Ft. In.

1. Varions colored shales with lonticnlar beds of carbonate of iren. In a gray slaalo at tho base are fonnd casts of Lophophyllum protiferum and spirifer plano-convexte........

25
2. Ilne shates and catcarcous iron stono; fossils vory abundant in both, including I'rad. costatux, Sp. pheno-conrexies, Orthis carbonaria, Leda arata, Athyris subtilita, Ortho. ceras, I'leurofonaria Ciras, billensie, Iriplodus.

[^20]Ft. In.
4. Compact dull-ash pyritiferous limestone with fossils. Productus (small sp.) Sp. plano- convexur, Leda arata, IIemipronites crassus, Bellerophon Montfortianus, Euomphalus sиб-ruqosus 1
5. Blue shales, fossils as abore 5
6. Asll-brown shales. 1
7. Coarse ash-blue pyritiferous limestone, contains Irod. Prattenianus. 4
8. Shates 4
9. Bituminons shales 6
10. Ash-bluo pyritiferons limestone. 1
11. Shales, thin seams of coal and some bituminous sbale. 2
12 Gray pyritiferons sandstone. 15
A specimen collected from a portion of the last is of very even thick-ness and marked with fine ripple-like strice. The rocks here have alocal dip of 5° to 10° sonth, 25° west.
One mile west we hare:
Ft.

1. Bituminous shale with black concretionary limestone in the upper part 3
2. Dark-blue Jinestone mottled with black fucoidal markines, contains somo beantiful fossils, including I'roductus Boonensis, P. I'rattenianus, P. longispinus, P. costatus, Rhymchonella osagensis, Retzia punctulifera, Hemipronites crassus, Schizodus, (Iike S. Rossicus) Edmondia, Orthoceras cribrosum, Bellerophon per-ctrinata, Vaztilus, (like N.elliptica,) Euomphalus sul. rugosus, Maerocheilus, (like M. Newberryi,) and one like M. ventricosus
3. Blue and bituminous shales. 10
The following is the section on Shoal creek:
Ft. In.
Ash-blue clay sbale. 15
Dark-gray shaly limestone 2Blnisb-drab limestone with the following fossils: Vautilus ocridentalis, Vautilus.Prod. semi-reticulatus, P. longispinus, P. scabriculus? P. costatus, Chonetes Flemingii,Athyris subtilita, sipirifer plano-convexus, Ifemipronites crassys, Rhymchonella osagensis.Terebratula bovidens, and Orthoceras cribrosum.3
Dark ash-blue clay shales. 10
Bituminons shales $4 \frac{1}{2}$
Blue limestone, lower part shelly and contains some fossils, Prod. I'rattenianus, P' semi- reticulatus, Spirifer cameratus, and Myalina sub-quadrata 2
Bituminons coal. 6
Fureclay. 3
Saudstoue 25
Red shale. 4
Hard gray saudstone. 6
12 Saudy and clay shales with some nodules. 18
On the head of east fork of Shoal creek, one mile north-east of last section :
Ft. 2
Brown calcareo arenaceous bed 1
Semi-hitumiuous shale, contains Bellerophon. 2
Dak blackish hituminous limestone 6
Dark ash fire-clay. 2
4. Hard drab sandstone
The following on Limestone creek : Ft. In.
5. Sandy slale 21
LIard drah saudstono. 21
Buff-lrab and olive clay shales 4
. Red clay shales $1 \frac{1}{1}$
Ft. ln.
6. Olive elay shales 3
7. Hari sandstone 3
8. Mostly clay shalos 5
9. Linestono 2
10. Coal No. 16 16
11. Drab sand y shales 8

The last named limestone (No. 8) is No. 17 of the general section in this county and regarded as the equivalent of No. 2 of the section in Shelby county; the shales and saudstone above it are similarly devel. oped on the south fork of the Kaskaskia, in Moultrie. The limestone oceupies the bed of Fulfer creek, two miles above the mouth of Limestone creek, extending quite across, and is beautifully jointed by perpendicular cracks meeting at oblique angles, thereby forming rhomboidal blocks. This limestone dips down stream and is soon out of sight beneath the water. It is not found below the mouth of Limestone creek, and the overlaying sandstones and shales appear in its stead. Its fossils mostly occur near the middle and are Spirifer comeratus, Productus punctatus, and P. longispinus. On Limestone creck the limestone rests directly on the coal. At Mahon's quarry it is separated by eight inches of clay, aud the coal rests on five feet of thinly laminated buff and gray sand y shales.

At G. W. Nelson's, in sec. 20, T. 6 N., R. 4 E, a section of his well shows:

1. Choculate-colored shales It.
2. Blue shales. 6
3. Clay and nodules of limestone and some peculiar looking fucoids, flat, with round cdges and a spiney hirsute appearance. 18
A half mile west at the coal bank the section contimes thus:
Ft. In
4. Looso cherty rock, with casts of fossils, Hemipronites crassus, Productus punctaties, Spiri- fer cameratus, Prod. costatus, Chonetes 2
5. Bluisld-drab limestonc; under ground it bas a white surface. Its fessils are Athyris sub- tilita, and Leptordomus. 8
6. Calcareo-htuminous shales. 2
7. Coal (No. 16) said to he 3
8. White clayI regard the limestone and coal at Nelson's equiralent to that ofLimestone creek-it agrees with the dip.
The lowest rocks occur on Beech creek, and consist of :Ft.
9. Sandstone, the lower threo or four fect stroaked with thin seams of rod oxyd of iron. 30
Coal, (No. 15 , or Sibelloy coal) 1
Ash-blue clay 3
Earthy limestono, mostly nodular \ddot{Z}
10. Coarso dral) shaly sandatone

Economical Geology.

Coal.-There are no thick beds of coal in this eounty, and exeepting "Nelson's," no workable beds.

Mr. G. W. Nelson's coal bank is on a high prairie in see. 20, T. 6 N., R. 4 E. A pit has been opened, and good coal proeured; but when I was there it was full of water, so that the thickness conld not be correetly aseertained; but I was informed that it was 3 feet. Six miles down the creek, at Mahon's, it is 10 inches; and on Limestone creek, in sec. 18, T. 6 N., R. 5 E., it is 16 inches thick. These serral onteropsthe one at the head of the ereek, the other six miles below in the bed of the same creek-indicate a decided easterly dip. The same coal is also found on Big creek, in sec. 25, T. 7 N., R. 4 E. At these several places it is of rariable thickness, and only separated from the overlaying limestoue by a few iuches of clay. I have catalogued this coal as No. 16, comnting from the lowest. Except at Nelsou's, neither black slate nor shale was observed overlagiug it. At Nelson's the black shale is ealeareo-bituminous and fossiliferous.

On Salt and Brush creeks there is a 6-inch seam of bituminons eoal, which I have marked as No. 17 ; its sure guide is two thin, even layers of gray limestone, oceurring abont 4 feet above, and abonnding in Spirifer plano-convexus. This coal was reported to ine to be 16 inches and 2 feet in thickness, but I observed it nowhere so thiek. Ou Salt ereek, near the mouth of Brush creek, several pits have been dug at different times, but are now all full of earth and rubbish.

A thin eoal seam observed in see. 26, T. 9 N., R. 5 E., may be referred to either No. 16 eoal, or else loeally between 16 aud 17 ; but I an in doubt regarding its exact horizon.

Coal No. 15 is ouly found on Beeeh ereek, a branch of Rock creek, in see. 30 , T. 8 N., R. 4 E., one foot iu thickness, with thick-bedded sandstone overlaying it. A shaft at Effingham, in order to reaeh coal No. 5 , would have to be sunk about 900 to 950 feet.

Iron ore.-The drift conglomerate oceurring in see. 17, T. 8 N., R. 5 E., is 3 feet thick, and contains a good deal of iron ore. It crops out on a point of the hillside, extending for 30 fect aeross. A similar deposit occurs near the mouth of Big creek, in see. 30, T. 8 N., R. 5 E. Coal Measure shales on Big ereek abound in many concretions of oxyd and carbonate of iron ; there are also some in other localities, but the quantity is insufficient.

The sandstone below Effinglam, in the fossiliferons portion, is very fermginous. Red oxyd of iron occurs on Beech creek in sandstone over coal No. 15.

Building rock.-On Sugar fork, near its mouth, there is a good quarry of hard sandstone, and one of silicious limestone on Green creek abore the mouth of Sugar fork.

A very good quarry is that of Eversman's on Salt creek bluffs, two miles south of Effingham. The rock is a firm, gray saudstone, in even beds. Very good sandstone, in thick beds, occurs in the bluffs of Shoal creek near its mouth, on Fulfer creek, in sec. 2, T. 6 N., R. 5 E.; near Ramsey creek, lalf a mile from its mouth, in sec 27, T. 6 N., R. 6 E.; and on Big creek, in sec. 29 , T'. 9 N., R. 5 E.

On Limestone creek, and ou Fulfer creek for two or three miles above the mouth of Limestone, there are good limestone quarries. A good deal of rock used ou the National road was obtained at Mahon's quarry on Fulfer creek, also north-west on Big ereck. I do not consider this rock of superior quality; that on the National road has undergone the test of twenty five years, and is very much cracked by frost. The limestone at Nelson's coal bank is apparently of better quality. All these limestones will make tolerably good lime.

The various streans nearly all abound in a good quality of clean sand, useful for plastering, etc.

Potters' clay.-The buff and darker clays from just beneath the soil of the white oak lands is very much used at Effingham to make common potters.
supply of water.-Good water can be procured anywhere bs digging. On the prairies in the south-east it is obtained at from 12 to 20 feet; at Effingham, 30 to 44; at Watson, 16 ; in South-west, 20; at Mason, 18 to 30 . The deepest wells I heard of were G. W. Nelson's of 50 feet, through clay and Coal Measure rocks to good limestone water, and Jesse Newnan's, at Mason, 145 feet, with scant supply of water. On the prairie, between Big ereck and Fulfer, I detected a strong taste of sulphate of iron in water from a well 25 feet deep. Near the mouth of Fulfer, in sec. 2, T. 6 N., R. 5 E., there is a chalybeate spoing of very excellent water; it issues from bencath thick-bedded Coal Measure sandstone.

On Brush creek, one mile from its month, there is a never failing spring of very good water. It is called by some a sulphur spring, but I conld detect no taste of sulplimr.

Soil.-There is more or less sand mingled with the soil of this county. The yield of corn is generally abont 40 bushels per acre. Some persons think the country is too flat to be good wheat land ; the general average is 20 bushels per acre-sometimes, but rarely, 30 . When the scasons are not too dry good vegetable crops can be raised. The soil is well adapted to raising most kinds of fruit, but as yet orehards are not mumerous. The peach crop sometimes fails.

At Mason I saw some very thrifty young pines growing in a yard, indicating their adaptation to this soil.

Scalds.-On the prairies in this county there are often fomed "scalds," or spots of barren and almost entirely muprolnctive land ; fresh plowings often disclose spots of light and dark soil. The few plants found growing on these barren spots are of the same genera and species of those growing on poor land by the roadsides, or on and near an abandoned road, especially on a post oak flat, and cousists mostly of Erigeron divaricatum and Ambrosia bidentata. If the character of these scalds results from the same causes producing the wastes on and near roads, it must have been produced by the tramping or wallowing of buffaloes.

In Missonri I have often seen places known as deer-licks or buffalo wallows, and the growth on them is also the same as on the prairie scalds.

So far, they may be buffalo wallows ; but if they are wallows or licks, we would expect them to be basin-shaped, but they are generally about level with the surromnding plain.

In conchding I must tender my sincere thanks to Mr. W. B. Cooper, of Effingham, for the presentation of specimens of silver ore from Nevada; and I am also under many obligations to Mr. Geo. W. Wrigitr, of Effingham, for raluable assistance in giving me lists of many inportant localities in the county, by which my labor was much reduced. To Dr. Cornwell, of Mason, I also am obliged for assistance.

CHAPTER XVI.

MOULTRIE, MACON AND PIATT COUNTIES.

Moultrie is bounded on the north by Piatt and Macon, on the east by Douglas and Coles, on the sonth by Shelby, and on the west by Shelby and Macon counties. It comprises an area of abont 339 square miles, a little more than one-fonth of which is timbered land. It is drained by the Sonth and West forks of Kaskaskia riser and their tributaries. The timbered belt along the main streams varies from two to four miles in width. The West fork of Kaskaskia is a sluggish stream with low muddy banks and does not rum in dry seasons. The Sonth Fork is the only stream with any lasting quantity of water ; it runs during ordinary seasons, and below Sullivan has low sandy banks, but eastwardly they are muddy. On the bars we found many pretty mollnsks, including U'uio zigzu!, L.dilatata, Alasmorlontu truncalu, Meluniu, Puludina, cyclas, etc.

Topography.-The prairies are either nearly flat or very gently mondulating. The timbered land, gradually sloping near the heads of creeks, becomes more meven near the main streans, but there is no extensive tract of broken land. The bluffs on the South fork of Kaskaskia, near the east county line, are sometimes forty feet high, lont for four or five miles down stream are not often over twenty feet in hight, and spread nut into white oak flats. Southwest of Sullivan the hills are sometimes sixty or eighty feet high, but not very abmpt.

Irairies.-There is an extensive trat of nearly fat parie west of the West fork of Kaskaskia; the northerest quarter of the eomety is nealy all a very gently undulating or that prairie, still, in great part, preserving its mative state, and we here find tall grasses Liutris (two species), Solidugo, rorenpsis, Momutle (horsemint), resin weed (two spe(ies), Veronich Virginich, several species of aster, Vernonia Noveborncensis, Dipteractuthus riliosus and Etymgiun yurcefolium.

The above imperfect list of species evidently indicates a transition from a wild state. Occasionally swampy depressions are found, or marshy ponds with Physu, etc., and such plants as Vernonin fusciculatre, Lythrom alatum, etc. On the diy, low elevations are oceasional elmmps of hatel and low willow.

Stratigraphical Geology.

The formations in this county consist of the Quaternary and limited Coal Measure outcrops.

Alluvium.-This includes the soil, the loose material and more recent formations along the streams.

Below Sullivan, the soil of the South fork of Kaskaskia bottoms is very sandy, aud along the stream there are many sandbars. The sandy bottems are often entirely covered with a growth of Ternonia fasciculata. The principal trees and shrubs are spice bush, sassafras, white and red elm, mulberry, red bud, grape vines, Virginia creeper, trumpet creeper, cottonwood, sycamore, white maple, hickory, coral berry, ash, black walunt, hazel and corrus.

Three miles south-east of Sullivan, on land of George Purris, on the west bank of Kaskaskia, I discovered the head of a bison. It measured across the forehead above the eyes twelre inches, the same between the roots of the horns; the latter were short, thick and slightly curved. The hill above the bank is probably twenty-five feet high; the bank about eight feet high, forming a narrow bench with the hill, of about ten feet in width; in this bench or terrace, a few feet fiom the top, the skull and part of the cervical bones were found; the surrounding chay was black rich loam. There were several trees two fect in diameter growing on this terrace.

Drift.-The drift is of great depth in this county. At Sullivan, which is about as high ground as any other part of the county, a well was dug 210 feet deep without reaching any older formation. Mr. Pattenson, who had charge of the digging, informed me that he passed through :

1. Yellowish clay... 15
2. Green clay 10
3. Wbitish clay and somegrarel...
4. At 60 feet from top struek a soft white sandstone (probably a bowler), then 21 feet alternations of sand, grarel, red clay, blue clay, etc.; at 81 feet struck a big bowlder; at 110 feet blue clay, continning to 210 feet; next 5 fect of quicksand-he could go no firther. A strong vein of water camo in at 15 feet from the surface, also at 105 feet; anotber at 180 feet, tbe last ising to within 5 fect of tbo top, but subsided to 15 feet. It bas a strong smlphate of iron tasto.
On Whitley's creek, on land of Daniel Brown, the following section of drift was exposed :
5. Soil at top, with a gromtb of white oak and black hickory; below brown clay, with a fow small Ft

6. Mostly blue and brown clay, with pebbles ... 16
7. Black spongy stratum, apurently vegetable inold, with no pebbles; when stinck gives a hollow
\qquad
8. Buff clay and brown sands, with talus from above .. 11

Up a ravine a hundred fards distant is a fine spring of exceedingly elear pleasant tasted water four feet in depth; bubbles of sulphuretted
hydrogen oeeasionally rise to the surfaee; no taste of sulphur was pereeptible, but there was a sligit odor of it. The spring is on the land of Dauiel Brown, and there are several similar springs near by.

On the edge of the prairie near the east eounty line, a half mile south of the river, a well was dug twenty-two feet, through first, yellow elar, lower six or eight feet blue elay, then bored twelve feet through blue elay to a bed of black sand and regetable mold, in which plents of water was obtained. The latter dark material is probably the equivalent of No. 3 of sectiou at Brown's, and is also equivalent to a similar bed seen on Big ereek, in Maeon counts.

On the Sonth fork of Kaskaskia, below the mouth of Whitley's ereek, observed as follows:

2. Blue clay, with a ferr pebbles; at the lower part a very dark stratum of clay.................... 8
3. Bromn sand and small bowlders .. 5
4. Blue and browr sand and elay, with some pebbles and bowlders... 8
5. Tery comminuted fine sand bed, some of it concretionary... 3
6. Dark purplish-blıe sands ... 4

From the appearance of the dark stratum in Nos. 2 and 7, James W. Loomis \& Co. have run in a drift for serenty feet in seareh of a coal bed; of eourse they were musuecessful. The dark stratum at Dan iel Bromn's also indueed certain parties to dig in seareh of eoal. A little knowledge of geology would have taught them the futility of searehing for coal at these plaees.

Drift bowlders of rarious kinds of metamorphie roeks are often found alone on the prairies, espeeially in the northern part of the county. Four miles north-east of Sullivan there is a bowlder of granite $10+5+$ 8 feet, surrounded only by the black prairie soil; how deep it lies beneath is not known.

Coal Measures.

I was informed that near Sullivan Mr. John Patterson had dug a we 11 200 feet deep, throngh drift clays, and struck a soft sandstone, into which he bored 43 feet. This is probably equivalent to No. 1 of my general section of the Coal Measure rocks observed in Shelby and adjoining connties. The tol of this rock is probably about 140 feet above the Shelby coal (No. 15.) On the South Fork of Kaskaskia, tro miles above the junction, I obtained the following seetion :
6. Dark olive clay 2
2
2

North-west of the above, on West Fork above the ford, I found many immbled blocks of limestone sticking ont of the bank, at a regular elevation abose the water in the creek. They are somewhat surromnded by a local drift, but apparently abont their proper place. Down the river a few miles, in Shelby comnty, this limestone (No. 2 of general section) erops ont in regular layers 4 feet thick. I regard the above naned Coal Measmre rocks as equivalent to those secu on Limestone creek in Effingham county. I would therefore say that a shaft wonld have to be smuk about 330 fect at Sullivan in orter to reach coal No. 15, or probably 850 feet to reach coal No. 7.
s'mings and wells.-There are but few springs in this eonnty. On the sontheast and north east portions of the connty water is generally obtained at a depth of from 15 to 22 feet. Some wells on the prairies north of Bethany are but 13 feet deep. In digging, bhe clay is generally passed throngl, aud water found in the heds of sand. A well at the mill near Sullivan was dug 80 feet deep, with no water; six rods from it one was dug 30 feet deep, and water procured.

Soil-We have here the prairie soil and the soil of the timbered land, each differing from the other, both in appearance and in relative fertility. The pramie soil is very nearly of the same character every where, is very black, amd generally $1 \frac{1}{2}$ fect or more in depth. Around Sullivam, althongh it has been cultivated for many years, it does not seem to be impoverished, but still retains great fertility, producing annually 40 to 50 bushels of corn per aere, and often reaching 75 -never less than 20 ; wheat 15 to 30 , often 30 to 35 ; and barley 40 bushels per acre.

Near Whitley's creek there is a very narow strip of probably less than a quarter of a mile in width extening along the strean for four miles from its mouth, with a growth mainly of white oak, black oak, and hickory, and sometimes sngar tree. Near the prairie this gives place to a richer land, with crab-apple, thom, plum, etc.; further up stream the soil becomes still richer, with hackberry, elm, walnut, honey locust, laurel-oak, ash, bur-oak, and sometines chestmut oak. This soil is rery productive, yielding, according to Mr. Smizer, a general average of 50 bushels of eorn per aere, aud as high as 83 , with 33 of wheat.

Around Bethany the growth is very similar, but the soil is generally of a lighter color, containing a few pebbles; the growth is honey locust, elm, hackberry, hazel, laurel oak, hickory, limlen, grape vines, cormus, cherry, coral berry, mulbery, and a surface covered with grass and pemyroyal.

Between this and Sullivan the growth is somewhat different, consisting of black oak, hazel, hickory, sassafras, and occasionally bur-oak, wahut and comus. This land is very well adapted to the growth of
fruit, and rields exeellent crops of wheat, averaging 20 to 25 and sometimes as mnch as $3 \overline{5}$ bushels per acre.

There is generally a belt a mile in width of poorer land with a yellowish soil extending along the South Fork, often spreading ont into white oak flats, with a growth principally of white oak, black oak, post oak and low willow. Indifferent corn and tolerably good wheat ean be raised ou this soil.

Good Osage orange hedges have been planted, and sueeeed rery well in this comnty, and there are also some willow hedges.

Macon County is bounded on the north by DeWitt, on the east by Piatt and Moultrie, on the south by Moultrie, Shelby and Christian, and on the west by Christian, Singamon and Logan counties.

It embraces an area of about 555 square miles, the greater part of which is prairie, the timber being restricted to a three mile belt along Sangamon riser, becoming narrower towards the eastern part of the county, a similar belt near Big ereek, and a two mile strip along Friends' creek. There is a quantity of good timber both on the hills and bottoms, including white oak, black oak, bur-oak, red oak, lanrel oak, pin-oak, swamp white oak, chestnut oak, hackberry, hickory, eln, honey loenst, sassafras and ash. White walnut and blne ash are found on the bottoms of Big creek, but are not eommou.

The general surface of the eonutry is flat or gently undulating on the prairies, becoming more hilly as we approath the streams. From the northern part of the county the surface declines with gentle mudulations southirardly to the timber, and from the high prairie in the north there is a fine sonthward view to the Sangamon timber ten miles distant. West of Harristown the slopes are extremely gentle from the high prairie to the Sangamon bottoms. Eastwardly the timbered land is more hilly, becoming gnite broken near Decatur, with lower hills near the east connty line. Near Inccatur the hills rise by long slopes to a hight of about 90 feet above the bottoms, and are higher than the general surface of the country a little sonth. On Sangamon river near the east connty line, and on Big creek north of Mt. Zion, the hills are not often orer 30 or 40 feet high.

Near the edge of the prairie south of Niantic there is a low sandy ridge with a growth of bur oak, black wahnt, red oak, hackberry and hickory, changing to black oak, elm and hickory, then to black oak, hickory, eln and laurel oak. Where clay predomimates pin-oak and eln constitnte the principal growth ; the richest spots abound in cherry, laurel oak, hazel, elm, mulberry, redboud and black walnut. A well dug at this place gives the following section:

```
                Ft.
```



```
Dry sand .............................................................................................. }1
Yelow and mottled clay.......................................................................................
Quicksaud with water.
```

Two hundred fards distant another well was dug with somewhat different results, passing through 27 feet of clay to clay and gravel, with a fine stream of water at the bottom.

Near Decatur, and for three miles west and eastrardly on Sanganon hills, the soil is of a light mulatto color, reddish-brown clay with a few pebbles alpearing near the surface. Near Decatur the growth is black oak, white oak, hickory, hazel and some walnut. Near the edge of the prairie the growth is principally bur oak, laurel oak, hickory, hazel, plom and cherry; passing from the timber to the prairie the change is rapid from the light colored and yellowish soil of the timber to the deep rich black prairie soil.

Two miles south of Decatur the soil and growth changes from that of the black oak land to richer, with groves of elm, white oak, walnut, hickory, sassafias, vines, chestnut oak, laurel oak and mulberry.

Near Mt. Zion are tracts of good land, with white oak, walnut, chestnut oak, hazel, sugar tree and buckeye; the washings disclose some gravel. On the hillsides are goose grass and pennyroyal. On the bottoms of Big creek blue ash, white walnut, sugar tree, elin, lindeu, with large buckeye and bur oak trees are found.

Pin oak and laurel oak are generally found at the edge of the prairies.
On sangamon bottoms there is plenty of good timber, including bur oak, red oak, black walnut, elm, linden, hackberry, buckeye, hickory, etc.

Prairies.-In many places the prairies still preserve their native beauty, corered with tall grass and adorned with Flora's bright gifts, among which are found the delicately beautiful Physostegia Tirginiana, Gerardia temuifolin, Gentiana puberula, with the coarser plants silphium laciniatum and S.terelinthinaceum, Liutris (2 or 3 species) Helianthus, Solidago, etc.

Stratigraphical Geology.

The geology of this county is ouly "surface." Except in one well, no older formations than the Drift have been discovered; at about 100 feet in a well at Macon it is said solid rock was struck, which may be doubted, inasmuch as large bowlders are often found in the clays of that vicinity.

Alluvinm.-This includes the soils and recent formations along the streams. The Sanganon banks are S or 9 feet high and composed of
dark clay, vegetable mould and a little sand. On the gravelly shoals many small shells are ofteu found, belonging to the genera Paludina, Mclania, Cyclas and Unio; where the water is more sluggish Anodontas are common.

On the flat prairies there are many small marshy tracts, fresh plowing of one of them disclosed to view remains of old shells of the genus Planorbis and Lymnea. It is not inprobable that in a ferw years most of these pouds or marshes will be drained and cultivated, ind the calcareous material of the shell remains will be found a useful addition to the productiveness of the soil.

Drift.-At Decatur there appears 6 to 10 feet of mostly yellowishbrown clay, then similar clay with bowlders and pebbles extending downwards sereral feet, then blue and brown clay and pebbles.

On Big creek, in sec. 4, 'T. 15 N., R. 3 E., the drift appears thins:

1. Thirty feet of drift clays with looso pebbles, saud and clay; at lower part comminuted saud and clay. On the lower slope of this is an abundant growth of Equisetum or scouring rush, associatel with Gentiana alba and I'edicularis lanceolata.
2. Eight fect. The upjer part dark lowwish-black; lower part black aud apparently of vegetable origin, no pebbles secn; when struck a hollow sound is proluced. Dobris from above fitling over unites with this, forms a marshy talus, on which were growing Lobelia syphilitica, sagittaria variabilis and sereral other marsh plants.
The abore drift section is very similar to an outerop on Whitley's creek in Moultrie county.

Bowlders and pebbles of granite, quartzite, altered sandstone, porphyry, limestone, chert, ete., are found aloug the streams and irregularly scattered on the paries, and sometimes very large ones are found alone on the flat prairie. Three miles south of Oakley observed a bowlder of gray granite of an itregular shatpe, meatsuring S feet across in two directions, and sticking up 4 feet above the gromud. The surrounding soil is rich and black and no other bowlders were seen near by.

Wells.-At the railroad depot, Decatur, Mr. Isaad C. Pugh informed me that a well had been ding 90 feet deep through saud and gravel, bnt no permancint strean of water was reached. Mr. Pugh's well is 35 feet deep and affords plenty of water.

On the flat prairic sonth of Decatur water is found at a depth 13 feet.
Near the east connty line, sonth of the railroal, it is reached at from 12 to 57 feet, but the supply fails in dry seasons; but at 27 to 40 feet fine streans are gencrally obtamed, ocenring in beds of sand beneath the blue clay: In the north-east part of the county water is obtained at from 10 to 20 feet from the surface, and near Forsyth from 16 to 30 . On the rolling prairies in the westem part of the comity, water oecurs at very irregular depths.

Harristown is located on what seems to be an elevated prolongation of a low drift ridge. At this place a well was dug through 10 feet of yellow clay, then 70 feet of bhe clay with no sand, and only surface
water obtained. Two miles north-west, also on ligh prairie, another well was dug 30 feet deep, and lias generally contained about $2 \overline{5}$ feet in depth of water.

Springs.-In see. 4, T. 17 N., R. 2 E., there is a large spring, the water of which is reported to contain sulphur, but I could not deteet its presence.

On the land of John Good, near Bethel ehurch, 4 miles north-west of Deeatur, is a boiliug spring. Carburetted hydrogen gas aceompanied with small white flakes frequently escapes to the surface. The surface of the water presents a slightly irrideseent appearance ; it is very cold and pleasant to drink, with a faint taste of sulphur. Along its margin a small species of Physa is found. The that ground is marshy for as mueh as an acre in extent.

In the Decatur fair grounds are several large and fine springs.*
Agriculture.-It is apparent from what I have heretofore said, that all the prairie land is rers rich, most of the timbered land either rich or of fair quality, and all capable of producing fine crops. On the prairies, especially in the northern part of the comnty, tine corn crops are aunually produced, in ordiuary seasous yielding 65 bnshels per acre and often more. Although the soil is rery rieh, good wheat crops are rare, fall wheat extremely meertain, except near the sonth comnty line. The farmers generally sow spring wheat and raise from 15 to 20 bushels per acre. They eonsider the ground too loose for fall wheat, but sometimes raise good crops of it ou new land. Other graius, oats, batley and rye yield well. The potato grows finely when not injured by the bng, but late vines during the last few years have suffered very unch from their deprelations.

Fruit.-As yet, there are very few bearing orchards, lont the eonnty bids fair to become a good apple growing district. There are only one or two small vineyards near Decatur, and they promise well ; this soil I believe to be admirably adapted to the vine. Other small froits when planted do well. The peach crop of 1868 was very good, but such crops may not be expeeted every year.

A few good hedges wre observed on the prairies. The Osage orange does very well. I observed, growing, some good walnut groves on the prairies

[^21]
In conclusion, I would say that for richness of soil Macon county will favorably compare with any other county in this portion of the State.

> Note.-Since the foregoing report was written a boring was made at Decatur with a diamond drill, by the Western Coal Mining Company; and I am indebted to Mr. Bean, their agent here, for the following record of the work. The boring stopped at the depth of 507 feet, 1 inch, and in my opinion from 85 to 100 feet above the horizon of the Springfield and Howlett coal. The following is the record of this bore:
Ft. In.

Snrface soil, clay, gravel, etc. (drift)... 118
Coarse micaceons sandstone.. 4
Arenaceous clay shale ... 34
Grayish limestone ... 4

Light clay shale... 12
Micaceous sandstonө.. 18
Clay shale .. 24
Dark slaty clay with fossils... 2

Red sbale... 10
Brown and red shale with shells.. 11
Hard couglomerate... 3
Coal with red clay and gravel.. 1
Fire.clay... 3
Arcnaceous clay shale .. 7

Bluish clay shale ... 4
Soft micaceous sandstone... 21
Dark gray shale with ironstono.. 9
Clay and quichsand ? .. 3
Blue limestone.. 1

(iray limestone... 11
Ilack and gray shale ... 7
Mud vein (fire-clay ?).. 2
I3lne limestonc. .. 11
Iliad conslomerate... 2
Blue shate and some rock.. 13

I3lack sliale...
Coal, lırı and bright... 1 2
rire-clay.. 9
13huish, sandy, clay shale... 8
Mudvein (fire-clay)..
1)ark, slaty clay with fossils.. 17

Ilarl conglomerate rock... 1
1)irk shale with foнsils. ... 4

Iied, sautly clay shale. ... 29
Bhnish clay shale with shells ... $\frac{8}{-3}$
The 11 feet 9 inch blue limestone found in this bore at the depth of

345 feet is probably the same as the Carlinville and Shoal creek bed, which is usually from 210 to 240 feet above the Springfield coal.

A. H. W.

Piatt County is bounded on the north by DeWitt and McLean, on the east by Champaign and Douglas, on the south by Moultrie, and on. west by Macon and DeWitt counties. It embraces an area of about 436 square miles, most of which cousists of prairie,

The prairies of this comnty are very rich and in a great measure still preserve their native wildness, are beantiful in the summer season, corered with tall grass adorned with many beatiful flowers, among which are the rose, Liatris, (2 sp.) Physostcgia Virginima, Phlorpilnsa, Gerardia ternuifolia, Lobcliu spicata, Lythrum"alatmm, Echinacea, Gentiana mborula, Veronica Virginice, Aster sericeus, and several other species of aster; together with coarser plants, iucluding Monarda (horsemint), Solidago (several species), Sitphim or rosin weed (3 species), Pedicularis Tanceolata, Eryngium yuccafolium, NTabalus asper, Helianthus (several sp.), Ccanothus, etc. Marshy spots and ponds are ofteu seen, even on the highest prairies, some of them containing living shells of the genus Physa Lymnea and Planorbis, and having on their margin a glowih of Lobcliu cardinalis, Vermmia fasciculata and Aster carneus.

Strams.-Willow Branch heads in several large springs N. W. of Bement; one of these on Thomas Davis' land is said to contain sulphur, but if so, the quantity inust be rery minute, for I could not detect its presence. This spring spreads out into a large grassy marsh.

The South Fork of Kaskaskia river rises in the southeast part of the county, a little east of Bement, runs southwardly for 12 miles and euters Moultrie comnty; along it there is a strip of timber varying from one to two miles in width. The West Fork takes its rise iu the south-west and runs southwardly, soon enteriag Moultrie; there is but little timber near it, only first a fringe of willows, with a few crab apple bushes beyond; lower down, the thorn (Cratagus) appears, then plum and cherry; next cherry, plum, pin oak, laurel oak, elm; still further down, elm, red and white oak, hickory and bur oak.

The largest stream in this county is the North Fork of the Sangamon river, which traverses the county from worth-east to south-west, and along its margin are many springs which afford a constant supply of pure water. In the river we found many very pretty mollasks similar to those already enumerated in the adjoining counties.

Timber and Topography.-Near the Sangamon the hills are low and of easy ascent, the highest not over 45 fect; the noighboring country is not broken, but somewhat hilly for a half mile from the stream. Along the river and Goose creek there are timber belts of about two miles in
width. The total area of timbered land in the county probably does not exceed 50 square miles.

The prairies are bordered with a growth of laurel oak, pin oak, bickory, cherrs, phum and erab apple, with sometimes bur oak and black walnut. Betreen the prairies and the Sangamon bluffs we found white oak, sassafras, shellbark' hiekory, black oak and hazel ; on the sloping bluffs, white oak, black oak, service berry, iron wood, black haw, red tree, sugar tree, linden, ash, red oak, walnut, red elm and poison oak. Good timber abounds on the bottoms, including black walnut, bur oak, ash, maple, hiekory, honey locust, hackberry, mulberry, red oak, linden, syeamore, and a few blue ash trees were observed.

Away from the streams the comutry is either flat or very gently undulating, rising by easy aseent to the upland prairie and gradually blending into the higher mound-like elevations.

Stratigraphical Geology.

No formations, older than the Drift, appear in this county.
The charaeter of the allurium is similar to that of the adjoining counties and it ineludes the soil and recent deposits along the streams.

Drift.-At the bridge on Sangamon river, near Monticello, it is thus exposed:

On Sangamon bluffs, four miles below Moutieello, there is exposed :

F.

1. Brown clay

2. At top dark brown clay, below reddish-brown finely comminuted sand and clay.................. 14

Between Monticello and Centreville the road washings disclose three to four feet of bright brown clay, sometimes brown sand, pebbles and bowlders.

On the prairies there are bowlders of granite of varions colors, generally gray, red and grey sienite and sienitic granite, quartzite and altered sandstone, gneiss and greenstone; and in the altered drift we found Devonian fossils and fragments of Coal Measure roeks.

Springs highly colored with oxyd of iron are often found issuing from the drift sauds. Oı Willow Branch, in sec. 29, T. 19 N., R. 5 E., there are many such springs, some of them strongly chalybeate. In one of then gas arises and a quantity of brown sediment is deposited on its sides; the ground in front is very marshy for the space of two aeres.

The bluff at this place is about thirty feet high and composed of brown sand and small rounded pebbles. Three-quarters of a mile up the Sangamon river there is a similar marsh.

Wells.-In the timbered land wells have to be dug deeper than on the prairies and on the higher rolling prairie deeper than on the flat prairie. Iu the northeru part of the county plentr of water is reached at twelve to twenty feet; on high prairie north-east of Bement, fifteen to thirty feet; on high prairie, near Monticello, twenty to thirty feet; in the south-west, eighteen to thirty feet.

In sec. 26, T. 16 N., R. 5 E., Mr. Love has a well ten feet deep, passing through .clay to sand, but the water sunk in the sand ; a half mile west, plenty of water is obtaimed at five feet depth. At the Monticello hotel the well is fifty-five feet deep, the water generally standing at twelve feet from the surface, but in the summer of 1867 it sunk to forty seven feet from the top. At Centreville a well was dug on the hillside thirty. six feet deep, passing through six feet of jellow clay and sand at the top, then blue clay with occasional streaks of sand and some pebbles; a little quicksand near the bottom, and at the bottom a stratum of dark clay and sand, with a weak stream of water. The bottom of this well is near the horizon of the bottom of Sangamon river. Oue hundred feet distant, and at an elevation of twenty feet higher, a well was dug twenty-six feet deep and a good stream of water procured.

Soil and Ayrieulture.-The soil may be divided into two classes, the prairie and the timber. The timber is a loose, mulato soil, producing good vegetables, and for fruit and vines is said to be quicker and better than the prairie, and is evillently dryer.

The prairie consists of dark, rich, loose loam, sometimes containing a little gravel; after the first sod plowing, if left thus for one season, a species of Heliunthus grows up very thick over it to the almost entire exclusion of all other plants.

The southern prairies, I was informed, could be plowed within two days after very heary raius.

The prairie soil seems admirably adapted to the growth of corn, the yield averaging fifty bushels and often more per acre. This is not a good wheat growing county ; crops of spring wheat have been generally good, but this year (1868) the yield was not a half crop. Fall wheat is uncertain, but sometimes yields well, better than the spring wheat.

CHAPTER XVII.

GALLATIN COUNTY.

Gallatin county is one of the most interesting counties in the State, not merely geologically, but also in an economical point of riew.

A marked feature in the topography of this countr is an axis of disturbance or uphearal that crosses it, in an east and west direction, along the southern tier of sectious on the parallel of township 9. The ridge, which is formed by this line of uplift, attains an elevation of three hundred and forty two feet above the inigh water of the Ohio river, and has received the name of "Gold Hill."

Its summit is capped with the couglomerate or millstone grit, a massice saudstoue that usnally contains small quart\%-pebbles, aud lies at the base of the Coal Measures in this part of the State, whilst aloug the northeru face of the ridge the Chester sandstone and limestone, which comprises the upper group of the Lower Carboniferous, are brought to the surface, and show, as well as the superimposed conglomerate, a strong dip to the south, varying in places from ten to forty degrees. Especial attention was directed to discover a reversal of dip or anticlinal axis, but at every locality risited on the north side of the ridge, the strata from top to bottom were basseting at a high angle to the north. Oı the east end, approaching the Ohio river, Gold Hill descends with a very gradual slope, and is lost in the alluvial of the orerflowed bottom back of Shawnectown. In front of this town, on the Illimois sloore, the rocky axis here crossed by the Ohio river is exposed to view at low water, where the conglomerate and superimposed strata lie in great confusion, but generally show an numistaka. ble dip of from ten to twenty-five degrees to the south, as shown in the diagram, which represents a lorizontal section of the rocks ruming north and sontli. The basseting conglomerate seen on the north end of this section appears to jut against a reddish, coarse-grained micaceous samdstone, that lies apparently horizontal, and may be traced along the water's edge for several hombed yards up the biver, without presenting any appearance of an anticlinal axis. It weathers roughy and is coated in spots with a saline eflorescence, and is charged in

Section at Shanmeetown, Gallatin county, Ill., of Millstonegrit and ocer. lying shales exposed at low water of the Ohio river.

places, also, with iron ore, that forms a kind of ferruginous couglomerate or pulding stone, and here and there small patches of coal, but no regular seam. Large stems of Sigillaria are imbedded in it, one of which is twelre inches broad and six feet or more in length.

On the south end of the section the argillaceous shales lie also, apparently horizontal, after passing a short distance below the point where they show a dip of fifteen degrees. Sereral thin seams of coal are seen, as shown in the section, but so crushed and broken up that it is difficult to determine with certainty their position in the vertical section of the Coal Measures hereafter to be described. The coaly matter in the shale dipping ten degrees, may occupy the position of the Battery rock coal, or No. 1 of the section above referred to. Several intercallated bands of limestone occur in the section; one, a black septaria rock, is susceptible of a fine polish, and presents an appearance almost equal to the Irish black marble.

A casual observer of the tilted rocks at Shawneetown landing would be likely to exaggerate the thickness of the strata to far beyond what is shown in the abore diagram, the measurements for which were carefully made by stepping the distance, and it is thought they will prove to be nearly exact. The horizontal length is between nine hundred and fifty and one thousand feet; which, taking the average dip at fifteen degrees, would make the vertical thickness of the strata to be from two hundred and thirty to two hundred and fifty feet. Now, if we make a reasonable allowance of one hundred and sixty feet, as the thickness of the millstonc-grit at this localits, it will be seen by reterence to the vertical section of the Coal Measures that no workable coal, above the Battery rock coal No. 1, has been bronght to the surface here.

There is another low depression in the Gold Hill range in this county where it is crossed by Saline river, at Island rifile, section 36, township 9, range 8. At this locality a Coal Measure sandstone is exposed, but I was unable to determine its position in the measures, or to decide positively upon the direction of its dip. Which is but slight, and apparently to the north-east, while at Dorsey's riffle, a short distance above, the shales and thin-bedded sambstone in the river are dipping 35° south, 30° west.
"Coal Hill" is the name of a short range of hills commencing on sec. 4, T. 10, R. 9, and terminating on see. 8 of the same township and range. With the exception of Coal Hill rilge and another range of hills that skirt along the north side of Saline river, the country south of Gold Hill and east of Saline has but a slight elevation ; much of it, in fact, is sulyect to overflow. South of the Saline river, and along tho waters of Lagle creek, the country is broken by hills from seventy to one hundred and fifty feet high. Another short range of hills, lying to
the north of the Gold Hill axis and ranning nearly parallel thereto, terminate at or near Equality, on the west side of the north fork of the Saline. The remainder of the county north of the Gold Hill axis is destitute of prominent hills, with the exception of an elerated narrow ridge running nearly north and south along the road from New Haren to Shawueetown, and terminating within three miles of the latter place.

Gallatin county is well supplied with water eourses. Besides the Ohio and main Wabash rivers on its eastern boumdary, the Little Witbash river enters the county at the village of New Haven, and flows through the north-eastern corner to form its junction with the main Wabash twenty miles above the confluence of the latter stream with the Ohio. The north fork runs through the north-western portion and joins the Saline river at the town of Equality, on the eastern border of the eounty, while the latter river in its course cuts through the Gold Hill axis about three miles below Equality and flows out at the sontheastern eorner of the county to form its junetion with the Ohio river just above the Battery Rock coal mines, in Hardin county. Eagle creek, a large tributary of the Saline river on the south, and its numerous affluents, ramify through the south-western portion of the county. Besides these streams, it may be mentioned that there are a few ponds or sinall lakes seen in the low lands of the Ohio and Wabash rivers, which are supposed by many, with seeming plansibility, to be the remains of old river chamels.

Stratigraphical Geology.

The geology of this county will be best understood by an examination of the section on page 202 , in whieh is shown the ehronological order of all the strata visible in this comes.

Lower Carboniferous.-Along the northern face of the Gold Hill ridge, in two or three places the upper part of the lower earboniferous rocks has been brought to the surface by the axis of disturbanee whieh produced this noted ridge. These rocks belong to what is designated in the first volume of the report on the geology of Illinois as the "Chester group."

The most easterly exposure is on the S. hf. of sec. 33, T. 9, R. 9 , about three miles east of Shawneetown, where the following seetion was obtained:

Ft.

Condlomerate, with pebbles....... . .. 50
Irregular bediled sandstone. ... ${ }^{2} 0$
Corered, sandstone and shate?.. 90
Jimestone, with Archimedes. .. 55
Covered to high•water of Ohio... 40

The rocks in this section basset to the north at an angle of 20 . The Chester limestone exposed near the base is, for the most part, a eoanse erystalline, grayish rock tilled with small entrochites, the organie structure of which is almost obliterated by crystallization, which gives a glimmering lnstre to the freshly broken fragments. It is remarkably poor in other fossils; for after a long and diligent search, I was tinally able to obtain only a rery badly preserved specimen of Arehimedes and a few fragments of a small Spirifer, too imperfect for determination. There is a thiu stratum of fine grained bluish limestone, in which no trace of orgauisms could be fonud, lying between strata of the gray roek and near the lower part of the exposure.

The large amount of talus strewed along the base on the north side of Gold Hill, eorers up the lower strata so completely that I was eompelled to make two separate trips, having a guide eaeh time, aud to spend tro days in searching before being able to find the limestone at this loeality. It is true lime had been burned here, but so long ago that people generally knerr nothing about it. Thongh, for the eanses herein stated, this limestone could be traced for onls a few hundred feet along its outerop, it is thought that it may extend half a mile or more along the ridge until it disappears through an east and west depression beneath the drainage of the county. To the west of sec. 33 the ridge gradually sinks, and is crossed by the Saliue river in see. 31, T. 9, R.9, and in sec. 36 , T. $9, \mathrm{R} . \mathrm{S}$, at what is known as Islaud Riffle, where rapids are formed by the stream flowing over a coarse grained, yellowish sandstone whieh weathers ronghly, and the position of whieh, in the series, is above the Conglomerate; but I was unable to determine its exact place in the rertical section. After crossing to the west side of the Saline river, and following up the stream to see. 27 , T. 9, R. 8 , the Chester limestone makes its appearance again high up in the ridge, and forms with its associate strata an abrupt escarpment. They basset to the north at an angle of about 10°.

The following section was taken at low-water of the Saline :

Besides dipping to the sonth, which is the regular piteh of the strata in the ridge, there is here also an east and west ware of elevation and depression, which carries the limestone down from forty to fifty feet, a few humbred yards to the east, where the old salt springs-formerly known as the "Nigger Works"-break out in the bank of the Saline
river, apparently at the junction of the limestone with the sandstone which lies above it. Consequently, we may consider this as the geological horizon of the main salt brine of this portion of the State.

With the exception of a small outlier of Chester limestone in the south-western part of the connty, near the conner of Pope and Handin counties, no other localities are known in Gallatin where the subcarboniferous rocks can be fomd ontcropping; and wheneter examincd these rocks, quite contrary to what is usual, show a remarkable pancity of organic remains, and the few that were observed it was found impossible to preserre.

Coul Measures.

The section which accompanies this report represents the entire thickness of coal strata in Gallatin county, and contains, it is believed, all the workable beds of coal, together with some of the most important thin seams that are to be found in the connts.

Section of the rocks in Gallatin county :

No. 2. Heary bedded sandstone... 5 to 40
No. 3. Siliceous and argillaceons shale... 25

No. 5. Shale and thin Coal No. 9... 3
No. f. Shitles, partly bituminons and calcareons. .. 30

No. 9. Siliceons shale and sandstone... 40

No. 11. Bituminous shalo.. 0 to 3
No. 12. Coal No. 7... 4 to 7
No. 13. Sandstone and shale... 41
No. 14. Coal No. 6... 2
No. 15. Shales and thin bedded sandstone.. 6.3
No. 16. Bituminous shale... 2 to 5
No. 17. Coal No. 5.. 5

No. 19. Clay shale with iron stone... 3
No. 20. Sandstone and shale............-.. 78

No. 23. Shale and thin bedded saudstone.. 42
No, 24. Thin coal (local) .. 0

No. 26. Shale with iron stones in npper part... 43
Nio. 27. Coal No. 3. ... 3
No. 28. Sandstone and shale... 19

No. 30. Coal No. д.. 4
No. 31. Argillaceous shale.. 20
No. 32. 'Ihin bedded samdstone and siliceou's shale with thin coal...................................... 60
No. 33. Heartlı sandstone.. 20
No 34. Argillaceous slıa'o... 40
Ft. In.
No 35. Coal No. 1 1 ft .8 in . to 3
No. 36. Argillaceous and siliceous shale. 70
No. 37. Conglomerate sandstone 110
No. 38. Bluish argillacenns slable (Lower Carboniferous) 15
No. 39 Thin coal (Lower Carboniferous) 4
No 40. Argillaceous shales (Lower Carboniferous). 10
No. 41. Covered space with sandstone (Lower Carboniferous) 60
No. 42. Chester limestone (Lower Carboniferous) 55
No 43. Covered space. 40

No. 1 or "Battery-rock coal" is not worked in Gallatin county, and no exposure of the seam conld be recognized with any degree of cer. tainty. It is thought probable that the thin scam of coal-rash shown in the horizontal section of the disturbed strata in front of Shawnec. town, and a thin seam, opened some ycars ago by Mr. Baker, on sec. 36, T. 9, R. 9, west of Shawneetown, and near the eastern terminus of Gold Hill, may be that seam ; but no reliable evidence was found to establish this conclusion. In the decomposing shales above the rash.coal in the river bauk at Shawneetown, a few fossils were scen, that are thonght to be characteristic of much higher strata, as Bellerophon carbonaris, B. per-carinatus, Productus longispinus and Spirifer cameratus; but they crumbled to picces on being removed from their matrix. If the actual horizon of this coal is above No. 1 in the vertical section, and near the horizon of No. 7, as its fossils and the associated limestone scem to indicate, it shows a remarkable thinning out of the intermediate strata, and a total absence of workable coal, for the Conglomerate can not be more than one hundred and ten or one hundred and thirty fect below it, provided that the latter rock is referable to the Battery-rock Conglomerate. I am aware thiat the coal scams thin ont to the northward of "Gold Hill," but at the same time I belicre that the associated strata increasc, instead of diminish in thickness in that direction.

The opening to the thin coal west of Shawneetown (scetion 36) in "Gold Hill" was entirely filled with rubbish, and no good riew could be had of it. The strata are all basseting to the north at an angle of 20° to 40°, which renders it almost impossible to work a coal from such an outcrop. Mr. Beck, who had been, I believe, interested in the mine, accompanied me to the locality, and he expressed the opinion that the seam was found to be two feet thick in the opening. Judging from what I could sec, the coal is of an inferior quality, and rescmbles very much the coal in front of Shawneetown. The following section will show its position in the ridge, commencing from the high water of the Ohio river, which point was determined by the drift wood along the foot of the rillge :

Sindy shaile and flagstone. 100
Flag.saudstone.. 10
Gray and bine shate, with ironstone.10
Coal mostly rash 2?
Covered 30
High water of the Ohio river. ?

The bnff-colored massise sandstone, near the top of this section, forms a vertical wall in many places along the ridge; and, from this point, gradually descends to the east; so that where last seen in that direction, about a quarter of a mile distant, it is found to be only sixty feet above highwater; a rate of dip that would carry it to the water's edge in front of Shawnectown.

In Hardin county, below the mouth of the Saline river, and opposite the town of Caseyville, in Kentucky, the Conglomerate rises into avertical wall known as the "Battery-rock;" and forms here the western bank of the Ohio river. It is divided into two beds, by a very thin parting of shale and coal. The latter is very irregularly bedded and is not anywhere more than a few inches in thickness; and, though not considered persistent, it is seen at the month of Tradewater river, on the opposite side of the Ohio. My measurement of that portion of this rock seen above low water, takeu with an Aneroid barometer, made the lower bed fifty and the upper sixty feet thick; and the space between low water and the coal, which is here referred to No. 1, one hundred and eighty feet.

The "Battery-rock coal," as it is called, is the equivalent of the seam worked by Bell, Cook and Casey, on Tradewater river, in Kentucky; and also the equivalent of the Ice-house seam, or No. 3 of Owen's section; and likewise it is betieved to be synchronous with the Cannelton seam, in Indiana, and the Hawesville senn in Kentucky, on the eastern margin of the basin.

On Tradewater iver this coal ranges from two and a half to five feet in thickness; but back of Caseyville; and on Shotwell's property, in Union county, Kentucky, it averages only from eighteen to twenty-two inches. At Battery-rock also it is a thin seam, rarely reaching twentytwo inches. At every locality where this coal was seen it has from one to four inches of coal-rash at the bottom, above which the coal is highly bituminous, and is held in excellent repute by steamboat men on the Ohio river.

Battery-rock coal has been opened in three or four places along the riser front, but it is too thin and too subject to horse-backs to admit of extensive mining operations. The gray-colored roof shales contain a few fossil plants belonging to the genera Lepidodendron and Stigmaria, Pecopteris lonchitica and Nenropteris hirsuta, but they are too friable to be preserved. No fossil shelis were found, though Lingula umbonuta is
eomnton in the roof shales of this coal on the opposite side of the Ohio, and on Tradewater river.
.The following section obtained along the river, commencing at Batteryrock ferry aud extending up stream nearly to the mouth of Saline river, will serve to show the position of No. 1 eoal and the conglomerate, together with the eliange of level at the various places given.
Section at Battery-rock ferry :
Ft. In.
Soil, clay drift, and covered spacв. 50
Massive gray sandstono, (heath stone) ... 20
Shale, mostly silicious............................ 40
Coal, No. 1... 1 ft. 4 in. to 10
Silicious shales, passing down into flagstone. ... 70
Conglomerate, mpиer member... 60
Thin coal, wedred in.. 0
Conglomerato, lower member. .. . 50 . 0

Three-quarters of a mile above the ferry, in a north-west direction, N. $40^{\circ} \mathrm{W}$. , the top of the Conglomerate is just at the water's edge, while three-quarters of a mile again above this, and hatt a mile below Sellers' paper mill, the base is eighty feet above the river, where the following section was taken :

Ft. In.
Conglomerate saudstone, forming a cliff... 35
(Slows 70 feet thick at Sellers' paper mill, where large masses have broken off and tumbled to the plain below ; one block, larger and more conspicuous than tho others, has received the name of "Stack Rock.")
Blue argillacens siales, with mmerous bands of carbonate of iron, compising altogether from one to one and a half feet of good iron ore; ono band, fom to six inches thiek, contains a number of imperfect casts of fossil shells: Hthyris subtilita, Hacrocheilus inhabitis? Spirifer cameratus? small IBellerophon, Nucula and a fragment of a Cyathophylloid coral. . 14
Coal, reported from a borв.. 0
Sandy and argillaceous shale... 7
Covered, to low-water.. 58
Half a mile abore Sellers' paper mill, in a dircetion N. $47^{\circ} \mathrm{W}$., coal No. 1 is ninety-five feet above low-water, and may be seen above and below the month of eoal creek ; and one-half mile above the last locality, in a direction N. $61^{\circ} \mathrm{W}$., it is one hundred and twenty-two feet above low-water, at T. lees \& Co's mines. The general dip of the strata is north, about 20° east, and the irregularity in the elevation of the Conglomerate and coal along the river blnff is mainly due to the position of the exposure being on one or the other side of the strike line, and furnishes no evidence of more than one seam of eoal above the eonglomerate at the localities here cited.*

[^22]Coal No. 2, or "fonr-foot seam," as it is generally called here, is the next workable coal in the asceuding order; it has been reached by a slaft on the Saline river, in Gallatin county, at the Independent Coal Company's mines, where, as well as in Union county, Kentucky, it is uniformly fom feet thick, and of fine quality for stean and manfacturing purposes; the color brownish-btack; it has a lammated or splinty structure, with carbonaceons partings, and appears to be remarkably free from sulphnr. The space between Nos. 1 and 2 is about one linndred and forts (140) feet, and contains, on the Kentucky side of the Ohio, two or more thin seams of coal, but no bed that is thick euough to be worked.

The Independent Coal Company work both No. 2 and No. 3 from the 0r: shaft, which commences just below No. 4, or "Well coal," aud is one lnudred and fonrteen feet deep. The following section, made from this shaft, will exhibit the character of the strata passed through:

Section of the Independent Coal Compauy's shatr, sec. 35, T. 10, R. 9 ; coal dips N. 10°, E. about 3° :

The space between No. 2 and 3 coal is only twenty-four feet in this shaft, but it is nearly donble this depth at Shotwell's mines in Kentuckiy.

Coal No. 3.-Is of fair quality, but it contains some sulphur, and its reputation in the market is not quite so good as that of the seam below it.

In drifting or running an eutry to the west in this shaft after coal No. 3 , a serious fanlt was encountered the coal was abruptly terminated by a solid wall of sandstone, and was not recovered up to the time of my risit. No. 2 was being worked in the same direction, with a view to learn if it also is affected by the fault, and to endearor to discorer its nature. My opinion is that the coal will be found above the level of the entry, as the sandstone which occupies its place appears to be the same as the rock which underlies this sean.

A few hundred yards above the Independent Company's shaft, No. 3 ontcrops in the bank of Saline river, and No. 2 was reaehed there by a. shaft thirteen feet below the bed of the stream. The old works at this locality have long since been abandoned, and the openings are filled up with rubbish, brought by the overflows of the Saline river.

Near the foot of the hills, a few hundred yards north of the abore mines, and on land belonging to the same company, No. 4 coal was struck by sinking a well, and was subsequently bored through at the compaus's office. It is two and a half feet thick and lies between ninety and one hundred feet above No. 3, as proved by the bore at the office and by the section of the shaft above giren.

Nos. 5,6 and 7 are seen in their regnlar sequence onteropping in the hill on the Independent Company's property north of the shaft, and on the above section No. 5 is from eights eight to one humdred feet above No. 4. This space is tilled with thin bedded sandstone and shales, with more or less irou ore. It is generally a little less than five feet thick, though usually called in this connty and Union county, Kentueky, the "five-foot coal." The color is a dull black, and on the Saline ricer it is ofteu marked by a beautiful play of colors, giving rise to the appellation of "peacock coal." It contaius a large pereentage of fixed carbon, and but for the sulphur bauds which are mixed with it, would prove the very best coal for steam and manufacturing purposes in the basiu. It has been extensively mined for the supply of steamboats, both along the Olio river in Kentucky, and on the Saline river in this county, but from injudicions mining or other causes, it has fallen into bad repute, and Nos. "2 and 3 liare for the time being supplanted it in public favor. The poor reputation which has befallen this seam I have no donbt may be traced to the coal not having been properly screened and not senarating it fiom the sulphur bands with which it is contaminated.

No. 5 has been opened and worked at many places on sections 27,35 , 21 and 9 , township 10, range 9 , and was reached in a bore on Eagle creek, on section 13 , township 10 , range 8 , on the sonth side of the Saline It has been worked by a shallow shaft to furnish finel for Ross' mill at Equality, and can be seen in the bed of the Saline river at the latter place when the river is extremely low. About two miles sonthwe:t of Equality, on the easteru edge of Saline county, it is worked by drifting into the hill, and furnishes the fuel to evaporate the brine of the salt works owned by Messrs. Temple \& Castle.

The black bitmminoms roof shales of No. 5 coal contain, usually, an abmudance of beantifnl, compressed shells, completely gilt with brilliant yellow pryites of iron. This shale, with its fossil treasures, rapidly decomposes when exposed to the weather, and can be preserved only when obtained fresh from the mines, and properly cared for. When I
visited the mines on the Saline river for the purpose of making this report, no fresh shale was being brought from the mines, and the old would not bear handling, especially when it eontained prritiferons fossils, but would crumble into fragments. The most abumlant shells are Aviculopeeten reetilaterarius, Productus longispinus, Noutilus lleeoratus, Solenomya soleniformis, Tucula ventrieosu, Orthoceras Riushensis, Pleurotomaria Grayvillensis, Bellerophon carbonarius, and Chonetes mesoloba.

Coal No. 6.-Lies from sixty to seventy feet above No. 5 , is from two to three feet thick, and was formerly worked on the Saline river at Tolbert's mines, and on the Curlew mines' property, near Caseyville, in Kentucky; the quality is said to be very good, but the old openings have long since heen filled up, and there was no chance of colleeting specimens or of seeing the solid coal. The outcrop of this seam was seell at the localities abore cited for No. 5. In the hill at Equality it is of very poor quality, and is not over fifteen to twenty inehes thick. At this latter locality it is muderlaid by a massive sandstone, and the latter is underlaid by gray and buff silicious shales, with ironstones down to the black shales orerlying No. 5 eoal.

No. 7 Coal.-This seam lies from one hundred to one hmudred and twenty feet above No. 5 , and is at some loealities from eight to nine feet thiek. Its color is a jet blaek, it breaks into cubes and has mumerous eross fractures lined with salts of calcium. The bed-is divided into two seams by a parting of fire chay from half an inch to four inehes or more in thickness, and near the top of the seam there is a very thin sulphur band (bi-sulphide of iron), which seldom exceeds one-eighth of an ineh in thickness. That portion of the bed above the fire-elay parting is generally eonsidered the best, and in Union connty, Kentucky, at the Curlew mines, this part of the seam is assimilated to a eannel eoal. No. 7 has been opened and mined on the Independent Coal Company's land in connection with No. 5; also, at Tolbert's, in seetion 21, township 10 , range 9 , and at Boswell's a half mile north of the former mines. At these localities the bed is from three to fonr feet thick, the elay parting is two inches thick, and is eight inches from the bottom of the bed. The following scetion was takeu at Boswell's mine, section 26 , township 10, range 9:

Ft. In.

Thick bedded sandstone ... 9

Gray limestone ... 3

Coverot
$\frac{0}{27}-$

The direction of the dip is north 10° east, at the rate of about three inches to the yard. In the dccomposing roof shale, at the mouth of this mine, Aviculopecten rectilaterarius and Cardinia? fragilis were seen, but they were too friable to bear handling. As the strata rise, from Boswell's, in the direction of the Saline river, No. 7 is found high np in the ridge on the Independent Coal Company's properts, and No. 5 outcrops near the base. On the property of Mr. Hines, section 13, township 10, range 8, on Eagle creek, No. 7 is seen outcropping in the bed of the creek, but following to the south some two hundred yards, on the rise of the strata, it is found thirty-three feet above the creek, where it has been mined to a limited extent by Mr. Hines, for fucl to run his saw mill. At these outcrops the overlying limestone could not be seen; however, Mr. Hines informed me that it made its appearance at the end of his drift, where I was unable to see it for want of lights, but I fully satisfied myself of the identity of the bed by the clay parting and sulphur band, the former ten inches from the bottom, and the latter a few inches below the top. Mr. Hines informed me that at the creek he bored forty feet below this seam, and passed through a lower coal that was tro and a half feet thick; this latter is in the position of No. 6. Along Eagle creek, westward to the county line, No. 7 has been reached in wells, and can be traced in a north-east direction to Bowlsrille. At Bowlsville, on sections 8 and 9 , township 10 , range 9 , in the range called Coal Hill, Nos. 7, 6 and 5 outcrop. Coal No. 7 outerops on both sides of Coal Hill, and has been opened in a number of places at varions elevations above high water of the Ohio river of 1848 , as determined by E. F. Lee, Civil Enginecr.

The following descriptions of these openings are given to show that no reliance can be placed on the local dip of a coal seam as a means of ideutifying the beds over any great cxtent of country :

At the Mason entry into No. 7 coal, on the north part of section 9 , the seam is ninety-cight feet above high water of the Ohio, is three feet ten inches thick, has a clay parting of two inches, about one foot from the bottom, and a thin band of sulphur near the top. Above the scam is :

Ft. In.
Shalo 16
Dark limestono 4
Black bituminous shate
Coal No. 7 .. 30
Fire-clay ...
One hundred yards to the north-cast, near the line between sections 9 and 4 , seventy-eight feet above high water, there is another opening showing a dip of the strata, on this part of Coal hill, to the north-cast at the rate of twenty fect in four hundred of horizontal distance.

Section at the Faughan entry:

The eoal at this entry is one hundred and forty-six feet above high water, showing a rise to the south-west of forty-eight feet in nineteen hundred and fifty.

Seetion at Forrester entry :
Ft. In.
Limestone.. 2
Shale -..
Coal No. 7 ... 4

At the Forrester entry, near the middle of section 8, the elevation is one hundred and thirty-nine feet above high water, showing a difference of only seven feet in half a mile, which apparently indieates that it is nearly on the strike of the formations on this part of the hill. The limestone here has diminished to two feet.

At the Barlow entry, near the middle of the south-east quarter of section 8 , the coal is eighty-four feet above high water, which shows a dip S. $10^{\circ} \mathrm{E}$., of fifty-five feet in a horizontal distance of fourteen hundred and fifty feet.

Section at A. Barlow entry :

Coal No. 7
4
Fire-clay
$?$
At this entry, on the north side of section 8 , the coal is one hundred and twenty-eight feet above high water, and the limestone is absent, being replaced by shales. The eoal is four feet thick and has the sulphur band and clay parting.

On the north-west quarter of the same section, the limestone is in place again, and the coal is one hundred and two feet above high water, showing a south-west dip of twenty-six feet in one thousand one hundred. On the north-east quarter of seetion 7, at the Jones entry on Coal creek, No. 7 coal is at high-water mark, showing a dip of 6° or 7° to the west, and a fall of one hundred and two feet from the last entry, in rather less than half a mile.

At the town of Equality on the western boundary of the county, Nos. 5,6 and 7 oceur in their regular sequenee, as seen at Bowlsrille, the Independent Company's mines, and other places. At these loealiities all three beds have been opeued, and more or less mined, to supply the home market.

No. 7 is usually four feet thick in the many openings where it is mined in the streets, and around the town. The miners report the dip
here to be in erery direction; that is, that no two openings show the,same pitch, and that they can hardly pronounce upon any decided dip.The identity of the bed is proved by the presence of the limestoneroof, sulphur band, and clay parting. The following section shows thestrata in the hill at Equality :
Ft. In.
Soil and crift 25
Sandstono 15
Silicious shale 5
Limestone 46
Shate 6
Coal Nָo. 7 (with clay parting) 4
Fire-clay 6
Shale, and massire sandstone 45
Coal No. 6 16
Saudy flag-stones, and light blue shale with iron-stones. 68
Black shate 2
Coal No. 5, in shaft at Ross's mill 5

About two miles, a little west of north, from Equality, No. 7 coal was scen at low water of the North Fork of the Salinc river, making a descent in that direction of nearly one hundred feet; it was traced along the bank of the river for more than half a mile before it disap. peared under the low lands to the northward. Coal was first mined in this county at the above locality, and was hauled at an early day to Equality over bad roads, before the fact was known that every family in the town could, if they so desired it, have a coal minc in their own yard. North of this locality no workable coal has been found in the county.

At Christmasville, eight or nine miles north of Equality, in the north. western part of the county, and where the bridge crosses the North Fork of the Saline river on the road from Equality to Carmi, there is exposed in the bank of the river a few feet of argillaceons and siliceons shales, containing a thin fossiliferous band of calcareous sandstone, as shown in this section :

The fossils fomd in the three-inch band of the above section are: Aviculopecten occidcntulis, Edmondia reniformis, Athyris subtilita, I'terinere gibbost, Myalina Swallovi, M. meliniformis, Eumierotis Mawni, Macrocheilus primigcnius, Schizodus Sp? Turritclla? Stcphensana, Bellerophon nodocarinatus, Allorisma Sp? Plewrophorus sub-costatus, ctc.
About three and a half miles north of Shawneetown the following seetion was obtained at "Roundpond hill," which forms a part of the ridge or range of hills reaehing northward to New Haven on the Little Wabash river:
Ft. In.

Shale .. 5
Limestone ("Carthage rock ?").. 6 . 8
Black bituminous shale.. 1

Shale, in covered space... 20
Reddish schistose sandstone, weathers rongh.. 15
Argillaceons and siliccous shale .. 30
Black sheety shate .. 2
Calcareons shales, with nearly the same species of fossils as are fonnd at Grayville, Ill. and Rush creek, Posey county, Indiana : Leda belld-striata, Nucula ventricose, Bellerophon carbonarius, J. Jontforticmus, B. percarinatus, Macrocheilus primagenius, Myalina sub-quadrata, I'leurotomaria sphoeruleta, P. Gra;, villensis, and Schizodus S_{p} ?.
Coal, No. 8. 3
Fire-clay. 6
Siliceons shale 6
Covered to low water of the pond 10

The limestone at the top of this section is generally poor in fossils, but it contains at this place large crinoid stems and a few shells; among which were recognized Productus longispinus and Athyris subtilita. The roek is a hard gray limestone which weathers roughly and readily splits up into irregular slabs, with reddish-brown stains of oxyd of iron on the weathered surface. It ocempies in the geological horizon the position of a similar limestone which is seen opposite Wabash island, on the east side of the Ohio river, in Union countr, Kentucky, and at Carthage, one mile below Uniontown; it las been designated by Owen, in the Kentucky report, as the "Carthage Limestone."

At New Haven, on the Little Wabash river, this limestone is seen in the bank of the river, where the fullowing section was obtained:

Ft. In.

Limpstone "Cinthage"... 4 to 5

Reddish-gray sardstone. .. 4
Gray micaceous sandstone.. 4
Silicions sliale. 5
Low water... $\frac{\text { ? }}{32} \frac{6}{6}$
The limestone has here, also, a paueity of fossils; Productus longispimus and large stems of encrinites only were seen. The thin bedded sandstone of this section extends across the river; and though forming a serious barrier to navigation, furnishes a good foundation for a mill dam, which supplies a valuable and never failing power for manufacturing flour and for other mechanical uses.

Quaternary Formation.

Drift and Loess.-The drift deposit occupies the hills and ridges all over the county, resting unconformably on the Carboniferous rocks, and is from ten to itwenty feet thick; composed chiefly of sellow, more or less plastic, clay, containing small rounded gravel with occasionally a granite or trappeat bowlder. The largest erratic rock seen in the county is a granite bowlder, about one foot broad and one and a half feet long, lying by the side of the road from Sharnucetorn to Equality. No fossils, scratches or groove marks were observed in this transported material.

Loess.-The loess is from ten to forty feet thick, and occupies the top of the ridges along the road from Shawneetown to New Haven. This deposit is usually characterized by a whitish-gray calcareous clay or marl, that contains an abundance of land and fresh water shells, belonging to species now living in this State, with the single exception of Helicina occulta, Say, which has not, I beliere, been found living north of Arkansas.

Economical Geology.

Besides the many beds of mineral fuel so extensirely spread over this county, and already discussed in a general way, there is an inexhaustible reservoir of salt brine underlaying its surface.

The brine springs of Gallatin comnty were worked at an early date under the management of army officers, at a time when the General Gorcrumenut reserved from sale all lands containing salt springs. Though there are ontbreaks of saline springs at various places in this county, and though the water conrses, crecks and their branches, and the river, all contain more or less salt, from which circumstance arose the name of Saline river for the priucipal water course which runs throngh the southern part of the county, jef, though thousands of dollars have been spent and fortnnes lost in the search, there has never been any profitable brine fonnd in the county, except on the north side of Saline river, about one mile south of the town of Equality, on section 19, township 9, range 8, and near what is known as the "Half-moon," a semi-circular excavation as its name implies, that was made by the buffalo and other wild animals that congregated in vast herds to liek the muriatiferous earth. The diameter of this remarkable excaration is about one hundred yards, and the depth varies from six to eight feet.

The surface level is from ten to twelve feet below high water mark and the soil is a river or lacustrine deposit, of fine, whitish, clay loam, containing in spots many fresh water shells belouging to species now living. Beneath this allurial soil, the excaration at the "Half-moon" shows a yellowish clay, mixed with gravel and sand, which belongs to the age of the Drift. This locality must have been, likewise, a favorite resort for the Mammoth and Mastodon, huge monsters that roamed in immense numbers over the conntry when the present site of the salt works was an alluring swamp, for there has been fonnd, from time to time, resting ou this drift in the Ilalf-moon, a great many bones belonging to these extinct animals. White examining this locality several small fragments of the enameled erowns of Mammoths' teeth were picked up, the liss enduring parts of the structure having mouklered into dust. The liability of fossil bones to crumble and fall to pieces immediately after their exposure to the air, has been a serious drawback to their eolleetion, and wany valuable specimens hare, in eonsequence, been lost to science for want of knowing how to secure their preservation.

It may not, therefore, be out of place here to state to the eitizens who may be interested in the promotion of geological seience that bits of paper should be glued over the specimen as fast as the parts a re exposed by the removal of the earth, as in this manner highly interesting bones may be removed with safety from their matrix of earth, which without this precaution would drop into useless fragments. A further preservation may be seeured by subsequently boiling the bones or teeth in a weak solution of glue, which will supply the lost animal matter and cement the earthy particles firmly together.

Teeth of the Mastodon were found last summer elose to the water's edge in front of Shawneetown. I subsequently visited the locality aud saw that the bones were inbedded in a shallow deposit of bluish chay, resting upon yellow elay and gravel, which eorresponds in geological time with the bone beds at the Half Moon.

While the Saline salt works were under the eontrol of the General Govermment, the strong brine on the Kauawha had not been diseovered ; consequently an immeuse district of eountry had to receive its supply of salt from these works. The brine then used required from one handred and twenty five to two hondred and eighty gailons to make one bushel (fifty pounds) of salt. Between one and tro thonsand hands were employed, and the yield of the works has been estimated at eighty to one hundred bushels of salt per diem. So greatly was the demaud beyond the power of the works to supply, that, as I am informed, applicauts for salt eoming from Tennessee, Kentucky, Indiana, and other pats of the country were regularly ticketed, and could be supplied only by awaiting their proper turn. No one thought of stopping for the
drainage of the salt crystals, but all were glad to receive it as soon as it was cool enough to handle, and to start off with their pack horses loaded with sacks of salt from which the water trickled as they journeyed home. The fuel required to evaporate such an immense amonnt of water, stripped the country of timber for miles around, and the expedient was resorted to of convejing the brine for miles in mooden pipes, to the rapidly receding forest. The idea never once occurred to these early salt-makers that the five-foot bed of coal throngh which their wells generally were dug, could furnish, ready at hand, a neverfailing supply of the best and cheapest fuel.

After the establishment of salt works on the Kanawha river, in Virginia, and at Pomeroy, in Ohio, the Saline mines could no longer profitably compete in the market; therefore, the works were finally abandoned and every vestige of former prosperity was efficed by the ravaging hand of time, and all efforts to revive the mannfacture of salt on the Saline river, until recently, proved a runous loss to the parties engaged in it.

About the jear 1850 the Saline property was purchased by Messrs. Temple \& Castles, the present proprietors, who soon thereafter commenced to bore a new and deeper well. The first brine was struck in this well at 108 feet; at 600 feet a carity with some gravel was passed, and at 1,100 feet the bore stopped in brine which marks 7.20 of Banme's saltometer, and requires only seventy-fice gallons to make a bushel (fifty pounds) of salt, which is fully as stroug as the brine of the Kanartha. The well is not artesian, but the brine comes within a few feet of the surface and is pumped. Messrs. Temple \& Castles were not present when this well was bored, and no further record was made of the rocks passed through, except noting a five foot bed of coal at forty feet below the surface. This coal outcrops in the river at Equality, also in the hills one mile to the west; and being referable to coal No. 5 of the general section, it serves to establish a starting point, by means of which the horizon of the saline reserroir in the rocks below may be determined with a tolerable degree of accuracy. The first brine at 108 feet is probably in the shales orerlaying the sandstone above coal No. 4 ; the cavity with gravel at 600 feet is about the place of the shale dividing the Conglomerate in two members, as seen at the Battery Rock and elsewhere, while the 1,100 feet may stop in the Chester limestone, which therefore, forms the base of the muriatiferous rocks in this part of the Slate. It is my opinion, also, that the strong brine has its main lodgment in this limestone-finding its way upward by leydrostatic pressure through permeable strata-and that it is more or less reduced in strength by the fresh water which it eneounters on the way.

At the old "Nigger Works," on sec. 27, T. 9, R. 8, the saline spring, as before mentioned, issues out from near the junction of the Chester sandstone and limestone, marking only 4° of Baume-a diminution in strength that may be accounted for on the hypothesis above stated, from the fact that several springs still less brackish break out a few feet higher up the bank, the latter tending to show the liability of the brine to mix with fresh water as it approaches nearer to the surface. The main spring emits a distinct odor of sulphuretted hydrogen, and it may possess important therapeutic properties.

Around these brine springs fragments of Iudian pottery are found in great plenty, some of which are ornamented with bands of vertical lines arranged with considerable taste. To judge by the curvature of some of these fragments, the ressels to which they belonged were not less than four or fice feet in diameter, a size truly astonishing, made, as they appear to have been, of common clay and fragments of freshwater shells. From the large size of these pots it is natural to infer that they were used as evaporating pans by a pre-historic race of salt manufacturers. The rapid destruction of iron evaporating pans, together with their cost, is a heary tax to the modern salt-maker; therefore, if a more durable and less expensive pan could be formed of some kind of clay, it would prove a large saving in the cost of production of salt; and it would be strange indecd should we be able to hit upon a valuable idea from the lost arts of the Mound-builders.

Messrs. Temple \& Castles re-cominenced the manufacture of salt at the "Saline" about the year 1856, from the brine of their new well, which was analyzed for them by Prof. Geo. Cook, of New York.

I was kindly permitted to take a copy of this analysis for publication:

[^23]When I first risited the "Saline" in the summer of 1867 , the arerage produet of the works was from thirty to forty barrels of salt per diem; since then it has been increased to double that quantity. There is a system of manipulations connected with the operation of making good salt from this brine that belongs exclusively to the company. It has been established by an outlay of large sums of money spent in experimenting, by much anxiety, and with failure after failure. Taking this property, with the previous disastrous failures staring them in the face, Messrs. Temple $\mathbb{\&}$ Castles hare built up a successful manufacture which is creditable to themselves as enterprising gentlemen and of incalculable inportance to the county. It is therefore hoped that thes will reap, as they deserve, a rich reward for their meritorious labor.

Thes have adopted the plan of graduation liouses, as in parts of Germany and France, for concentrating the natural brine before it goes into the evaporating pans. These houses consist here of two frames from two liundred to two hundred and fifty feet long, and forty to fortsfive feet high; the longest of the two is divided into two parts, so that the brine may be divided into three grades. Thorn bushes are spread on parallel horizontal frames, arranged from top to bottom of the houses, so that the brine, which is pumped and forced to the top of the frames, may descend in a shower through the whole series. After passing the brine, successively, in this manner, over the three houses, the graduation in favorable weather earries it from $7 \circ 2$ to 905 . From the third house, or after the third graduation, the brine is eonresed to the pans, where the evaporation is completed orer the fire. The fuel used for this purpose is stone coal, mined on the company's land one mile west of the works, from No. 5 coal, which is here of exeellent quality and almost entirely free from sulphur. It is brought to the works on a tram road, and about three hundred bushels are eonsumed in the manufacture of thirty-five barrels of salt.

Iron ore.-More or less clay iron-stone is found with the shales of the coal throughont the county, but at no one locality in quantity sufficient to make it of commercial value.

Building stone.-There is an abundance of good freestone, suitable for building purposes, all along the Gold-hill axis; along Eagle creek and its tribntaries in the south, at Equality, and in the river bank at New Haven. Some members of the Chester limestone might answer for building stone, but as a general rule it will not endure where murotected from rain and frost. A black septaria limestone, belonging to the Coal Measures, which is exposed at low-water in the river bank at Shawneetow, is susceptiole of a remarkably fine polish, and being ehequered with veins of white calc spar, it presents a beantiful appear-
ance, but can only be obtained in small pieces, owing to its almost inaccessible position and extreme brittleness.

Quick-lime.-The Chester limestone, in the Gold-hill ridge, is a rich source of excellent lime. The limestone over No. 7 coal, and the Carthage limestone in liound Pond hill, and at New Haven, will make good lime also, though not generally so pure as the former.

Potters' clay,--The fireclays forming the bottom of the coal beds in this connty that have been tried do not, I an told, make a good potter's clay, but there is reason to believe that the search has not been thorongh, and that some of the clays on the Saline river will be found slited for manufacturing the ordinary stoneware of commerce. Plastic clay for bricks can be had in most places over the county.

Soil and Agriculture.-The soil in the eastern part of the county is principally derived from sediments deposited by the inundations of the Ohio river, and by washings from the Qnaternary and Carboniferous strata of the ligh ground. It is in most places a sandy loam, rich in elements of fertility, and is especially adapted to growing Indian corn.

The bottom lands along the main Saline river and its main tribntary, the Nortlı Fork, though partaking, in part, of the character of the Ohio river bottom land, contains a large proportion of a light-colored, fine sedimentary clay loam, which is compact, and tenacious of water, and therefore difticult to bring into good cultivation. If properly worked, it would bring good crops of grain, provided the season is favorable; but a very dry or a very wet season is peculiarly injurious to crops on this soil. This latter variety of soil has been derived principally from the argillaceous shales of the Coal Measures, and its general want of fertility is owing to its physical condition, and not to any deficiency in the proximate constituents of plant-food. Underdrainage would prore an efficient means of hringing land of this deseription into a high state of cultivation. The soil of the yellowish, gravelly, clay land in the north-west part of the comnty, is derived from the drift, and is formed of the delnis of the rocks rasped and ground to fragments by ancient rivers of ice, which moved over the northern part of this continent with suail like pace, during that period of the earth's history known as the Glacial epoch. This third variety of land will grow all the cereals, grasses and clover well, but it is better adapted for small grain than for corn, and it is particularly good for clover.

On the ridges between Shawneetown and the Little Wabash river there is a calcareous clay soil, derived from the loess, which, in an agricoltural point of view, ranks next to the sandy loam of the river bottom lands.

Tobaceo, sorghum, and some coiton are cultivated in this county; but the principal erops are the cereals and clover. Apples, peaches and
pears grow remarkably well, and the taste for orchard-culture is reported to be constantly on the increase. As yet but little attention has been paid to the cultivation of the grape. Mcssrs. Temple \& Castles, at the salt works, are cultivating a young rineyard containing about eight hundred vines, of which the greater number are Concord, with some Catawba and Delaware, together with a few of the more recent varicties, such as Norton's Virginia, Ionia, Israella, Ives' seedling, and Diana. The Concord and Catawba succecd remarkably well; the other varieties have not ret been sufficiently tested to be pronounced upon with certainty. While enjoying the kind hospitality of these gentlemen I had an opportunity to make a substantial test of the wine which they made from their rineyard, and feel satisfied that it will compare favorably with the native wines of the professional wine maker.

Timber.-This county is abundantly supplied with all the usual varieties of trees found in this latitude. On the river bottoms, particularly in the eastern and northern part of the county, large black walnut, white, reỉ and black oaks, hickory, and poplar predominate. On the high lands, in other parts of the county, oak and hickory are the principal timber; on the flat, wet land, post-oak prevails; and along some of the sloughs and ponds there is a fine growth of large cypress.

CHAPTER XYII.

SALINE COUNTY.

Saline county is bounded on the north by Mamilton eounty, on the east by Gallatin, on the south by Pope, and out the west by Williamson.

In shape it is a parallelogram and embraces about eleven townships; therefore it has an area of about three hundred and ninety-six square miles.

Its topography is marked by the Gold Iill axis, which, beyond the boundary of Gallatin county forms a conspieuons elevation in the southeastern part of this eounty, where it is known as "Prospeet Hill." The hight of this hill, as determined by barometrical measnrement, is five hundred and ninety feet above the low water of the Saline river. Though the Gold Hill axis disappears beneath the lowlands to the west of this hill, it is again seen as a eonspicuous ridge of massive eonglomerate sandstone in the south-western eorner of the county, near the village of Stone Fort.

Viewed from the summit of Prospeet Hill, the northern, middle and western part of this county appears to be perfectly level, but it is nevertheless much broken by lrills and ridges, that range in elevation from ten to eighty feet above the high water mark of the streams. However, a large portion of the eounty is level, and much of the land may be termed "wet," with here and there anot inconsiderable swamp. Harrisburg, the eounty town, is situated nearly in the geographical eenter of the connty, and is built on a hill fifty to sixty feet high, formerly known as "Crusoe's Island," from the fact that it is entirely surrounded by bottom land which is subject to imundation during periods of great freshets. The approaches to the town are consequently made by levees. Notwithstanding the apparently unfarorable situation, Harrisburg is a thriving town, and is looked upon as one of the healthiest localities in Southerm Illinois. The Vincemes and Cairo railway rums through this place, and makes it a point of comsderable commercial importance. The principal water-comse is the Salme river, which, with its tributaries, the South Fork and Little Saline, drain the southern, while the other two main tributaries, the North Fork and Middle Fork, drain the
remainder of the county. These streams, as well as the smaller tributaries, have generally low banks, which are occasionally orerflowed, at whieh times the water spreads over an extensive area of what is termed "bottom land."

Geological Formations.

The geological formations of this county are the Chester limestone and sandstones forming the upper part of the Lower Carboniferons series, the Millstone-grit and lower Coal Measures, and the drift or glacial deposits of the Quaternary or Post-Tertiary epoch.

Chester Group. -The rocks belonging to this gronp are seen on the north side of a ridge, in the sonth-eastern part of the eounty, where they have been bronght to the surface by the Gold Hill axis, and basset at a high angle to the north. The following section was taken at Prospeet Hill, which is supposed to be the highest point on this ridge, and it will serve to show the relative position of the Millstone-grit with reference to the Chester group:

Section taken at Prospect Hill, on section 10 ? township 10, range 7; arerage dip of strata 10° south :
Millstone-grit. a pebbly samtstone. .. 160
Covered space, sandstone ? helonging to the Chaster group ... 120
Archimerles limestone .. 2
Green marly shale and corered space... 20
Gray limestone, "case rock." .. 25
Covered space 120
Quartzuse-saurlstone... 20
Cherty-limestont 30
Coverul, sandstone ?... e_{0}
 $\overline{517}$
It was found impossible to determine with accuraey the thickness of the members maler the Millstone-grit at the place where the abore seetion was obtained, or in fact at any other locality along the line of dis. turbance in this comnty, on account of the tumbled masses of rock which lie strewed over the side of the momutain in such a mamer as to admit of only an occasional glimpse of what exists beneath them; however, I believe that this section will convey a pretty aeenrate idea of the sequence of the stratia, and gives the total thickness of the exposed rocks of the Chester group, which camot fall far short of three hundred and fifty-seren feet. Neither in the lower member of the gronp, nor in the gray limestone containing the "Cave," coukl any trace of fossils be found, but in the band of limestone exposed above the green marly shales, a fragment of Arhimenes was found associated with entrochites.

There is at Prospect Hill, in the limestone marked "Cave rock" in the above section, a subterrancan eavern, which has acquired considerable loeal notoriety. Aecompanied by Mr. Temple, one of the proprietors of the salt works (to whom I am under many obligations for acts of kindness), I undertook to explore this eare, but we forgot to supply ourselves with candles before leaving the salt works, therefore we had to undertake the task with at glass eoal oil lamp, which was proeured from a farm honse elose by, but with a light so liable to aceident a partial examination was all that it was deemed prudent to make. The eutrance is through a hole not more than two feet high, by three feet broad, down which the descent is rather abrupt to the bottom of the cave, where we found ourselves in a narrow, tortuous gallery, averaging from three to five feet in width and twenty feet in hight. We went along the main gallery and a number of its branches and cut-offs, until it was supposed that we had penetrated at least a quarter of a mile beyond the entrance, still we saw no end nor any appearance that seemed to indicate that the exploration might not be contiuned mueh farther, yet it was thought advisable to return on account of the danger to be encountered, should we hare the misfortune to break the lamp, for notwithstanding every branch or turn that was passed has been marked by some thoughtful explorer with the figure of an arrow scratched on the limestone wall to indieate the direetion to be taken in returning, nerertheless this unfailing guide would be of no avail amidst the intense darkness of subterranean passages. The walls and roof were eovered with moisture, but the floor was quite dry. It is said that the eave usually eontains a spring of cool sulphur water, and we hoped to obtain from it a refreshing drink, but no water was seen along our route; the bed of the sulphur spring pointed out by Mr. Temple, was now dry, probably from the effeets of the severe drouth which had prerailed in this county for several months. A great many bats were observed elinging to the roof, with their heads hanging down, some of which were alarmed by the proximity of our lamp, and taking wing, whizzed about our faces, as if to scrutinize elosely the enemies who dared to penetrate into their dark abode. The occasional widening of the galleries formed small, irregularly-shaped rooms, some of whieh gave evidence of having been at one time rery beautiful, but the stallactites with which they were once adorned, have nearly all been broken off by thonghtless visitors, who thus wantonly destrosed the sublime arehitectural works of quaint and inimitable patterus that were brought into existence during long periods of ehemical aetion, in Nature's great workshop. One cannot help expressing deep mortification on contemplating the ruthless and blind destruetion of that which makes these subterraneous grottoes beautiful as Aladdin's garden, and the defacers merit universal condemnation.

No thorongh exploration has yet been made of this cave; therefore, as it appears to be quite extensive, it is possible to discover chambers or roous surpassing both in size and decorations those at prescnt known.

While iu the cave diligent search mas made, but no trace of organic remains conk be fonnd in its walls, which are formed of decomposing limestone.

Much still remains to be learned regarding the effect of the disturbance which has brought the Gold Hill strata to the surface, as to the influence which it may have had in modifying the shape of the coalbasin, for here as at other places before mentioned, on the north side of the ridge the coal bearing strata are seen apparently undisturbed.

A very good mineral spring issues from abont the junction of the limestone and sandstone, on Mrs. Ross' place at the foot of Prospect Hill. It furnishes a bountiful flow of c'ear, cool water, that possesses a faint odor of sulphuretted hydrogen gas, and leaves a white sediment on the "gum," and on the sides of the little branch to which it gives rise. The reputation which it has acquired is no donbt well deserved, and if suitable buildings were erected to accommodate the public there is reason to believe that it would become a place of considerable resort during the summer months, especially for invalids suffering from general debility. Its medicinal effects are most likely to be alteratise and aperitive.

The Lower Carboniferons limestone appears abore the surface also, on secs. 36 and $3 \bar{n}$, T. 9, R. 7 , near the line of Gallatin county. The hill abore it at this locality is eighty feet ligh, and exhibits the following succession of strata:

The limestone in the above section dips to the sonth at an angle of 40°. It is a had close-textured rock, traversed by veins of white calespar that wonld make it a beautifnl marble, if polished.
Coul Measures.

The Millstone grit, or Conglonerate, as it is indiscriminately called by geologists-lies in this comnty conformable to the Chester group, and is at the base of the prodnctive Coal Measures. Its position has already been indicated in the section given of the strata at Prospect Hill, where it is prineipally represented hy a massive redish-brown sandstone that contains, at miny places along its exposure, small rounded pobbles of qnartz. It is sometimes divided into two members by a fer feet of
shale; but I was unable to deteet this parting at Prospeet Hill, probably.on aecount of the tumbled masses of roek and debris whieh may have eovered it up.

The Conglomerate is also seen in the south-eastern and south-western part of the countr. On see. 34, T. 10, R. 6, at what is known as the "Stone Fort," it is a massive pebbly-sandstone sixty to serenty feet thiek, where it forms an abrupt escarpment on the south face of the ridge, 150 to 160 feet above the Little Saline river whieh flows along the foot of the ridge. This ridge appears to be a continuation of the Gold Hill ax́is; and so far as I have been able to diseover in traversing sits eourse, the strata present here the appearance of an anticlinal axis, as they dip about 10° to the northward.

The name of the latter locality is derived from an old fort like inclosure built upon the highest part of the Conglomerate. It contains an area of three or four aeres, which is surrourded by a semi-cireular wall of sandstone three or four feet high. The roeks of which this wall was built furnish no evidence of having been quarried, but on the contrary, present the appearanee of having been loose stones pickerl from the surfaee and thrown into the wall-heap without any attempt at order in their arrangement. This ancient fort was well protected on the south side by a bastion or perpendicular wall of Conglomerate sixty to seventy feet thick on its exposed rertical face. In this "fort" we have undoubtedly another monument of a pre-historic race of men who inhabited this Continent at so remote a period that no clue to their history can be obtained from the existing raees of Indians-the tradition of whose forefathers give no aceount of the Mound and Fort-builders.

While standing on the parapet of this aneient strong-hold, the mind naturally wandered baek over the immense lapse of time since this fortress or eitadel was thronged with beings who were filled with hopefulness, or oppressed with all the cares and anxieties of life peeuliar to man, and who, no doubt, felt proud of the supposed security against their foes obtained by the selection of so strong a position. Here probably they placed their sentinels to gire the alarm on the first approach of an enemy; here likewise, the elite of the community may have assembled to eontemplate the grand and beautifui seenery around their strong-hold; for, then as now, the Little Saline river had cut its passage through the Conglomerate ridge, and its banks were strewed with cyclopean blocks fallen from the parent mass abore.

Coal No. 5.-This bed of coal is the fifth in the ascending order on Saline river in Gallatin eounty, but in Saline eounty it is the lowest workable seam that I have been able to identify. It is opened and worked by Messrs. Temple \& Castles, on sec. 24, T. 9, R. 7, one mile west of the salt works, where it outcrops on the east side of a short
ridge beariug a little east of south from Equality. The mouth of the mining entry is twenty feet above high-water of the Saline river; and as the same bed was passed through at forty feet below the surface in the salt well one mile direetly east of this entry, it shows the dip to be to the east at the rate of seventy feet per mile, if an allowance of ten feet is made for the place of high-water mark above the salt well. The following seetion'was made at this mine, starting from high-water of the Saline river.

Seetion at Messrs. Temple \& Castles' eoal mine on see. 24, T. 9, R. 7. Coal dips erast at the rate of seventy feet per mile:

About 300 bushels of this eoal are eonsumed daily at the salt works, under the evaporating pans and boilers. It appears here to be free from the sulphur bands so eommon in eoal No. 5 at Equality and other localities, consequently it has aequired a high reputation for smithing purposes. There is in the roof shales an abundance of compressed marine shells eoated with yellow pyrites of iron, whiell gives them the appearanee of having been gilded. They are, however, for the most part in a bad state of preservation, and rapidly decompose after exposure to the atmosphere. The shells most common in this shale are: Aviculopecten rectilaterarius, Productus longispimus, Nautilus decoratus, Nueula rentricosa? and Orthoeeras Rushensis.

There is an outerop of coal dirt on the side of the ridge opposite to the above mine on see. 25, T. 9, R. 7, that is referable, also, to eoal No. 5. No opening las been made to test the thickness and quality of the coal at this outcrop, but it is my opinion that No. 5 eoal will be found thinning ont to the sonth-west and west, and will in the latter direetion almost, if not entirely, give out after passing west of the third tier of sections in range seven; and in the former direction it is represented in the vicinity of Whitesville by only an eighteen-inch seam.

At the outcrop on sec. 25 it is mulerlaid by several feet of fire-clay, which contains bands of gray ironstone of a charaeter similar to that which is seen under the coal at the salt works, only it appears to be in much larger quantity at the former plaee.

At the erossing of Saline river, on sec. 26, T. 9, R. 7 , the gray silicions shales, commonly over No. 5 eoal in this part of the coal field, onterop
in the bank of the river, and may be traced for half a mile or more along the stream.

West of the mincs, at the salt works, and on the extreme western side of the ridge in which those mines are situated, at Mr. Whissen's, on sec. 23, T. 9, R. 7, a coal that is reported to be four feet thick was struck in digging a well. On account of the mineral character of the water no use was made of this well, and it is now filled up, but pieces of coal can still be found mixed with the debris of gray and black shale that was thrown out at the time of digging. The agreement of the shale and superimposed sandstone with the rocks seen at Equality, and on the east side of the same ridge abore No. 5 coal, can leave no doubt as to its synchronisn with that bed. The following section gives the succession of rocks in the hill that lie above the coal in Whisson's well:

Ft.
Reddish, coarse-grained sandstone.. 60
Silicious shale... 20
Gray, argillo-silicious slale... 15
Black slate, (reported in well)...
Coal Ano. 5, " " .. 4
101
About one mile south of the above locality a four-foot bed of coal is reported in a well at Mr. Taylor's place, which I refer also to No. 5.

Coal No. 7.-This is the next coal in the ascending order that was scen in Saline county.

At Equality, on the eastern edge of Saline county, Nos. 5, 6 and 7 coals are seen in regular scquence, but westward the two lower beds are replaced by slales, and No. 7 increases in thickness.

Three and a half miles west of Equality, on sec. 15, T. 9, R. 7, at Mr. Grear's, coal No. 7 was passed through in sinking a well. It is said to be four feet thick, and is overlaid by a limestone as at Equality. In some fragments of the limestone lying around the well a few fossils were detceted: Athyris subtilita, A. Royisii? Spirifer camcratus, and Lophophyllum proliferum. In a ravine about fifty feet east of the well the limestone outcropped, and is overlaid by shales and shaly sandstone, as follows:

Between Mr. Grear's place and Harrisburg No. 7 is fomd on some of the low ridges, but the greatest part has been remored by denudation, though there may be outcrops of it before reaching the Horse swamp and the broad bottom land along the middle fork of the Saline river.

The thim-bedded rock in the mound-like hill upon which Harrisburg is built is in part the representative of the sandstone over No. 7 coal,
and in confirmation of this Dr. Pearce informed me that he had a well dug some years ago in the bottoms on the west side of the town, which struck a bed of coal at the depth of eighteen feet. Plcuty of water was obtained, but it was so contaminated with sulphurous salts from the coal that it was considered unhealthy, and the well was filled up, without previonsly testing the thickness of the coal.

One mile west of Harrisburg, oll Mr. Dove's farm, a coal was drilled into at the depth of twenty-one fect; but here again nothing was ascertained in regard to its thickness. It is possible that immediately around Harrisburg, to the north and west, coal No. 7 will prove to be ouly a thin scam. However, at Mr. Warfield's, six miles north-west of the town, on sec. 10 or 11, T. 9, R. 5, there is an ontcrop of coal in the bank of Bankston creck, which is reported to be four to five feet thick. This unst be No. 7, for though I was unable to sec the coal, on accou nt of high water, the saudstonc, which lies above it, was traced from Harrisburg to the north-westcrin corner of the comnty.

The thick beds of coal, in this countr, are found in the sonth-wester in part, chiefly between the South fork of Saline river and the parallel of township 8. Onc and a half miles south east of Iarrisburg, on sec. 26, T. 9, R. 6 , the first place at which coal No. 7 is seen west of the middle fork of Saline river, is at Mr. Ingram's mine, being readily recognized by all the peculiar features eharacterizing that bed at Equality, and at the other localities referred to in the report on Gallatin county, namely: a limestone above the slate roof, a thin band of bisulphide of iron nearest to the top of the coal, and a parting of clay nearest to the bottoin of it.

At Ingran's mine No. 7 is five to six fect thick. The entry from which the eoal is mined runs with the dip of the strata, which prevents the outward drain of the percolating water, and the mine is consequently wet and disagrccable to the workmen. This inconvenicnee can readily be avoided by a small expenditure in opening another entry on the north side of the lill, where the drift may be carried along the rise of the strata, and thus sccure a natural drainage.

Section taken at Ingram's mine-dip 3° east of north :
Soil and drift. .. 10
Thin-bedded, soft sandstone... . . 20
Gray limestone.. 8 . 8 to 10
Conl, Ň. 7.. 5 to 6
Covcred slope... 5
High-water, uiddle fork of Siline river.
51
One mile west of Lngram's minc, on sec. 27, T. 9, R. 6, M1. Norman is mining No. 7 coal, both by stripping and drifting, on opposite sides of the hill. The coal here has abont the same thickness as at the former mine, with a similar snecession of strata in the hill above the drift, but
the limestone is reduced to four feet, and contains a few fossil sliells badly preserved, of which Spirifer cameratus, Athyris subtilita, and A. Toyissii? only could be determined. The quality of the coal at these two mines is not of the best, as it is more or less contaminated with sulphur, which reuders it unsuitable for blacksmithing. It has, however, a good reputation as a grate eoal for household uses.

From Norman's No. 7 ean be traced, on the parallel of township 9, west to the comnty line. Within this district it has been worked by struping at a. great many plaees, where it lies exposed in the ereek bottoms. At these exposures the limestone is not always visible, but it may be seen all along the ridges.

Only a few of the mines west of Norman's, where the eoal is worked by stripping, have gone to the bottom of the bed; this is owing in a great measure to the interference of water, when the excavation is carried below the level of the creek bed, and partly to the faet that the muper part of the eoal bed eontains less sulphur. It was fomd impossible, therefore, muder sueh circumstances, at most of the mines, to get the exact thickness of the eoal, but the general impression is that it will arerage about six feet.

At Miller's mine, on sec. 3, T. 9, R. 5, and at Russel's mine, on sec. 29, of the same township and range, the limestone overlaying the coal forms in plaees a eonispicnous wall fire to six feet thick, along the valley of Coal creck; it is a hard gray roek containing a few fossils, including Proluctus Iongispinus, Spirifer camerutus, Athyris subtilita, Produetus semi-reticulatus, and Chontes mesoluba.

The Miller coal has a jet black color, is very free from sulphur and has a good repatation in the neighbothood for smithing pmrposes.

At Holeman's mine also, on section 29, of the above township and range, coal dirt is seen above the main coal, in the position oceupied by No. 8.

In the bank of the Little Saline river, on see. 23, T. 10, R. 5, at Hay's mill site, there is an exposure of the coal with a thick parting of clay, which on my first visit to the locality I was disposed to refer to one of the lower coal beds of the general section; and I then held the same opinion with regard to the coal bed in the sonth-western corner of the eounty, at the village of Stone Fort. But suluserquent investigatious have proved to my satisfaction that there is but little probability that any bed of coal of workable thickness ean be found below No. T, west of the line of range 7 in Saline county. I now, therefore, with still some donbt on the subject, refer the former coal to No. 7, and the latter to No. S.*

[^24]The section obtained on the Little Saline river is here given :

The Little Saline river, after cutting its way through the Conglomerate ridge at the oll fort, as before mentioned, runs through a low bottom until it reaches the above mill site, and forms its junction with the South Fork of the Saline river a quarter of a mile beyond.

In the south-east part of Saline county and on the south side of Prospect Hill, No. 7 coal outcrops at several places and has also been struck in digging wells. As yet no effort has been made to open mines in this part of the county, consequently it is difficult to determine definitely in all cases the synchronism of the seams. At Mr. Nicomb's pottery, on sec. 14, T. 10, R. 7 , there are two seams of coal partially exposed in the face of a bluff bank of a creek, one of the head waters of Lagle creek. The lower of these lies in the bed of the creek, separated from the upper seam by eleven and one-half feet of argillaceous shale and three and one half feet of good fire clay. An opening which had been made to test the thickness and quality of the lower bed is now filled up by the caving in of the bank and washings of the creek; therefore no opportunity was afforded of seeing or measuring it myself. Mr. Nicomb, however, who made the opening and mined the coal for burning at the pottery, informed me that it was two and a half feet thick. From the marked appearance of there having been a slide in the bluff I was, at first, rather disposed to believe that the lower coal was in fact only a portion of the seam above, broken off and brought down by the sliding of the shate; but Mr. Nicomb is confident that this cannot be so, as they neither agree in thickness or quality, the lower seam being as he says a good burning coal, and has beneath it a very dark colored fireclay that cannot be nsed at the pottery; whereas the fire-clay beneath the npper seam is light colored, works well and not only makes good stone ware, but is, likewise, excellent for fire-brick; in fact he considers it the best potters' clay in this part of the coal basin. The coal is only about one foot thiek, of inferior quality and resembies the coal at the village of Stone Fort, being composed principally of earbonaceons shale, alternating with thin bamls of bituminous coal. Without being fully satisfied, from the want of further evidence, as to the truth of the conclusion arrived at, I am nevertheless inclined to
believe that the upper seam of coal at the above locality is No. 8, mud the lower one No. 7.*

Section of the bluff at Nicomb's. Dip of strata, 5° N., 20° E.
Ft. In.
Schistose sandstone .. 5
Coal rash, No. 8 ? .. 1
Fire-clay, good for stone waro and fire-brick ... 3 . 3
Aryillaceons shale .. 11 6
Coal No. 7 ? reported to be ... $\frac{2}{\frac{6}{2}}$
About three-quarters of a mile south-west of Nicomb's the following section was obtained, the dip of the strata being the same as at the above locality :

The sandstone in this section, which is inferred to be the Conglomerate, on account of finding a few pebbles in it, was followed along the dip until it disappeared beneath the strata at Nicomb's.

Coal No. S? The coal at the village of Stone Fort, in the south-western corner of the county, is referred to this number and horizon, but not without some doubt on the subject, for it is jnst on the margin of the basin, where the seams are subject to much variation, both as regards the quality of the coal and the thickness of the strata. Therefore, unless it is seen in counection with No. 7, especially where so little has been done to develop the coals, it is not always possible to distinguish the former from the latter bed. At the village of Stone Fort the strata dip a little east of north at an angle of 20°, which, taken in comection with the dip of the rocks at the old fort, about two miles to the east, appears to indicate that this village also is on the prolongation of the Gold Hill axis of Gallatin county. The following section was taken at the village of Stone Fort : \dagger

Ft. In.

Saudstone.. 15

Fellowish argillaceous sbale and jellow clay ... 1 . 6
Coal rash, No. 8 ? .. 3
Friable silicious shale ... 10
Soft Haggy stone in cube-like blocks .. 2

* Tbese are probably divisions of coal No. 1 or 2, both of whicb are occasionally divided, forming two distinct seams.
A. H. W.
\ddagger This section may be compared with that given in tbe report on Williamson county, on page 114, the section being in the blutl back of the village of stone Fort now called Bolton, whero cuals 2 and 3 have beon openod in the face of tho blutl.
A. H. W.

The sandstone at the top of this section forms a cliff that skirts the easteru edge of the village and bassets to the sonthward at an angle of 20°. It is a whitish brown micaceous rock, easily quarried in large blocks that can be split with wedges, in pieces of any required size. The facility with which this stone can be worked, its beauty and dura. bility have brought it into great requisition for building chimneys, foundations to houses and various other kiuds of masonry, for all of which it is well adapted.

The coal which is marked No. 8? has been imperfectly opened on the basseting face of the clift, and some coal taken out. The quality is not good for fuel, and consists of alternate layers of bituminous coal and carbonaceous, soft, fissile shale, largely composed of fragments of obscure plant stems, and belongs to a class known as coal rash. Though it is not good for burning it may prove to be a valuable fuel for smelting and foundry use, as it appears to be remarkably free from sulphur. To properly test and work this coal a shaft shonld be sunk on the north-eastern cdge of the village, where it can be mined on the rise of the strata, not on the pitch, as has been attempted. By this means there would be a natural drainage for the water usually met with in coal mines, and admit of operations being carricd on with ease and comfort to the miners.

In the north part of Saline county there are two or more thiu seams of coal of indifferent quality, and of but little, if any, commercial value; consequently there has been scarcely any steps taken by the citizens towards their development. In the neighborhood of Gallatin, near the north-western corner of the county, on section 9 , township 8, raige 6 , Mr. L. Karns has opened a thin seam of coal, and was endeavoring to work it by drifting into the liill.

This coal may be traced all through the northern part of the county, and is not found at any locality to exceed one foot in thickness.
The section at Karns' mine is as follows; dip of stratia $5^{\circ} \mathrm{W}$. of S.:
 Yellow, fertuginous, brecciated limestone, very silicious.. 8

Coal ... 8 in. 1
Bluish slaale, with stens of plants. .. 5
The limestone is very impure; it has a reddislr-brown color derived from the large amount of oxyd of iron with which it is contaminated. It las a brecciated appearance, and seems to be destitute of fossils; in the former respect it resembles very much the brecciated limestone minder the sandstone, at Merom, on the Wabasli river, above Vincennes.

A limestone that is more or less impure, but not nearly so thick as the limestone in the abore section, can be traced through the northern part of the county, usually in comection witl a thin seam of coal; the
latter is referred to the same horizon as the coal at Karns' mine. The intercalated limestones, in the space between the sandstone and the limestone above No. 7 coal, in the northern part of Saline county, possess a variable character, and seldom exhibit the same features at any two localities.

Drift.-The drift in this county is characterized by a yellow plastic clay mixed with small gravel, with occasionally a granite bowlder as large as a goose egg, more rarely as large as a man's head. In some places the clay is replaced by sand, which forms the only source of supply in this county for the sand which is used in mortar for plastering houses and for masoury. The drift is from ten to twenty feet thick, and extends all over the county, except where it has been removed by denudation or other canses.

Minerals.

Copper.-I was informed by Dr. Suith, a very intelligent and observant gentleman, who lives near Gallatin, in the northern part of the county, that he had at different times found small pieces of native copper both in this county and the sonthern part of Hamilton, in ravines or washed places, and in the beds of branches. The doctor spoke of a gentleman who had picked up in the bed of a branch, near Gallatin, a lump of native copper larger than a hen's egg. The latter specimen is still owned in the town, and Dr. Smith tried to procure it for my inspec tion, but the parties to whom it belonged were away on a visit, and it was locked up in their residence. From the malleability and other characteristic tests to which the specinens were subjected by Dr. Sminn, they are proved beyond a doubt to be native copper.

The circumstances comected with the finding of small quantities of native copper in Hamilton and Saline connties, clearly indicate that it came from the drift deposit. Therefore, it will be useless to expend time and money in searching for valuable mines of copper in this countr, The drift, as before stated, covers a large portion of Saline county, and is composed of material transported by glacial agency from and beyond the copper regions to the northward.

Solt.-At an earls period, when the agents of the General Government were manufacturing salt at the Saline works, in Gallatin county, some speculative adventurers dug a well on the Middle Fork of the Saline river, about two miles east of Harrisburg; it is reported, that at the depth of eighty feet they found a brine from which a considerable quantity of salt was made. At this late day, it is impossible to obtain any information respecting the quality or number of gallons which it required of this brine to make a bushel of salt, but there is reason to
beliere, from the geology of the district, that brine, just as pure and strong as that now worked at the "Saline," can be found by boring in the vicinity of Harrisburg. In order to test the matter, the bore should penetrate the muriatiferous shales which lie below the Conglomerate. On the Middle Fork of the Saline river, or on the bottom land at Harrisburg, a bore would start from a geological horizon fifty to sixty feet above the wells at the "Saline," yet, it is believed that the great salt repository will be reached at a much less depth than at the "Saline," from the thiming out of the subordinate coal strata.

Building Stone. -There is an abundance of good limestone for building purposes in the south eastern part of the countr, where the Lower Carboniferous rocks have been bronght to the surface by the Gold Hill axis. In the south-western part there is a durable and handsome sandstone, which is rery extensirely used for building foundations to bouses and for chimneys. It can be obtained in large blocks and is easily worked. The sandstone in the northern part of the county answers very well for ordinary building purnoses, but is not so good as that found in the south-western part.

Quicklime.-The Coal Measure limestone, which orerlies No. 7 coal, makes a very fair article of dark lime at some localities, but generally contains too large a quantity of impurities, aud owing to the extra cost of quarrying, it will never be extensively used for that purpose. The Lower Carboniferons limestone, at Prospect Hill, in the south-castern part of the county, can furnish a bountiful supply and of execllent quality.

Plastic Clay.-Good clay, suitable for fire-brick aud stone ware, is found in the south-eastern part of the county, and Mr. Niconib has established a pottery there and is making out of this clay, both fire-brick and stone ware.

Good clay, for making the ordinary brick used for building purposes, may be found in the drift deposits throughout the eounty.

Timber.-For the most part Saline county is well timbered and can furnish a large quantity of black walnut, white oak, cypress and poplar lumber. Besides the trees suitable for lumber, there is the usual varicty for this latitude of forest growth.

Agriculturc.-The soils of this county are very similar in their physical features to those of Gallatin comnty.

Along the water courses there is, in places, a black sandy loam, very rich in organie matter, which supports a fine growth of black walnut, poplar, large oaks, hickory, (log wood and spice bashes. 'Then, there are extensive tracts, known as post oak flats, which have an ashen-colored, close, compact clay soil that holds water like a jug. When properly ditched and drained, the latter soil is highly productive, being rich
in all the elements of fertility. Without under drains, however, it will require much labor to bring it into a productive condition, and will need to be subsoiled to as great a depth as it is possible to attain with the plow. Though not naturally as productive as the first mentioned soil, which ranks equal to any in the State, it will, nevertheless, prove fully equal to it for growiug small grain, provided it is under drained. An intermediate soil, which ranks between that of the post oak flats and the sandy loam, is known as the "crum land," which, like the former, requires ditching and draining to bring it into good condition.

The foregoing soils have all been derived from the disintegration and wearing away of the sandstones, argillaceous shales and calcareous rocks of the Coal Measures; but there is still another characteristic soil, which occupies the greater portion of the county, that is composed of fellowish tenacious clay and sand, with more or less rounded gravel and small bowlders. On the highest points and on the low rolling land, the drift soil has a depth rarying from ten to twenty feet or more. This is a good, strong soil ; but, owing to the tenacious nature of the clay which forms its principal part, it, also, requires more or less draining. It is particnlarly good for small grain and clover, and grows fine crops of tobacco. Considerable attention is paid to the cultivation of the latter article in Saline county, and there are large warehouses at Gallatin and Raleigh for the purpose of preparing the tobacco for shipment.

CONClusion.-Saline county is rapidly filling up with immigrants from other parts of the country and bids fair to be a populous and wealthy connty. The Vincennes and Cairo railroad runs nearly diagonally through the center of the county, and will materially aid its commercial prosperity by opening a market for its vast stores of fossil fuel.

To Dr. Mitchel, of Harrisburg, and to the citizens of the county generally, I here tender $m y$ sincere thanks for their kind assistance in promoting the interest of the Surrey.

CHAPTER XIX.

LIVLNGSTON COUNTY.

This county comprises the eongressional townships Nos. 27, 28, 29, and 30 north, and ranges east of the third principal incridian Nos. 3 to 8 both inclusise, making 24 townships, with 3 townships and 3 half townships additional on the south comprised in townslip 26 north, and ranges 6,7 , and 8 east; and township 25 north, and the north half of ranges 6,7 , and 8 east, equal altogether to $28 \frac{1}{2}$ townships or 1,026 square miles. This is inereased, however, about 18 square miles owing to the north tier of sections in the three half townships being two miles long from north to south, making the aggregate of the eourty 1,044 square miles.

The Big Vermilion river, rumning from south east to north-west through the comuty, divides it into nearly equal parts, and this stream affords the only means within the comity of determining its geology below the surface, excepting the eoal shafts and a few borings.

These data would be meagre without the aid of the exposures of LaSalle county north of it, which furnish the key to the geology of Livingston.

The great antielinal axis which erosses the Illinois rirer near Utica, in LaSalle eounty, and whieh is very elearly defined in the north bluff of the Illinois valley, having its eentral line two miles west of Utica and a direction of soutli 33° east, extends through Livingston county, its cen tral line lying a little east of the Vcrmilion river-the eourse of this stream eridently having been determined by the influence of this axis, with which it is, im its general dircetion, nearly or quite parallel.

After a full imvestigation of LaSalle county, Livingston county in its gemeral features is easily determined ; yet there are details with respect to the Coal Measnres-particularly in that portion of the eourty lying east of the Vermilion-that ean only be aseertaired as time develops them througlr the aid of coal shafts and borings.

Along the Vermilion and west of it the Coal Measures appear to be as complete, generally, as fourd in the corresponding part of LaSalle
countr. Soon after passing to the east of it the disturbance of the axis referred to, appears.

Almost the entire area of the country belongs in the Coal Measures, the exception being a small strip in the sonth-east part, equivalent to about one and a half townships in area. The eastern boundary of the Coal Mcasures within the county has been determined approximately. Prof. F. H. Bradley traced the line in Will and Kankakce counties; in the latter, rumning sonth through the centre of the second tier of sections east of the west line of that county to the south line of sec. 32 , T. 31 N., R. 9 E., thence bearing il little west to the centre of sec. 32, T. $30 \mathrm{~N} ., \mathrm{R} .9 \mathrm{E}$. No further evidence of it could be obtained without bor. ing, and it was considered that a straight line from this latter point to the rim of the basin-as determined at Chatsworth-would be a close approximation to correctuess. This would make the county line cross the outcrop at the sonth.east corner of T. 29 N., R. 8 E., and thence a straight line to Chatsworth in the sonth-west half of sec. 4, T. 26 N., R. 8 E. From thence, whether this line continues in the same direction to the south line of the county, or whether it bears eastward, is yet nuknown. Some indications of the northern boundary of the Coal Measures in Iroquois county farors the latter supposition.

The general character of the surface of the county is rolling prairie and rery little broken along theVermilion river, which, with its branches, is fringed with timber. 'The sontl-east part of the county is quite high land. From four to six miles sonth of the county line, in Ford county, about the centre of T. 24 N., R. 7 E., is the highest land of this region, and the Illinois Vcrmilion, the Wabash Vermilion, the Mackinaw and Sangamon rivers all have their sonrces here ncar together.

East of and parallel with the Vermilion is a ridge which may be traced from a point west of Chatsworth, north-westerly into LaSalle connty, into T. 32 N., R. 3 E. This is grayelly and sandy, giving it a distinctive character, as compared with the adjacent prairic.

Drift.-The drift of this county is very variable and thimest in the north-west part of the county-in the vicinity of the Vermilion, and thronghout the course of this stream it is much thimer than away from it on either side. At Pontiac, in the north part of the town, it is eighteen feet : at Fairbury and vicinity it is from a few feet to nincty feet; at Odell, Matson's boring reported it two hundred feet to sand and water, and thrce hundred and fifty feet to rock, showing a great depth of drift. Wells there have a very nnequal supply of water. Some in torn get abundance at five to ten fect, others fail to get water at one hundred feet. In two borings water was obtained at about ninctr-five fcet in gravel, while others got none, showing that the two gravel beds so general in LaSalle connty furnisling water, have run
out, and that here the gravel and sand are in veins rather than stratified over extensive areas. This, however, may apply only to the eastern side of the Vermilion. The well at the station at Odell was down one hundred and thirty feet. Record as follows :

At Dwight, on the N. E. qr. of sec. 12, T. 30, R. 6 E., a boring of twenty-fire feet was reported all clrift, and the well was abandoned at that depth from tools getting fast. Water at fifteen to twenty feet.

A boring was reported in the S. W. qr. of sec. 21, T. 28 N., R. 9 E., of one hundred and five feet in drift, but no statement whether this reached the bottom of it. This is orer the line two miles, in Ford county.

At Chenoa, at the railroad crossing, a well bored one liundred and thirty feet stmek water at ninety feet, and at one huudred and thirty feet, both rising to within thirts feet of the surface, or so reported. This is probably from grarel in drift.

At Aroca and west of it water is fomnd from six to eighteen feet from the surface. East of this, thirty to forty feet, and not so reliable as west of the Vermilion.

Sand is found on sec. 27, T. 27 N., R. 6 E., between Fairbury and Aroca, with three feet of soil above it, and also found on see. 1, T. 27 N., R. $\overline{5}$ E., on the west side of the ridge half a mile west of the Ver-milion-reported sixteen feet (leep and resting on coarse gravel. Pontiac is supplied with sand from this point.

The country between Fairbury and Clatsworth is a succession of ridges rising gralnally towards Chatsworth, the highest point being one or two miles west of Chatsworth, and this is probably one hundred feet or more higler than the ridge at Fairbmry.

The mpper limestone of the shafts at Fairbury is traced in the wells, and along low ground ontcrops in a nortli-westerly direction, showing the drift at less depth. It appears on Indian creek, two miles southwest of town, and also ontcrops three and a half miles north-west of town. This limestome umberlies a low ridge which is obser rable rnmming. in a north-westerly direction in the prairie. Two miles east of Fairbury is a ridge higher than the one on the west. The railroad cuts throngh it to a deptlo of five or six feet, showing a considerable amount of drift,
mainly derived from the Niagara limestone. A limestone reported six miles south and one mile west of Forest, is probably the continuation of the low ridge near Fairbury above referred to.

At Chatsworth two borings three-quarters of a mile apart show much difference in thickness of drift. In the S. E. qr. of sec. 4 it is eightyfour or eighty-eight feet, which inchudes an old regetable dirt bed. In the S. E. qr. of sec. 3 the drift is two hundred and twenty one feet according to the record of the boring at the sugar works ; and in this, water was struck at a depth of fifty-two feet in gravel ; again, at seventyfive feet in quick-sand; a third rein at one hundred and nine feet in sand and grarel. The water of these three veins rose to within twentyseven feet of the surface. A fourth vein in gravel at two hundred and tell feet rose to within twentr-fire feet of the surface.

Coal Measures.

The Big Vermilion river, from the north line of the county to Pontiac, affords many exposures that help to determine the changes in the Coal Measures.

A coal bank on the S. W. qr. of the S. E. qr. of sec. 1, T. 30 N., R. 3 E., shows the Streator coal, which is here divided by a clay seam fifteen inches thick, learing thirty-three inches of coal above and twelve inches of coal below it. The coal here is a little below the bed of the riser, and a quarter of a mile below, it is at the river level. A quarter of a mile above the mine the coal at Newtomn mill is in the bed of the river below the dam. A half mile below the mine the clay parting is only one-eighth of an inch thick.

Glenwood mill is on the N. E. qr. of sec. 12, about the middle of the quarter section. The riser runs north 35° west, and the sandstone abore the shale that overlies the coal at Streator, shows here with a dip south 35° east, one foot in ten. At the mill the dam rests upon the coal.

One mile above the dam the coal appears again. It was worked in 1860 and 1861 , and said to be three and a half feet thick.

One hundred and twenty rods north of the south line of sec. 18, T. 30 N., R. 4 E., the coal is four and a half feet thick on the east side of the river. At the south line of sec. 18 the coal is under the river not more than eight feet. Farther down the rirer a short distance, on the west side, the coal is three feet thick.

At the north-west comer of the S. E. qr. of the N. W. qr. of sec. 19, T. 30, R. 4 E., a limestone wearly six feet thick appears where the river makes a bend rest. This rests on a blue clay, and appears to be No.

12 of the general seetion of LaSalle comty. Fossils fonnd in it were Productus longispinus, spirifer cameratus, sp. lincatus, A thyris subtilita, and Cyathoxonia.

The same limestone appears again in the elbow of the river on the right bank, on the south part of seetion 19 , near the middle line; also in a detached mass slipped down in the east part of the S. E. qr. of sec. 19, with the underlying greenish clay and shale forming the bank.

Sandstone appears on the north line of sec. 30, T. 30, R. 4 E., near the middle corner. This seems to be No. 49 of the general seetion of LaSalle county. The base is shaly, discolored by wafer bands of coal and coal-plant fragments. This sandstone continues in sight to the mouth of Long Point ereek, on the left bank of the river, in the southeast corner of sec. 29 ; then reappears on the right bank just above the nonth of Long Point creek. The dip shows well here to the north-east one foot in twenty. In the N. E. qr. of the N. W. qr. of sec. 32 , in the bend of the river, the direetion of the dip is a little more east, and the massive sandstone is overlaid by a bed of silicious and micaceous shale, 011 which rests a elay shale of light blue color, the silieions shale being a grayish light blue. In the elay shale are two bands of limestone somewhat like ironstone, irregular, separated by clay shale, and eaeh about one foot thick. The main sandstone appears again one quarter of a mile below the month of Mud ereek, on the left bank of the river, and at the mouth of Mud ereek is the underlying shaly saudstone. This is near the middle of sec. $3 \because$.

Continuing np the river this sandstone appears in the south part of scc. 5, T. 29, R. 4 , with five or six feet of the underlying shales. Onequarter of a mile further up, and probably in the north part of sec. 8 , coal comes in suddenly, with section as follows:

This 18 inches of coal is generally represented elsewhere, and in LaSalle eonnty, br fragments and wafer seams of eoal. The fire elay is absent. A thin slaly sandstone of 18 inches is here found two feet below the eoal.

South-east three quarters of a mile or less, in a straight line from this point, a coal seam appears in the bed of the river. Its thiekness could not be determined, but is at least one and a half feet. The right bank shows argillaceons shales, with bands of nodnles, and thin shales indicating the Streator eoal. The dip is between south-east and east. This point is a little below the mouth of Scattering Point ereek, and is probably in the north part of the sontheast quarter of sec. 8. The shates in the right bank of the river in the north-west quarter of sec. 9 in that
part of the river which runs near the west line of the seetion appear to be the same just referred to. In the bend of the river at the middle of the north-west quarter of sec. ! the strata of sandstone and shale dip about west one foot in twenty. Ten rods further up the river the dip is a little south of east at the same rate.

Near the south line of sec. 9 the same sandstone shows again, and dips south-easterly. In the bank of the river in the S. E. qr. of sec. 16, the S. W. qr. of sec. 15 , and the N. Wr. qr. of sec. 22 , the limestone before referred to appears in loose masses, the banks formed of the underlying blue clay. A slippery bank, and the limestone slipped down, is, everywhere it appears, characteristic of this portion of the rertical section, often obscuring the details. Near the north line of sec. 22 , and a quarter of a mile east of the north-west corner, the limestone in place is down to the ricer lecel. The character of this rock to disintegrate into irregular fragments is exhibited here in abundant loose, coarse limestone gravel, two to four inches in diameter.

From this point to Allen's mill, in the south-west quarter of sec. 23, nothing noticeable is to be seen. This limestone appears again at the mill-dam, and also at the ford, two miles and a half below Pontiac, and at Pontiace. The fossils are Spirifer comeratus, S. lincutus, S. planoconvexus, Productus longispinus, and Bellerophon.

The branches of the river in this connty afford no aid in determining the rock strata, excepting at a rery few points, the drift concealing everything below. Above Pontiac but little rock exposure is found.

The details given of the tracing of the river up to Pontiae show the upheaval of the Coal Measures continued as in LaSalle county, and also seem to indicate some slight local disturbances or parallel axial lines with the main axis.

On Rook's creek, in the N. W. qr. of the N. E. qr. of sec. 23, T. 28, R. 4 E., a sandstone is quarried. The section is as follows:

Sandstone in thick beds, slightly micaceous, bluish color, fine building stone.....
Shaly sandstone to water level... 1
Dip S. 80° W.. 1 in. to 1
One hundred fards west, down the creek, it shows agaiu. Two hundred yards west, on the left bank of the creek, a limestone comes in, stratified in masses, brecciated, about five feet altogether-no fossils. The saudstone shows again in the bed of the creek about 80 to 100 rods in a south-east course.

Section of coal shaft at Pontiac, as furnished from the record of the company:

LIVINGSTON COUNTY.

I do not regard the section as a reliable one. Some specimens of Aviculopecten rectiluterarius, found in the waste pile, were reported as from No. 27 of the section, and Productus longispinus, said to be from No. 34.

The following is a copy of A. Matson's boring at Pontiac, one-quarter of a mile north-east of the coal shaft, made in 1863:
Ft.
18

1. Drift 18
2. Limestono. 19
3 Blueslate 28
4 Ilarl rock 33
3. Red sliale 1345
4. Blue shato $20 \quad 65$
5. Hard rock 75
6. Light-colored sla alo $20 \quad 95$
llard rock 99
7. Red slato 117
8. Blue nhalo 147
9. Black slıale 156
10. Bluo shalo 200
11. Coal shalo. 203
15 Coal 204
16 Blue shate. 23 2.27
1\%. Iback shato 232

From the coal No. 27 the section was ascertained by boring in bottom of shaft. Water was noticed at 427 feet. The upper sixteen fect of No. 25 , reported to contain calamites and large wood-like fossils, body being of sandstone, probably sigillaria incrusted with coal. Limestone No. 5 of the section onterops near town.

The shaft and boring of Amsbury \& Jones, on south-west gr. of sec. 2, at Fairbury, exhibits the following section, as reported by them:

LIVINGSTON COUNTY.

The mine is wet, water dripping from the sandstone, No. 8 of the section, the clay next above the coal giving way, and varying from two to eight feet in thickness. II. L. Marsh's mine is dry.

Chatsworth boring, west of town, for coal, south-east qr. sec. 4, T. 26,

 R. 8 E.:

To coal or slate, a thin bed, with jron pyrite.
This boring is fifty feet from the railroad, near cast line of section 4.
Artesian well, at Chatsworth, south-east qr. sec. 3, T. 26, R. 8 E. :
Section.

1. Soil and clay Ft_{4}
2. Tellow clay ε
3. Blue clay 52
4. Sand and gravel 60
5. Blue clay 70
6. Sand 75
7. Hard-pan (clay and gravel) 128
8. Sand 135
9. Hard-pan and clay. 187
10. Soft clay and gravel 200
11. Soapstone 221
12. Limestone 290
13. Limestone 384
14. Limestene 454
15. Limestone 569
16. Black slate 609
17. Gritstono. 689
18. Limestone 754
19. Limestono 824
20. Dark shale 860
21. Limestone 147 1,007
22. Flint? 109 1, 116
23. Dark gray shale, with stroaks of flint 84 1,200
A comparison of the two borings above shows an abrupt change from the Coal Measures to the older rocks and a great difference in the depth of the drift.

PAKTII.

PALEONTOLOGY OF LLLINOIS.

SECTION I.
DESCRIPTIONS OF FOSSIL FISHES.

By ORESTES St. JOHN and A. H. WORTHEN.

PREFATORY NOTE.

It was our intention, originalls, to preface the work on Fossil Fishes with an introductory chapter on the stratigraphic or time history of these interesting remains. But as our inquiries progressed it became apparent, not only that the means at the disposal of the Survey were wholly inadequate to allow the completion of the investigation of the materials already in hand, but that our information bearing on their distribution in certain horizons was insufficient for conclusive results. We have, therefore, limited our observations to such facts as are actually accessible, beliering that, so far as they go, they contribnte something to our knowledge of these important data to the paleontologist. These, so far as it was possible to do, have been explicitly stated in comnection with the descriptions in the following pages.

It was our fortune at an early day, and during the progress of our investigations, to interest and receive the earncst coöperation of a few gentlemen, whose opportunitics enabled them to furnish most important data and material, all of which was generously placed in our hands. Messrs. Frank Springer and Charles Wachsmuth, of Burlington, Iowa, hare not only contributed large accessions in matcrial, but it is to Mr. Springer, and subsequently to Mr. Wachsmuti, that we owe the discovery of the ichthyic horizon in the npper part of the Kinderhook at that place, as well as some excellent cxplorations in the superincombent Burlington formations, and Kcokuk limestone, in south castern Iowa. The interest which these gentlemen have evinced in the work, and we may include as well that of others, and material aids which we owe to then, render anything like an adequate acknowledgnent of their share of this important part of thesc investigations impossible in so brief an aecount as the present. While these explorations in the
lower formations were progressing, Mr. W. U. Van Horne was prosecuting similar and most exhaustive researches in the St. Louis formation ; besides it is largely due to him that opportunity was afforded one of the writers to make a thorough examination of this formation in the environs of St. Louis, where it presents its most typical development. An inter. esting result of these explorations was the ascertaining that the fishes range through a considerable thickness of limestone strata, at least forty feet, instead of occurring in "fish-beds" of a few inches, or feet at most, in thickness, as obtained in the Kinderkook, Burlington, Keokuk, and probably theWarsaw formations, as well as the superincumbent Chester beds. The interest and rariety of the remains from the St. Louis beds is not excelled, while at the same time they are as markedly characteristic in fannal facies as are the fishes whose remains occur in horizons of more limited vertical extent. As an illustration of the latter horizons, no finer example occurs to us than that discovered by Mr. Springer and Mr. Wachismuth in the Kinderhook at Burlington, where two distinct "fish-beds," separated by only a few feet of iutervening strata, exhibit in the main quite peculiar faunal characteristics, though there are many found common to both horizons. During his residence at Boonville, Dr. G. A. Williams has prosecuted a careful examination of the stratigraphy of the Keokuk and Warsaw divisions in Central Missouri, with especial refcrence to the distribution of their contained fish remains. The results of his explorations show a remarkable conformity to the stratigraphic phases of these formations as they appear in Iowa and Illinois, and which information should be embodied in an exhaustive treatise on the stratigraphy of the Lower Carboniferous deposits. We are also indebted to Mr. L. A. Fuller, Professors B. F. Mudge and Jaites Todd, Mr. Alex. Butters, Prof. J. J. Stevenson, and Dr. A. Litton, for important information and material derived from the Coal Measume formations, and extending from West Virginia in the Appalachian region to the plains of Kansas west of the Missouri.

Of the magnificent collections brouglit together by these explorations, and those previously made by onc of the anthors during the many years occupied in the geological examination of the country bordering upon the Upper Mississippi, which latter formed the basis of the work on the Fishes in the preceding second volume of this report, by Messrs. Newberry and Worthen, we have been able to make only partial use
for the present work. Indeed the Coclliodonts and Myliodonts alone would require space cqual to that here devoted to the Hybodonts and Petalodonts. It is a matter of time, and ample at that, for the entire work to reael completion ; and in the respite which necessity compels, it is to be hoped that no opportunity will be allowed to escape whercby additional data and collections may add to and perfect our knowledge of the history of these fragmentary and for the most part seattered remains of the earliest vertebrates in our earth's history.

We have also received many courtesies from other sources, which have enabled us to avoid the perpetration of errors in nomenclature, besides adding much information whieh will be of value in monographing the carboniferous fishes. Dr. Joserif Leidy has not only furnished us, at our solicitation, with important references to his own labors in this field, but he kindly secured for us the loan of the original specimens described by him, from the Museum of the Academy of Natural Sciences of Philadelphia. Mr. F.B. Meek also forwarded us for examination such specimens as have found their way to the great collections of the Smithsonian Institution, from the surreys of Dr. Hayden, Lient. Wheeler, and others. And Prof. Safford placed in our hands such fish remains as he has come upon in lis geological investigations in Tennessee. In connection with this work we have also had occasion to acquaint omrselves with facts occurring abroad and which it was not possible to obtain from our own resources. We would here acknowledge the highly interesting communication with which Lord Enniskillen has favored us, especially with reference to the Cochliodonts, which it was our intention at one time to include in the present work. We would also refer to the very favorable opportunitics which one of the writers owes to Dr. Chas. A. White, for prosecuting examinations intimately connected with the stndy of the Fossil Fishes as they oecur thronghout the Carboniferous deposits in the State of Iowa, and which have enabled us the more sucucssfilly to compare the stratigraphy of the two regions on either side of the Mississippi.

In the execution of the lithographing of the plates illustrative of the suhjoined text, Mr. Mayfr has exereised a degree of patience with our wishes, and skill, for which the plates themselves are sufficient wituess.

In conclusion, it is but justice to ourselres to state, that, however excellent our material has been, the present work has been prosecuted principally during leisure between hours which duty devoted to other palæontological labors little akin to those more special investigations. Yet we would gratefully acknowledge the favorable facilities these same opportunities have placed in our reach, and to which we are more indebted than it were possible to express. It is due to the authorities of the Museum of Comparative Zoölogy at Cambridge, where we were allowed every privilege it was in our power to take advantage of, to express our deep obligations for opportunities which perhaps are to be found to the same extent in no other quarter for these special purposes.

VERTEBRATES.

Genus PHCEBODUS, St. J. andW.

- Pheebodus Sophite, St. J. and W.

Pl. I, Fig. 14.

The magnesian beds overlying the coraline limestone of the middle Devonian, in the Cedar valley of Iowa, have afforded, amongst other interesting ichthyic remains more particularly characteristic of the Devouian age, a couple of peculiar forms of minute teeth which unquestionably belong to that section of the Hybodonts represented by the Cladodi, and of which they are the earliest representatives thus far detected in America. To onc of these forms we have given the above generic and specific desiguations. The other has received the name Bathycheilodus McIsaacsii.

The former of the above mentioned forms is represented by very small teeth, the largest of which do not excecd 0.2 inch in lateral diameter and about one thirl less in greatest hight, general proportions strong, symmetrical. Base irregularly elliptical in outliue, strongly produced in front and faintly excarated at the median line, the anteroinferior angles approximate, and laterally curved to the rounded extremities, broadly though irregularly rounded behind; the angles in front are oceupied by a stroug, lateral, pad-like prominence, which is more or less distiuctly bilobed and beveled to the deeply excavated inferior surface; posterior margin slightly burled, postero-superior surface moderately convex and surmourted by a laterally elongated, well-defined prominence, which is situated nearly midway between the base of the crown and the postcrior border to which the surface abruptly slopes, and extending laterally nearly half the diancter of the basc. The coronal region consists of three strong cusps, of which the exterior pair are largest, strongly diverging and moderatcly recurved or nearly vertical, antero-posteriorly compressed or suboral in section, apparently without distinct cutting edges, the median cone similar in slape, crect, nore or less produced in front and contimuerl to the shallow median depression in the basal border, from the lateral portion of whielr the
coronal region is sharply defined by a delicate sulcation in the angle extending laterally from the median notch; in the angles betwoen the median and the strong lateral cusps arise a delicate rudimentary denticle on either side, but which are generally obsolete, possibly in consequence of abrasion. The coronal cusps are apparently smooth; however, in some examples a few faint rertical strix or thread like lines are discernible, the surface in all cases highly polished; the basal region is more or less ronghened, with here and there large punctie or foramena.

The teeth here mentioned bear intimate relations to the form from the Kinderhook beds of the Lower Carboniferons, which we have referred to the gems Pristicladodus of McCoy. This resemblance is strongly marked in the general outline of the base and position of the coronal cusps. But the absence of the deep median slit in the posterior margin of the base, the confluent antero-inferior basal prominence, and the sharp definition therefrom in the lateral portions of the coronal region, constitute an assemblage of features which seem to preclude their reference to that group.

Dedicated in grateful and filial remembrance.
Position and locality: Magnesian beds of the middle Devonian; Waterloo, Iowa.

Genus Bathychemodus, St. J. and W.

Bathychellodus McIsaacsif, St. J. and W.

Pl. I, Figs. 12, 13.
Teeth minute, robust, symmetrical. Base laterally elongated, subelliptical in outline, gently sinuose in front, and margined by a relatively deep ridge which exteuds two-thirds the distance across the base, produced downward aud ontward, defining the moderately excavated inferior surface, which is posterionly beveled, posterior margin broadly arthed, lateral extremities sharply rounded and more or less produced, postero-superior surface moderately convex and traversed by a narrow central ridge nearly as extensive as the lateral diameter and direct, sharply bevelled to the margin behind, surfates more or less rougheued. Crown well-defined from the base, gently constrieted in front and laterally, posteriorly sloping into the basal surface, and consistiug of a prominent ridge which is produced into a strong, rapidly tapering, anterionly compressed and posterionly rounded median cone, with welldefined cutting edges, flanked by a pair of mearly equally strong, slightly diverging and recured lateral dentieles of similar shape, with at minute intermediate denticle in the angles between the lateral cones and the erect median cusp; the outer coronal face is ormanented with it
few relatively strong, sharp-crested, vertical ridges, which descend to the basal line, thongh generally obsolete in the lower half of the face, with similar, though perhaps less strongly marked coste in the posterior face; when the surfaces are not abraded a dense enamel-like layer occurs, which in the postcrior face distinctly defines the basal limit of the crown. Lateral diameter of base one to two-tenths inch, or about twice the liight of the teeth.

The affinitics of the teeth described above are so intimate with Cladodus as strongly to suggest their identity with that genus. Yet we cannot mistake the characteristics which pertain to the form in question and by which it is distinguished from the typical forms of the latter genus. The coronal region even more strongly suggests relationship with Phobodus and Pristicludodus, as remarked in its cutire definition from the basal region, forming indeed an clevated ridge from which arise the Cladodus-like cusps, in a manner very similar to that observed in the above mentioned genera. But in the basal characters we find a marked divergence from the latter genera, and an equally striking likeness to that of Cladodus, with, however, this distinction, in the present tecth the anterior basal border is uniform, without a break such as produced by median excaration or prominence.

Their occurrence with the previously described form, Pholodus Sophice, with which they bear intimate resemblance in size, has raised the question as to their relations with these teeth. Of coursc, it is possible they represent the dentition of oppositc jaws, in which case there wonld be even a less marked dissimilarity than obtains respectively in the teeth of the upper and lower jaws of some of the nodern sharks, as instanced in Scymnus. But, while we have no further evidence of such being the fact, the ummistakable characters upon which their distinctive features are based cau scarcely be reconciled with a diversity of which we have no analogy in the allicd genus Cladodus.

These, with the preceding described teeth, are among the carliest pakeontological acquisitions of onc of the writers, and it is with no inadequate sense of his deep obligations for the carly training and subsequent friendship, that the present form is respectfully dedicated to Mr. Patrick McIs $\triangle a c$, of Iowa.

Position and locality: Magnesian limestone of the middle Deronian; Waterloo, Iowa.

(ibNUS PRISTICLADODUS, MeCoy, (amended.)

The genus Carcharopsis of Agassiz, (Poiss. Voss. III, p.313, C. prototypus, carb. limest., Yorkshire and Armagh,) was founded upon imperfectly preserved teeth, which probably are more intimately allied to the form described by McCoy under the name Pristicludodus dentutus than with
that described as P. Goughi, (McCoy, Brit. Palie. Foss., p. 642, 643.) Thus associated, we have two generic groups which appear to be respectively defined by the following characters :

Carcharorsis.-Principal cusps very strong, erect, compressed in front, rounded behind or sublenticular in transverse section; broadly expanded at base so as to occupy nearly the entire lateral diameter of the base; lateral angles sharp and deeply and regularly crenulated; extremities occupied by one or two more or less slender, conical lateral deuticles, which are as isolated as is the case in typical cladodus ; coronal faces smootlo or faintly striated vertically. Base in outline like Cladodus, moderately produced and broadly rounded posteriorly ; extremitics more or less sharply rounded, anterior face sinuose, terminating below in a well-defined continuous basal ridge, which oceupies the greater extent of the anterior border, inferior surface excavated, poste-ro-superior surface moderately couvex, roughened possibly into pad-like prominences.

Pristicladodus.-Principal cusp rery strong, crect, sigmoidally recurved, lenticular in scction, more compressed in front thau behind, rapidly converging to the apex, lateral edges sharp and more or less distiuctly undulated or simple, lateral cusps relatively very strong, sometimes even more massive than the median cusps, divergent, similar in shape to the median prominence with whith they are connected by a prominent sharp curved intcrening ridge; anterior coronal surface marked with sharp more or less irregular costa, which courerge in the intermediate crest, producing a faint denticulation, sometimes forming quite stroug spinose processes. The costae in the latcral cusps ascending from the basal line diagonally to the inner margin of the cusps, where they often form a spinose cdge or become obsoletc ; the posterior face is geuerally less strongly costate, perhaps, in some forms or individuals, smooth. The base gencrally like Cladodus, posterior expansion occupied above by a more or less distinct convexity, broadly rounded behind, extremitics rounded or truncated, anterior margin sinuose, laterally more or less broadly rounded into the extremities with distinct protuberances occupying the anterior angle either side of the mesial depression and connected by a low ridge ; inferior surface moderately excarated, and in some forms at least the posterior border is deeply notched near the median line.

Perhaps the base is generally uarrower antero-posteriorly in the former genus than it is in Pristicladorlus, the anterior marginal border forms an uninterrupted ridge, while in the latter group it is sinuate at the median linc, with well-defined protuberances in the auterior basal angles. The coronal region is still more diverse in the two groups, the present oue being distinguished by the strong cuspidate lateral cusps,
whereas in Carcharopsis the lateral cones are more numerons, smallér and isolated, and the lateral margins of the median cusp are deeply crenulated in the same manner as in some of the earlier and modern Squaloids. The form described by Dr. Newberry under the name Carcharopsis Wortheni, from the Chester limestone of Alabama, (Geol. Ill. II, p. 69, Pl. 4, fig. 14,) is a typical representative of the genus first recognized by Prof. Agassiz and intimately allicd to, though probably specifically distinct from, Pristicladodus dentatus of McCoy. Whether or no the latter form is identical with the original species noticed by Agassiz, Carcharopsis prototypus of the same horizon, we have not been able to ascertain; but from the comparative reference made by Prof. Agassiz, there can be little doubt as to the generic identity of the two above mentioned forms.

It will be observed from the preceding diagnosis that the teeth mentioned herein, and in the following description, are separable into two well-defined groups by not inconspicuous characteristics peculiar to their respective representatives; and in assigning to each of these groups appellations which we believe to have been originally applied to quite different forms, in part at least, by Profs. Agassiz and McCoy, we hare been guided by such facts as are accessible to us, only desiring to render due justice to our own authoritics.

Pristicladodus Springeri, St. J. and W.

Pl. I, Fig. 7, 11.

Under the above designation we refcr to a peculiar form of teeth from the Kinderhook formation, which is represented by a unique example in the collection of Mr. Springer, and, although the specimen is in a very satisfactory state of preservation, we have referred it with some doubt to Pristicladodus, together with other specimens which are refcrred to further on.

Teeth under medium size, in general outline like Cladodus and in the particulars of form intimately related to Pristicladodus, according to the definition of that genus previously given. Base moderately thick, in outlinc elliptical, beveled on both surfaces along the broadly rounded posterior margin, outer margin slightly inverted and dcfined below by a faint marginal ridge, with strong basal protuberances in the angles upon cither side of the mesial depression, which latter extends upwards forming a decp triangular area in the base of the median cusp, extremities more or less produced beyond the coronal portion, latcral angles truncated, rounded behind, inferior surface gently excavated and occupied transverscly to the long diameter by a low median fold, which,
however, may not be of permanent occurrence, and faintly grooved or roughened in the same direction; tine upper surface of the posteriorly produed base is not fully exposed, but appears to be gently eonvex with obsenrely defined median prominence. Crown very prominent, compressed, abruptly eonstrieted basally in front, and eonsisting of three stout, aeutely pointed. trenchant eusps, strongly eompressed in front, broadly rounded behind, of which the median one is the largest, regularly and gradually tapering, gently defleeted laterally and more strongly recurved, sublentieular in transverse seetion; lateral eusps comparativels very strong, compressed with sharp lateral angles rapidly tapering, strongly divergent or laterally defleeted and reeursed at a considerably greater angle than the median cone, with which they are intimately eonnceted by the elevated intervening erest; the eoronal surface in front is delieately marked with numerons sharp, more or less irregularly disposed eoste, whose extremities along the basal margin are thickened with obseure indieations of spinose processes, and which, ascending the coronal prominenee, are deflected or converge in the cusps, where they are bifurcated, and towards the apices replaced by implanted costa, which become obsolete before reaehing the lateral edges, which latter are smootlo and sharp above, but faintly denticular in the sharp intermediate coronal erest; both surfaces appear to be similarly ornamented, but in the inner face of the principal eusp the costre are more numerous and abruptly terminated in the smooth area bordering the margius. Lateral diameter of base .50 inel, antero posterior diameter . 18 , greatest hight.of tooth .32 , elevation of the intermediate coronal crests .13 incl.

Assoeiated with the above Mr. Wacismuth has found several specimens of a minute form of teetl, whieh offer at first glanee a wide eontrast to the tooth described, but which, on more familiar aequaintanee, seem to present closer affinities with that specimen than at first suspected. The latter form, whieh we have designated under the provisional term P.armatus, althongh variable individually, is chiefly distinguishable from the above by its smaller size, proportionately stronger lateral cones which exceed the dimension of prineipal eusp, and the presence of intermediate proeesses, which latter often spring from the inner margins of the lateral eusps. The outer aspect of the coronal eusps are strongly ridged with flexuose costæ, whieh become obsolete in the eones and especially in their inner margins, where they give rise to the delicate processes which eorrespond to the intermediate dentieulation of the erest in the first mentioned specimen ; the inner face of the erown is more strongly arehed, and apparently quite free from vertical eostre, althougl there are faint indications of stric. The character of the basal region is very similar to the tooth previously mentioned, although
relativels of less lateral extent, the antero-inferior protuberances more strongly developed and generally, though not always, more closely approximated; a deep narrow noteh interrupting the posterior border, and the postero-superior surface broadly conrex, with indications of a broad, low mesial pad. The latter teeth range from .11 to .30 inch in lateral diameter.

Withont authentic speeimens exbibiting all the intermediate phases, it is not possible positicely to assert the specific identity of the forms above lescribed. But, considering the intimate characteristics which they in common possess, it seems highly probable that their individual peculiarities may be attributable to the variable expression of the dentition of different parts of the jaws.

The elegant nuique fossil first noticed above is distingnished by superficial characters which widely remove it from any form with which we have hall opportunity to make compurison. In the continuity of the coronal prominence, and in the form of the basal portion, it bears much resemblance to the form described by Prof. McCoy nuder the name Pristicladodus Goughi, from the lower Carboniferous schists of Ireland. It is distinguished from that species, howerer, not only by its small size, but more especially by the eren lateral angles of the cusps, the denticulations being restricted to the coronal crest intervening between the principal and lateral cusps, (althongh in the instance of the variety P armatus these denticulations encroach far up the lateral border of the lateral cones, retaining their distinct spinose character,) and which bear a closer relation to the peculiar indentations observed in the above named species than they do to the cremmated edges of Carcharopsis dentutus (McCoy sp.) from the Carboniferons limestone of Derbyshire. Indeed, as previously expressed, there seems to be sufficient reasous for doubting the generic identity of the two species described by McCox, and however disinclined we might be to refer the present form to an intimate rclationship with C. dentatus, the same objections would not obtain in the case of P. Goughi, with which latter form there exist more prominent features in common, and whith seen to constitute sufficiently distinctire peculiarities to justify the recognition of their distinct generic character.

Position and locality.-Not common in the lower fisl-bed of the Kinderhook, also in the mpper fish-bed of the same formation; Burling ton, Iowa.

Genus CLADODUS, Agassiz.

Cladontis exilis, St. J. and W.

Pl. I, Figs. 1.6.
Teeth very small and symmetrically formed. Base elliptical in outline, inferior surface moterately excavated with a relatively broad bereled belt along the posterior margin, anterior surface constricted along the basal line of the crown and considerably depressed in the middle or just beneath the principal cone, terminating below in a rather prominent nesial ridge, whieh is sometimes faintly sinuous in front, and extending one-third to one-half the lateral diameter of the base, with well-defined lateral angles; the upper surface of the posterior portion of the base presents a well marked pad or ridge, in lateral extent eorresponding nearly with the autero-inferior mesial ridge, gradually sloping to the posterior edge, and separated from the crown by a narrow distinet intervening ehaunel, or, in worn specimens, the surface presents a more or less regular eonvexity in the region of the pad. The crown consists of a strong, ereet or slightly deflected, gradually tapering and slightly sigmoidally curved mediau cusp, more compressed in front than behind, slightly compressed laterally with sharp cutting edges; lateral dentieles normally two on either extremity, slender and tapering to a sharp point with distinct cutting edges, the inner pair about half the size of the exterior pair, and ornamented with numerons exceedingly delieate, closely arranged parallel strice, the same as appear in the median cone, the strixe of the inner face being appreciably finer than those in the opposite face, in both faces becoming obsolete just before reaching the lateral edges, aud ordinarily extending bearly to the apices in front. In rare instances three pairs of lateral denticles have been observed in teeth which otherwise differ in no particular from the normal condition described abore. The largest specimeus obserced attain a lateral diameter of base of .35 ineh, and from that size down to .15 inch, with a hight of .18.

Although not mumerously represented, we have had opportunity, through the zealous interest of Messrs. Springer and Wachsmute, to examine a fine series of this elegant little form, of whieh there are sereral nearly perfect individuals. The form differs so markedly from any of its associates in the same beds, as scarcely to require the mention of its distinctive peculiarities. But compared with later sneeeeding forms, this closely resembles in form, and in many, if not most, of its external details the teeth known under the name C. micropus, N. and W., of the Burtington and Keokuk division. The chief distinction con-
sists in the diminutive proportions of the Kinderhook teetly as contrasted with the large dimensions attained by the Burlington and Kcokuk form, while in some minor respects the present form bears eren closer resemblance to the forms of the same group oceurring in the St. Louis and Chester divisions, and which is especially noticeable in the exeecding delicacy of the coronal striation and the nearly perfeet symmetry in the proportions.

It is worthy of remark that the largest individuals of the form under consideration occur in the second or upper fish-bed of the Kinderhook dirision, but these scarcely exceed the smallest examples of C. micropus, while they present readily appreciable characters by which they may be recognized from that form in all its stages: The strite are uniformly more numerous and crowded than in C. micropus, being also less divergent laterally in the median cone in front ; similar differences are observed in the inner face of the coronal cusps, where the striation is couspicuously coarser and more sparce than in the present form. Compared with C.politus, N. and W., of the Chester division, the same differences are observed; while the more frequent occurrence of a third small accessory denticle cxterior to the larger pair of lateral cones (though this feature also obtains in C. micropus,) exhibit additional distinctive characters : in C. exilis, whenerer a third denticle makes its appearance, it is apparently always developed in the angle at the base of the median cone and first lateral denticle. There is, however, eousiderable diversity in the teeth referred to C. micropus, and mutil it is well understood, in comection with those forms which appear in later deposits of the same period, we may not be able to determine the exact relationship of these various forms.

Geological position and locality: Not uncommon in both ichthyic horizons in the Kinderhook division; Burlington, Iowa.

Cladonus Springeri, St. J. and W.

11. 2, Fig. 1-13.

Tceth attain medinm size; base strong, subclliptical in outline, broadly and more or less regularly rounded behind; anterior border gently arched, rarely even faintly sinuose, rounded at the obtuse lateral extremities, gently iubeveled and produced below in a strong median prominence of somewhat variable extent, but usually about onc-third the lateral diameter of the base, laterally defined, and sloping to the moderately concave inferior surface, which is bordered by a more or less distinct beveled area along the obtuse posterior margin, posterosuperior surface gently convex, and stmounted by a strong, roughened prominence, which closely borders and conforms to the posterior margin,
widely spaced from the base of the crown, and of variable lateral extent, in this respect apparently conforming to the distance between the obscure marginal angles, hence in laterally elongated bases it is of proportionately greater lateral extent than in more abbreriated individuals, as represented by the small tecth, in which it is reduced to a strong pad-like prominence scarcely one-fourth the greatest diameter of the base. To some cxtent the same is trine of the anterior basal ridges, though in some examples it assumes the condition, but without the distinct definition, of the median ridge in the larger teeth, or those which present the normal aspect of the form. In well-preserved specimens there is less variability in the coronal region than remarked in the basal portion, the crown nominally presenting a strong median cone flanked on cither hand by four pairs of lateral denticles alternating in size, the exterior pair stont, moderately deffected laterally, and recurved at an angle greater than the median cone, whicll they resemble in shape, perhaps less symmetrical ; the median cone gradually tapers to the acute apex, sublenticular in transrerse section, gently convex in front, strongly arched posteriorly, with sharp lateral edges, compressed or faintly depressed at the base in front, and marked with more or less closely and somewhat irregularly arranged angular costre, which bifurcate descending, with intercalated costre abore, and which ascend balf or two-thirds the distance to the apex in front; in the posterior face they are more delicate and more closely crowded or nmmerous; in front the costie teminate in slight basal knobs, probably the worn bases of accessory processcs, and which appear in the latcral extremities, often forming a dense border of spinose processes cncircling the anterior border of the crown, and flanking the base of the exterior denticles; the lateral denticles are similarly striated in the anterior face, a few strong, sharp ridges terminatiug in the apex, the posterior face occupied by delicate thread-like ridges.

The form under consideration is the most numerously represented of the Kinderhook Cladodi, the original collection of Mr. Springer offering the means of a comprehensive study of the form under the varied aspects which it displays, and which, but for this extensive material, would lead to serious misconception of the character presented by the widely diverse individuals of which it is composed. In sclecting material for illustration, we have aimed not so much at giving a graduated selies, as to illustrate by a few well chosen cxamples the variable character of individuals of varions sizes, positions, and conditions of preservation. Perlaps the most marked variableness is directly attributable to abrasion, by which, especially in the smaller teeth, the spinose processes at the base of the crown have suffered most, in the majority of the teeth there remaining scarcely a restige of these processes, while,
at the same time, eren the lateral denticles themselves have been subjected to partial, and sometimes in the case of the more delicate ones, total obliteration. Denuded of their distinctive characteristics, these teeth scarcely present a suggestion of their real specific identity, while amongst themselves they are even more diverse than the greatest extremes exhibited by well expressed examples. Yet we have observed in these smaller tecth variations in the number of trie lateral denticles, which indicate that in this respect there was not absolute uniformity. In sone of the normal examples one extremity may bear an extra denticle, in others there may be one or two denticles wanting. And in abnormally (?) developed teeth, as also in specinens which have suffered most from abrading agencies, there maj occur but two and three denticles on either extremity, or but a single one on one and a pair or three denticles upon the opposite extremity. Amongst the more minute examples teeth less than 15 of an inch in lateral diameter, and larger, the median cone often presents a coarse costation quite in contrast to that ordinarily presented, and which has led to the conclusion that the forms exhibiting this feature never belonged to the rows constituted by the larger teeth, but pertain either to the auterior or posterior portions of the jaws.

The teeth referable to the form above described have some general resemblance to C. succinctus, of the fisli-bed next above the horizon whence these were derived; but cren a cursory comparison will at once reveal the wide distinctions between them, as exhibited in the basal region, and the fine costation of the median cone. The worn examples also resemble C. altcrnatus of the same horizon-a smaller and more symmetrical form, destitnte of accessory processes, and otherwise well marked specifically, as shown in the illustrations of PI. II, in which both forms are represeuted.

It affords us pleasure to associate the name of our friend Mr. Springer with this finc form, as a slight token of onr appreciation of the valuable aids he has contributed to this work.

Position and locality: Lower fish-bed of the Kinderhook formation; Burlington, Iowa.

Cladolets exiguts, St. J. and W. 11. 3, Fim. 13-15.

Teeth of small size, though rather stoutly fashioned. Base long, or subelliptical in general outline, extremities obtusely rounded, slightly simons in front, and arched; moderately excarated below, and gently beveled along the posterior margin, the exterior mesial ridge oceupying two thirds or more of the lateral diameter of the base, and forming a
eontinuous, strongly marked ridge projeeting downward and slightly ontward, or sometimes more or less distinctly divided into two lobes by a faint median eonstrietion in the inner side, along whieh it is always sharply beveled toward the eoneavity of the root, from the body of which it is more or less distinetly defined laterally; posteriorly the base is gently rounded, and surmounted by a well marked ridge, which makes an abrupt deseent to the posterior margin, with which it is parallel, and separated from the crown bs a shallow chanmel; surfaces irregularls roughened and pitted. Crown slighty constricted along the basal line in front, the simosity of the usually deep basal region extending up into the median cone as a faint depression, while the enamel of the inner face terminates in a faint line; median cone strong, laterally defleeted and generally strongly recurved, rapidly tapering to an obtusely rounded point, compressed in front and broadly rounded behind, with sharp lateral edges; lateral denticles four on either extremity, alternating more or less irregularly in size, in shape resembling the median cone; the exterior pair relatively strong and outwardly and posteriorly curved; the outer basal line is marked by irregularly disposed tubereles or processes, which are more markedly dereloped in the lateral regions, and sometimes flank the exterior denticles; besides the latter, the lateral denticles are ormamented with one or two, perhaps rarely more, sharp eostie, while the median cusp in some individuals bears five or six similar costre, irregularly spaced, implanted or rarely bifurcated descending, and seldom reaching two-thirds the distance towards the apex; the costat of the inner face are apparently equally irregularly developed and more delicate, and usually obsolete in the lateral denticles. A well proportioned speeimen of medium size measures in greatest lateral diameter of base .38 inch, greatest hight of tooth . 32.

Although the general features presented by the teeth here recognized are quite persistent, a considerable range of variation oceurs in individuals, rendering it difficult in many instances to determine their identits, especially in worn and otherwise mutilated or abnormally developed specimens. In some respects the form bears intimate comparison wth C. Whochsmuthi, as especially noticeable in the base, whieh is almost the exact likeness of the latter form ; the coronal region, on the otler hand, presents an equally striking resemblance to C. Springeri, with which it is assoeiated, and from which it is recognized chiefls by the fewer accessory processes and eosta in the onter aspect, and its dwarfish and less symmetrical proportions. It is possible that it may prose to belong to the former of the above named forms; but no exactly sinilar individuals are as get known from the horizon in which C. Wachsmuthi oecurs, while the charaeters which serve to distinguish the
individuals from either of the forms mentioned, wonld also seem to indicate their distinct specific character.
In this comnection, it is interesting to note the absence of C. Springeri in the ichthyic bed which affords the form described under the name C. Wachsmuthi ; or, in other words, the stratigraphic limitation of each respective form with which that under consideration in one or other way is intimately allied, while the normal examples of each form present at a glance appreciable peculiarities.

Geological position and locality: Not uncommon in fish-bed No. 1 of the Kinderhook dirisiou of the Lotrer Carboniferous; Burlington, Io wa

Cladodus Wachsmuthi, St. J. and W.
Pl. 3, Fig 1-7.
This species presents considerable rariatiou, not ouls in the teeth from different parts of the jaws, but also in the various sizes, with, however, a well-defined normal standard, which may be defined as follows: Base thick, moderately expanded behind and broadly arched, with a more or less strong sinuous curvature aloug the outer margin, and nicely rounded at the lateral angles; in front the base is distinctly constricted aloug the line of union with the crown, expanding outward iu its descent, and terminating in a rather stroug marginal belt, which generally stretches across two-thirds or more of the median region, and more or less abruptly terminated laterally; the inferior surface of this belt or ridge is, when well preserverl, flattened and beveled inward, and in rare instances it is observed to be more or less distinctly bilobed, in which cases the belt is relatively of narrower lateral extent, but never cut down so as to break the continuity of the ridge viewed from the outer side; the inferior surface has its greatest depression immediately below the anterior border, and is usually distinctly beveled along the inner margin; superior surface distinctly defined from the coronal region, moderately convex, and surmounted by a continnous, narrow, padlike prominence, which occupies half or two-thirds the lateral diameter of the base, and abruptly sloping to the posterior margin; sometimes the surface immediately above the pad is deeply excavated, and the posterior margin somewhat distinctly chancled; but in the majority of tereth, perliaps, the parl presents a gently rounded prominence, and in worn specimens it may be obsolete ; both basal surfaces are irregularly corrngated antero-posteriorly and pitted by irregularly disposed foramina. Crown sharply defined in front and laterally from the base, and a faint line sweeping aromod the median cone and contracting in the lateral portions, indicating the basal termination of the enamel behind. The central and external cusps are connected by a sharp,
compressed and deeply dentieulate erest, the intermediate denticles irregnlarly alternating in size; the exterior pair in the normal state are remarkably large, more strongly compressed in front than behind, with sharp cutting edges, the apices almost almays direeted toward the median cone; in many instanees, the larger exterior pair are flanked by a second pair of denticles with a minute interrening eusp; and all are ornamented in the outer face by more or less strongly marked carinæ, which are either simple or give off spinose processes towards their bases, whieh latter are more strongly developed in the lateral than in the median portions of the crown ; the median cusp is strong, trenehant, sigmoidally curved and laterally deflected, compressed in front and broadly rounded behind, with a slight depression occupying the basal portion in front; the carina are more strongly developed in front than in the opposite face, though their development is very irregular, as shown in a large suite of specimens-in some individuals there being very few and these searcely reaching one-third the distance towards the apex, while in others they show several sharp, elose set eostr implanted and bifureated in their descent ; the carinæ are relatively coarser and far less numerous in the lateral denticles, though always irregularly disposed ; the inner face of the erown exhibits similar variableness in the development of the costic, though relatively corresponding to their development in the opposite face ; in some examples the inner face of the prineipal cone is quite smooth, with only faint costre visible in the lateral portions; in others, again, the costæ are quite numerous, but in all eases they are less strong than in the outer face; the earime are sharp, the intervening space presenting a slight and regularls coneare channel when they are erowded; in the prineipal cone they are terminated before reaehing the lateral edges in front, and the same is true of the posterior face-the lateral costæ being shortest and soonest beeoming obsolete. Large individuals exceed an ineh in greatest lateral diameter of base and one-fourth to one-third greater than the entire hight of the tooth.

The seore and a half or more of individuals to whieh I have had access, through the kindness of Mr. Wachshuth, in drawing up the foregoing description of this interesting and beautiful species, present a range in size from teeth of .2 inch in lateral diameter to those measuring nearlw one inch in the same direction; and otherwise exhibiting considerable diversity in the details, especially the superficial ormamentation. These latter may be best represented in the illustrations which have been introduced.

Position and locality: Authentie examples of the species have thus far been observed ouly in the upper fisl-bed of the Kinderhook, at Burlington, Iowa, where Mr. Wachsinuth, to whom we have dedicated the speeies, has obtained a beatiful series of speeimens.

Cladodus succinctus, St. J. and W.

Pl. 3, Fig. 8-12.

Associated with the last described tecth, C. Wachsmuthi, is a form almost as numerously represented, which seems to offer persistent peculiarities sufficient for its recognition under almost all circumstances. Very similar in form and size to C. Wrachsmuthi, they may be chiefly distinguished from that form by the squat outline of the crown viewed in front, stouter median cone, which is marked by strong downward bifurcating costre which extend nearly, sometimes quite, to the apex, and which are generally nearly equally strongly marked, though more numerous, in the posterior face, where thes are rarely bifurcated; the outer basal line of the crown is generally occupied by strongly developed accessory processes, especially in the lateral portions, with, howerer, exeeptions in the case of occasional small teeth in which they are absent; and here are found certain features which go far towards indicating the possible specific indentity of these tecth with the form last described, since the present examples present precisely the same basal characters as observed in C. W'achsmuthi, while the coronal costæ, excepting the accessory proecsses, mas be found to differ only in the degree of their development. In the normal examples, the outer face of the base is slightly iuflected, instead of projecting outward, as is conspienously the case almost alwiys in the abore mentioned form.

It is not improbable the form here noticed mas prove to be merely a variety of C. Wrachsmuthi; but with the present material this is not clearly demonstrable, while on the contrary, its distinguishing peculiarities are readily recognizable on careful cxamination.

Geological position and locality: Not uncommon in the mpper fish-bed of the Kinderhook division; Burlington, Iowa.

Cladodus alternatus, St. J. aud W.

> Pl. 2, Fig. 14-18.

Teeth below medinm size, symmetrical and very graceful in form. Base semietliptical or trapizoidal in outline, thick, posterior margin broadly rounded in the median region, rapidly so or obliquely truncated laterally to the obtusely rounded lateral extremities, anterior border of moderate depti and slightly produced outward, nearly straight or gently depressed in the middle and rounded at the lateral extremities, and produced downward into a rather strong median ridge, which occupies half to two-thirds of the lateral diameter of the base, well-defined later.
ally and beveled to the inferior surface ; inferior surface nearly plain or gently excavated, with a narrow beveled belt along the greater por. 1 ion of the posterior margin; posterosnerior surface moderately convex, occupied nearly centrally by a sharply defined, linear prominence, in lateral extent nearly equal to half the dianeter of the base. Coronal portion slightly constricted along the basal line in front, gently depressed at the base of the principal cone, which later is rey strong, reatical to the honizontal plane of the base or slightly recured sigmoidally, more or less laterally deflected, or erect, gently convex in front, strongly arched behind, lateral margin compressed, sharp and gradnally con. vergiug to the acute apex; lateral dentieles normally four on either extremity, alternately armaged in pairs, sometimes with delicate indi. mentary denticles appenring in the angles of the persistent ones, exte. rior pair more or less divergent and recurved, similar in shape to the median cone, though less compressed in front; coromal surface ornamented with sharp, threadlike, regulanls arranged coste, which, in the median cone seldom reach more than half the distance to the apex in front, with rather a wide pain space bordering the margin in which the lateral coste become obsolete; in the lateral denticles the costre are very similar but less numerous, and extend nearly to the apices ; in the posterior face they are equally regular in disposition, but more namerous and delicate. A specinen of ordinary size measures in greatest diameter of base 28 inch, antero posterior diameter. 13 , greatest hight of tooth .32 ; a smaller tooth of greater lateral diameter is .18 inch in lateral diameter, lesser diameter 08 , hight abont .15 inch.

This beautiful little form is represented by a fine series of specimens in the collections of Messrs. Wachsmutir and Springer, which exhibit remarkable persistency in the distinctive characteristies, and which, in well preserved specimens, readily enable their determination. The form is most intimately allied to C. Springeri, with which it is associated; but, as has been shown in connection with the observation on that form, the present are not to be confounded with the minnte and worn exam. ples of the above form which they most resemble in outline, but from which they are distinguished by the greater lateral extent of the anterior basal ridge, the shallow mesial depression, the finer and more regnlar costation, and absence of accessory spinose processes aloug the anterior basal border of the crown.

Position and locality: The carlier and most mmerous acquisitions of Mr: Sirminger are from the lower tish-bed of the Kinderhook, but Mr. Wacnsmutil has obtained a few specimens fiom the upper fish bed of the same formation, which are undistinguishable from the earlier teeth; Burlington, Iowa.

Cladodus intercostatis, St. J. and W.

Pl. 4, Fig. 11.

Teeth of small or medimm size. Base subelliptical in ontline, moderately thick, posterior margin broadly rounded, with obtuse angles, extremities more or less sharply rounded, anterior magin sinuose, with a broad mesial depression, slightly produced, anterior angles occupied by well-defined protuberances, which are comnected by a well-marked basal ridge; inferior surface moderately excarated, bereled aloug the posterior margin, postero-superior surface moderately concex, surmounted wear the posterior margin by a laterally elongated, narrow, roughened prominence equal to about half the lateral diameter of the base; both superior and inferior surfaces irregularly pitted. Crown gently constricted in front, obscurely defined behind, median cone symmetrical rapidls tapering to an acute point, gently recurverl, sublenticular in transrerse section with trenchant edges, broadly arched behind, in front compressed aud towards the base slightly excavated, both faces occupied by strong, sharn costre, those in the posterior face perceptibly finer and terminating in the lateral margins, in front a strong rifge extends from base to apex parallel with and separated from cither border by a rather wide slight depression, the intermediate space being oceupied by equally strong bifnreated and implanted costa; lateral denticles two on either extremity, the exterior pair as strong again as the intermediate denticles, strongly deflected laterally or divergent, and recurved at an angle greater thau the median cone, subcircular in section with sharp cutting edges, inner pair slightly produced in front, similar in section and ormamentation to the larger denticles, a few strong vertical coste occurring in either face and occupying the low intermediate coronal ridge. A specimen of medium size measures in greatest lateral diameter of base .36 inch, antero posterior diameter . 12 , greatest hight of teeth. 29 inch.

The above description applies to a form not momerously represented is: our collections, and with regard to the aftinities of which with other teeth associated with them, there is matter of some donbt. All the individuals: which have been identitied with the above form are small, and some of these show indications of a third rudimentary lateral denticle, while there are others which possess a fourth pair, but with precisely the same, or even relatively conrser coronal costre. With these also oceur in considerable abondance a largen form, which is claracterized ly sereral lateral denticles, and abong the onter coronal margin a greater or less development of spinose processes, while the coste are relatively finer, though similarly disposed, and the base offers no essen.
tial teature different from that of the teeth described abore. These large teeth are almost always much abraded, so that eren so fine a series as that obtained by Mr. Springer fails to afford a satisfactory solution of their specific relations. Until recently thes were regarded as probably referable to C. deffexus, N. and W.; but the explorations of Mr Wachsmurif have bronght to light in the lower Burlington fishbeds a form which is unquestionably identical with the latter form-the exact stratigraphic position of the originals of which was not known. Howerer, a comparison of them with the specimeus discovered by Mr. Wachsuuth affords almost conclnsive proof that they were derived from the same horizon. Their distingnishing characteristics, as compared with the teeth above referred to from the upper Burlington horizon, consists in the relatively stronger lateral denticles, the laterally deflected principal cone, and the exceedingly delicate and crowded striation, possibly, also, the narrower postero-anterior diameter of the base and the less prominent anterio: basal angles and protuberances.

In the absence of material in a perfect state of preservation, it is impossible to determine the nature of the rariations noticed above; and howerer impressed we are with their probable specific identity, the material does not, as is the case with some of the Kinderhook forms, exhibit all the phases of gradation which alone can furnish indubitable evidence of such identity. Consideriug only the first described individuals, one cannot fail to appreciate certain intimato resemblances to C. aygopus, N. and W. of the Chester ; but taking into account the ensemble presented by the tecth noticed above, there is little difficulty in drawing the distinctive features of the species. We regret that our means have not made it possible to present as fair a representation of these teeth as of some of the other forms of this remarkable gromp.

The Keoknk limestone has furnished a few fragmentory specimens representative of a closely allied form, if not specifically identical with that first described above; but of the latter we have only a few individuals, and these are not sufficient for a critical comparison necessary to establish their relationship with the upper Burlington form. Closely agreeing in shape and size, they are distingnishable by the much coarser striation of the coronal cusps, there being not more than half the 1 mm ber of strie usually observed in the present form. It is not improbable these teeth constitute the remains of a form distinct from the abore, in which event we would snggest for them the specific designation C. Keokuk.

Position and locality: Not uncommon in the npper Burlington fish. bed, Louisa and Des Moines comnties, Iowa; Henderson, Warren and Adams counties, Illinois. The Keokuk specimens are known to occur at Mamilton, Illinois, Keokuk aud Bentonsport, Iowa.

Cladodus Gomphoides, St. J. and W.

Pl. 4, Fig. 12-16.

Teeth robust, low in stature, of medium or large size. Base slightly sinnate in front, antero-inferior angles moderately prominent, and thence broadly rounded to the lateral extremities, which are also rounded or obtusely angular, and broadly rounded behind; basal ridge weli defined at the antero-inferior angles, depressed in the middle and merging into the margin laterally; inferior surface moderately excavated, defined belind by a rather broad bereled belt parallel with the posterior margin ; posterosuperior surface slightly eonvex, with a more or less distinct continuons or sometimes interrupted and ronghened basal ridge occupying the posterior half of the surface and exteuding about threefourths the lateral diameter, and rather abruptly beveled to the posterior margin. Coronal eusps very strong, proportionately low, thick, rapidly tapering to the obtusely pointed apiees, sublentienlar in transrerse section, both faces presenting rather stroug, sharp eostie whieh inerease wainly by implantation or rarely bifureating, and slightly more momerons and erowded behind ; median cone very strong, turgid, rarely faintly depressed at base in front, and generally flanked by two pairs of lateral denticles, of which the imner pair is sometimes rudimentary or obsolete, in other examples they are strongly developed, the exterior pair slightly deflected laterally and recurved; coustricted along basal line in front, also well defined from base belind.

The form here noticed is represented by a few speeimens, among which there are only three or four perfect teeth. Although individually varying to some extent, their specifie identity is quite apparent, and at the same time they seem to be readily distinguishable from other forms associated in the same deposits. However, in the ease of C. bellifer, a form which we have indicated from a few large teeth derived from the same locality, the chief distinctive features in contrast with the present form eonsists in the more flattened anterior coronal faces and the more strongly anteriorly produced position of the smaller or intermediate pair of lateral denticles. A large suite of specimens might indeed present a series of individuals which wonld connect the extremes here indicated by supplying the intermediate and at present missing gradations, without which opinion one way or other is mere eonjecture.

Geological position and locality: In the fish-bed of the upper Burlington limestone; Buffington creek, Louisa county, Iowa.

Cladodus bellifer, St. J. and W.

Pl. 4, Fig. 10.

The teeth attain large size. Outline of base subelliptical, extremities rounded, posterior margin broadly rounded, anterior border of moderate depth, slightly inbeveled, gently concave in the middle, rather abruptly rounded laterally, median ridge ocenpying half or more of the lateral diameter, moderately prominent as are also the anterior basal angles, inferior surfiec gently coucare, with broad beveled belts along. the posterior margin, postero-superior surface oecupied by a prominent, narrow ridge which extends over two-thirds the lateral diameter, abruply detined behind and parallel with the posterior border. Crown slightly constrieted basally in front, median eone strong, grarlually tipering, moderately recurved or nearly vertical to the horizontal plane of base, sublenticular in transverse section with sharp lateral edges, much compressed below in front, gently convex above, strongls so behind, apex sharp or obtusely trineated fiom wear; lateral denticles two on either extremity, moderately strong, exterior pair slightly divergent, recurved in the same phane as the medtan cone and similar in shape, imer pair prominently produced in front and generally moch abraded; coronal surfaces without trace of ornamentation, presenting a smooth appearance, as from wear. A remarkably fine large specimen iu the collection of Mr. Springer measures in greatest diameter of base 1.4 inches, antero-posterior diameter .62 , greatest hight of tooth 1.20 inches.

The collection of Mr. Springer contaius a few examples of the form above described, which show considerable variation in size, and always the appearance of wear, but well elaracterized by the adsanced position of the inner pair of lateral denticles. In the latter respect it rescmbles C. orcilentalis, Leidy, of the Coal Measures, although otherwise not intimately related to that form, as indicated by the continuity of the anterior basal ridge and the prominence in the postero-superior surface. The worn coudition of the specmens renders it doubtful whether the coronal surfaces were plain or their costa obliterated by abrasion.

Iosition and locality: Upper Burlington fish-bed, Louisa county, and Burlington, Iowa.

> Cladodus prenuntius, St. J. and W.

II. 4, Fig. 17.

We hare provisionally recognized, in a mnique example in the collection of Mr. Springer, the representation of a distinct form. The tooth is of medimm size, strong, symmetrical proportions. The base is very
similar in general outline to that of C. intercostatus and C. gomphoides from the same horizon, agreeing with the latter in the vertically arehed ontline and produced lateral extremities, while the prominence of the protuberances in the anterior basal angles resemble the former form ; but it differs from both of these forms in the central position of the ridge in the postero superior surface. The crown consists of a strong, erect slightly recurved median cone, and a single pait of strong lateral denticles; median cone compressed in front, strongly arched behind, with sharp lateral angles, and gently excarated in the onter basal region; lateral cones less compressed or more regularly lenticnlar in transserse section, prodnced in front slightly in advance of the median cone, and slightly deffected laterally, in the intermediate angle a faint trace of a rudimentary denticle is observed; the coronal surfaces are smooth, polished, presenting evidences of wear, which may have obliterated all traces of costation except the most obscure vestiges of strixe in the anterior basal region of the principal cone. Latcral diameter of base about . 84 inch, antero posterior diameter . 33 , hight of tooth .7٪.

The tooth abore noticed bears a strong resemblance to C. Tan Hornci of the St. Louis limestone, although it is distinguishable by its more delicate proportions, greater breadth between the anterior basal a:ngles, and more erect lateral cones. The contour of the base will readily serve to distinguish it from indisiduals of the C. micropus group, which possess but a single pair of lateral denticles; while the absence of the strong costation so characteristic of C. intercostatus, as also almost equally of C. gomphoides, render its identity with either of the latter forms questionable. Yet we camot overlook the fact, in view of the superb collections from this horizon, of the singnlar isolation of the individual here referred to, and which would lead us to seck specific inlentity with one or other of the above mentioned forms, rather than for evidence corroborating the interpretations based upou a unique and evidently imperfect specimen.

Position and locality: Upper Burlington fish-bed; Louisa comnty, Iowa.

Cladodus raricostatus, St. J. and W.

$$
\text { Pl. 4, Fig. } 18 .
$$

Tooth sinall. Crown well defined from the base in front, and consisting of a strong, rapidly tapering, laterally deflected, recorved median cone, which is moch compressed, sublenticular in transverse section, trenchant, witl a triangular depression ocenpying the base in front, and form lateral denticles on either side, alternating in size, divergent and recurved in nearly the same phane as the median cone, which
they resemble in form, thongh perhaps less eompressed, the external pair about one-fifth the hight of the median cone; the outer face of the principal cone is fantly ormamented by a few direrging thradlike striae which rise in the triangular depression, dispersed and becoming obsolete in the midde: region of the eone-the lateral portions and denticles apparently quite smooth and polished. The basal portion is not well exhibited, as also the posterior aspeet of the crown, gently arehed reatieally, anterior border gently sinuose, apparently uninterrupted, slightly produced, anterior basal angles ineonspienons, and gently rounded into the slightly produced lateral extremities. Greatest hight of tooth .36 inch, lateral diameter of base .45 inch.

The mique example before us differs from its assoeiates in the same horizon in the sparseness of the coronal strice and the compressed condition of the prineipal eusp. In general outline it agrees intimately with the teeth which we have provisionally recognized under the name U. Kcolud from the same horizon, of which rare form it may possibly prove to be a much abraded example. But the imperfect condition of the lateral portions of the original specimens of the latter form prevents a critical comparison, and in view of the very strong vertical ridges with whieh the priucipal cusp of that form is ornamented, the tangible differences seem sufficient to raise a donbt as to its specific identity with the present form.

Position and loculity: Upper fish-bed of the Keokuk limestone; Keoknk, Iowa.

Cladodus eccentricus, St. J. and W.

Pl. 4, Fig. 4.

There ocenrs in the St. Lonis limestone a form of whieh eomparatively few representatives have been fonnd up to the present time, and these, with one exception, are not in a sufficiently perfect state of preservation to answer the purpose of an exhaustive comparison with allied forms. Of the latter Messrs. Newberry aud Worthen have deseribed a form from the Chester limestone, C. politus, with whieh the present teeth bear the most intimate resemblance, if indeed they prove not to be specifically distinct. Perfect examples of C. politus are beautifully striated with thread-like strix, precisely in the same manner as in the present teeth, and whieh also recalls C. Fulleri of the Coal Measures. But among the teeth under consileration, a single and elegantly preserved specimen, which was obtained by Irof. Worthen at St. Louis, exhibits eharaeters which, if they prove not to be abnormal, render its reference to the Chester form exceedingly improbable. The tooth in question is distinguished by the somewhat eccentrie proportions of the base, whieh is
rery produced lateralls, deeply exeavated inferiorly, deeply arched inward between the quite prominent antero-infenior angles, and broadly rounded into the more or less sharply rounded lateral extremities, the antero median ridge moderately prominent. The median cone does not differ essentially from that of O. politus, being erect, gradually tapering, eompressed in front and strongly rounded posteriorly, and ornamented with mumerons closely arranged strise; the lateral dentrcles, however, present the somewhat anomalous feature of possessing in one extremity a third relaticely strong cone exterior to the larger lateral denticle, and which in lateral divergence and recurvation eorresponds to the exterior denticle in the opposite extremity ; the lateral cones are nearly circular in section, but ornamented in the same manner as observed in the great cone. The hight of the specimen particularty described abore, and which represents about the largest size attained by the other teeth, is about 40 inch, lateral diameter of base . 42 iueh.

It is possible that the tooth noticed above may prove to be distinct from those with which it is associated; but we are inclined to regard it as an abnormally developed tooth, or perhaps it represents a peculiarity in the teeth from a particular part of the jaws.

Mr. Van Horne has also obtained from the Warsaw beds a very similar form of teeth; but in the imperfect state of preservation which without exception prevails in the few specimens thas far known from that horizon, it is 'fuite impossible to more than recognize their general resemblanee to the seetion of the genus represented by the above mentioned forms.

Position and locality: Upper beds of the St. Lonis limestone; Alton, Illinois ; St. Louis, Missouri.

Cladodus Van Hornei, St. J. aur W.
Pl. 4, Fig. 5.
Teeth of large size, robust. Base irregularly elliptieal, massive, moderately arched, inferior surface deeply excavated, beveled belt narrow, posterior margin thick, angnlarly rounded, extremities strongly prodnced and sharply rounded, anterior border derp, produced, sinnose, anterior basal angles prominent, and occupied by obtuse protuberanees, gently rounded into the extrenities, and separated by a rather wide depression, which extends up into the median cone, postero-superior surface occupied by a strong lateral prominence in extent equal to half the diameter of the base, and abruptly defined behind, surface coarsely roughened. Crown distinetly constrieted at base in front, obsenrely defined behind, median cone very robust, mpidly tapering to an acute
apex, Iaterally deflected, rather strongly recurved, gently arehed in front, strongly convex posteriorly, with compressed, sharp cutting edges; lateral deuticles one on either side, relatively strong, divergent, similar in form and recurvation to the principal cone, with which they are connected by a low, sharp coronal erest ; the anterior face is marked with a ferv short, sharp-crested, widely spaced costre, which are apparently confined to the basal region, the greater exient of the cusps being smooth, and beautifulls polished, as also the posterior face, with the exception of a frint carina in the angle between the cones, and which may termiuate in a delicate rudimentary denticle. A medium-sized specimen measures 1.25 inches in lateral diameter of base, and about equal to the greatest hight of the tooth, antero-posterior diameter . 45 to .50 , hight of median cone 1 inch, hight of lateral dentieles about . 55 inch.

The recognition of the present form is based upon a few speeimens discovered by Mr. Van Horne, one of which presents a nearly perfect tooth of medium size. Another consists of the base of a remarkably large individual, measuring in greatest diameter 1.80 inches, posteroanterior diameter .75 , ind agreeing intimately with the lesser specimen in form and contour. Others exhibit worn and fragmentary examples of smaller teeth. The peculiarities possessed by these teeth readily distinguish them from other forms of the genns, and, with tho ex'epl. tion of a single specimen in the collection of Mr. Springer from the upper Burlington limestoine, which has been provisionally referred to a distinct species, under the name of C. promuntius, it has no intintate allg. It is one of the largest and most interesting species as yet made known, and must have belonged to fishes of truly formidable size, and we have a commensurate pleasure in dedicating the species to its discoverer.

Position and locality: Rare in the upper beds of the St. Louis limestone; Alton, Illinois.

Cladodus euglypheus, St. J. and W.

Pl. IV, Fig. 1-3.

Teeth minute, or attaining a size below the medium. Base defined in front by a broad, moderately deep sinuation, extending between the angles produced by the antero-inferior bosses, thence retreating to the latcral extremities, which are produced and sharply rounded to tho broadly curved posterior margin; moderately excavated below, a filint marginal rim betwcen the antero-inferior bosses, and faintly beveled bohind; postero-superior surface gentls arched and ocelpied by a pair of rather prominent protuberanees or bosses, which are separated by a
narrow intersening channel, and defined from the crown by a broader, shallow depression; surface roughened by irregular sulei and minnte pits. Crown defined from base in front by a distinct ehannel, median cone more or less deeply exearated at base in front, more or less irregularly tapering to the apex, more compressed in front than behind, with sharp cutting edges; lateral costic ascending to the apex in front, limiting a rather broad furrow extending along the lateral margin, intermediate space oecupied by a few strong, sharp costre, which coalesce with the lateral ridges at more or less irregulax intervals; posterior face marked by a few simple costie somewhat more slender than those in frout, and successively disappearing in the lateral margins asceading; lateral denticles normally four on either extremity, the exterior pair long, bnt proportionately more slender than the median eone, more or less divergent and reeurved, with sharp cutting edges, and bearing in front two to four coste, which are sometimes bifincated descending; intermediate denticles alteruating in size, the middle pair about halt the size of the exterior pair, their bases being contimed in a marked prominence into the antero-inferior bosses of the base, ornamented with one or two sharp costie, and flanked on either side by a smaller delieate denticle, which usually bears a single sharp ridge in front.

The description is based upon munte teeth not uncommon in the St. Lonis limestone at Alton and St. Lsonis, and which present considerable individual rariation from the normal condition noticed above. In some specimens there are only three lateral dentieles on one side, and the disposition of the coronal costie also presents less or more slight diver. gence from that stated above, as shown in the figures of the two minute teeth from the above mentioned localities. From the same formation at l'ella, Lowa, we lave exanples of apparently the same form, but which attain nearly twice the size of the largest speeimens yet observed at the more sonthern localities, and which are otherwise distinguishable by the absence, or momentary condition, of the smaller pairs of lateral denticles, possibly the result of attrition or wear, and the apparent though not relatively more mumerons coronal costie in front.
'This form, at first glance, appeats to be closely allied to C. zyyopus, N. and W., of the Chester formation ; it is, however, realily distingrishable from that form by the greater mmber of lateral denticles and sparser coronal costac, as well as its generally smaller size. In the number and irregrnlar development of the lateral denticles only does it bear intimate comparison with C. intercostatus, of the Upper Bmrlington limestone.

Geolngical position and loculties: Not nneommon in the npper beds of the St. Lonis Limestone; Alton, Illinois, and St. Louis, Missomi ; it few specimens have been obtamed from the ealeareons shates in the same formation near Peella, Iowa.

Cladodus Fulleri, St. J. and W.

Pl. IV, Fig. 9.
Mr. L. A. Fuller has discovered in the shale in connection with eoal No. 3? at Bloomington, Illinois, a remarkable specimen which exhibits no less than the entire jaws of a tish whose deutition proclaims its affinities with the genus Cludodus. The eartilages of the jaws, though somewhat crushed and flattened, are quite distinct in their general outline, and would at first glance be pronounced as those belonging to a Plagiostome, in general shape bearing a striking resemblance to the jaws of the Squali, as illustrated in the genus Odontuspis of the existing seas. The rami of the lower jaw are characterized by their great depth in the region posterior to the middle, and apparently broatly rounded to the articular extremity; the rami of the upper jaws are somewhat crowded forward, vertically narrower and more produced in front. The rami of both the mper and lower jaws appear to have been somewhat thickened in the dentigerons region, and very thin in the opposite borders, with indieations of the longitudinal folds, the anterior protnberances and the posterior shallow excarations, while the structure is ummistakably that of semiosseous cartilage, in all which particulars it closely agrees with the jaw eartilages of the more modern order of Selachions. The greatest length of the jaw is about 11 inches, greatest vertical depth of the rami of the lower jaw 2.5 inches, that of the upper rami probably less than 2 inches.

The teeth are evidently displaced, as appears from the very irregular arrangement, or, indeed, apparent want of order in their present disposition, being collected in a disordered gronn between the anterior extremities and extending backward three-fourths the distance to the articular extremities. So far as it is possible to determine, there would seem to be less diversity in form than occurs in Odontaspis, the arrangement being the same, or apparently in serial rows from within outward. The largest individuals exposed are considerably less than half an inch in hight, and about the same in lateral extent of base. Individually, the tecth are symmetrical in shape, base strong, gently sinuous in front, broadly ronuded posteriorly, the inferior surface moderately exeavated; the anterior marginal border relatively narrow, broadly arched intrard between the anterolateral shonlders, which are moderately produced and between which the border is very gently arehed downward; the postero-superior surface of the base is mknown. The crown consists of a strong, moderatels tapering, trenehant median ensp, which is compressed or gently arched in front and slightly exeavated towards the base, broadly rounded behind, with a slight sigmoidal eurvature from base to apex, and ornamented in either face with exceedingly delicate
thread-like strix, which are more mumerous and crowded in the basal region in front, but sparser and somewhat irregularly juplanter above, and extending two-thirds or three-fourths the distance to the acnte apex, with a rather wide plain space parallel with either edge aud reaching half way towards the base; upon either extremity there are apparently but two lateral denticles, of which the exterior pair aro relatively strong, snbeirenlar in section, or less eompressed than the median cone, very slightly deflected laterally, more strongly recurved than the median cnsp, aud similaly tinely striated; the immer pair of denticles are less than lialf the size of the onter ones, similar in shape and slightly adsanced in the basal borderabove the antero-inferior angles. A largesized tootlı measures in hight. 30 inch, hight of onter denticles . 12, lateral diameter of base . 34, antero-posterior diameter about. 12 . The smaller teeth distingnishable are, perhaps, half the dimensions of that above measured.

The preservation of the speeimen under consideration is such as not to afford a distinct knowledge of all the details- the shale in which the specimen is imberlded so closely adhering as to necessitate the most carefinl and laborious manipulation in developing the speeimen, which, we regret, we have not had the opportunity to perform. But the general features, as exhibited by the teeth, may be satisfactorily ascertained, and these would appear to indieate less individual variableness than obtains its some speeies which have been determined from isolated teetlı. Minute speck-like bodies are associated with the mass, which possibly represent portions of the sli:lgreen, since they present a mueli more meven or papilions surface than observed in the surface of the cartilage itself.

We have long had in our possession a little tooth from the Middle Coal Measures of Iowa, which we have come to regard after eareful comparison as identical with the above described teeth, with the smallest of which it agrees in size. The basal region in front, however, is more strongly arehed downward in the middle and relativels deeper; but the coronal cusps in mmber and ornamentation apparently present no marked feature ly which it is distinguishable from the typical examples associated upon the jaws described above.

It is our introntion eventually to give this interesting speeimen a more earefin study than it is possible at the present time to bestow upon it. And, in connection with some fragmentary jaws discovered by Prof. Wortmen in the St. Louis formation, which we believe to be the first veritable examples of their kind found in Ameriean Carboniferons deposits, if not indeed elsewhere, we hope to obtain more detinite knowledge of their systematic relations in the great class of which they are among the earliest representatives.

It gives us much pleasure to associate the name of Mr. Fuller with the above described species.

The full complement of phates having been made np prine to the reception of the remarkable specimen discovered by Mr. Fuller, its full illustration has nuavodably been deferred. That of the Iowa specimen, however, with the description, will enable the recognition of otber indiriduals that may hereafter be found.
losition and locality: Carbonaceous shale overlying coal No. 3? at Bloomington, Illinois, and in the lower portion of the middle Coal Measnre, Dallas county, Iowa.

Cladodus pandatus, St. J. and W.

PI. IV, Fig. 8.

We here refer to a unique example of a minute form in the Coal Mrasures, which in general outline and size closely resembles C. Fulleri of the same horizon, from which, however, it is readily distinguishable by the presence of more numerous lateral denticles. The base is markedly simuous in front, relatively deep, moderatcly arehed downward and inbeveled, produced downward into a strong continuons marginal border between the quite prominent antero-inferior angles, broadly rounded at the extremities and posteriorly, inferior surface rather deeply excirated, postcro-superior surface moderately convex, with an ill-lefined basal pad, which apparently stretches across the greater diameter and about midway between the base of the crown and the posterior margin. The median conc is proportionately strong, gradually tapering, very slightly curved sigmoidally, and produced obliquely outward beyond the line vertical to the horizontal plane of the basc, compressed in front, broadly rounded behind, with delicate cutting edges; the lateral wings are occupicd by an irregularly alternating series of three or four pairs of relatively small dentiales, with indications of accessory denticles in front and flanking the large extcrior cones, which latter are moderatcly deflected laterally and recurved, the inner ones more ercet, and similarly ornamented as the median conc, which latter is marked by unmerons closely arranged thead-like strize. Greatest hight of tooth about. 19 inch, lateral diameter of base .21.

The form described is further distinguishable from C.carinatus by the less regular disposition of lateral denticles and the more numerous and delicate striation. The specimen is somewhat worn, but the general characters are well exlibited, and in the light thrown upon the cxtent of variableness of individnal teeth by the remarkable jaw discovered by Mr. Fuller, there would appear to be no doubt as to its specific distiuctness from C. Fulleri. The iorm apparently belongs to the see-
tion represented by C. Springeri, of the earliest member of the Lower Carboniferous.

Position and locality: Limestone above coal No. 9, at Carlinville, Illinois.

Cladodus carinatus, St. J. and W.

PI. IV, Fig. 6, 7.
Teeth very small, lateral diameter about equal to the greatest hight, generally robnst. Base relatively massive, sub-ellintical in outline, gently arched rertically, broadly and regularly rounded behind, rather deeply sinuate in front and abruptly rounded into the more or less acutely rounded extremities, anterior basal angles oceupied by promiuent anteriorly produced protuberauces which are connected by a low marginal ridge, inferior surface moderately excavated, pitted, posterosupenior surface unknown. Crown more or less produced and constricted basally in front, and deeply exearated in the median region, median cone strong, sub-circular or sub-lentieular in transverse section with delicate cutting edges, rapidly tapering to an acute point, erect or laterally deflected and nearly vertical to the horizontal plane of the base; lateral denticles normally four on either side, alternating in size, the exterior pair relatively very large, more or less strongly divergent and recurved, in form similar to the principal cusp; the anterior face of the median cone is marked with sharp-crested, more or less regular and crowded costre, which appear stronger in the lateral dentieles and less crowded, and obsolete in the swollen basal region, ornamentation of posterior face not known. A medium-sized tooth measures .17 inch in lateral diameter of base, hight .15 inch.

Only two anthentic examples of the present form have come to our notice-one obtained by Mr. Fuller, from the horizon of coal No. 5, and the other from bed No. 30 of the general section of the Middle Coal Measures of Iowa. Both specimens being derived from nearly the same stratigraphic position at localities distant from each other, much interest attaches to their discovery on account of the evidence they furnish relative to the value of these remains in the identification of strata asse. ciated with particular coal horizous at remote localities.

The Iowa specimen is still smaller than that measured, and presents an interesting feature of individual variation. The median cone is eceentric, or to one side of the median line, and the short extremity exhibits only two long, slender deuticles, while the opposite end possesses the full complement in its armature. Otherwise, in the form, disposition and ornamentation of the coronal cusps, as also the basal region, the characters possessed in common indicate the most intimate relation-
ship between the two specimens. Compared with other forms, perhaps this bears the strongest resemblance to C. euglyphens of the St. Louis Limestone; it is, howerer, distinguished from that form by the finer striation and greater depth of the anterior basal region.

Position and locality: Carbonaceous shale accompanying coal No. 5, at Girard, Ill., and bed No. 30 of the middle Coal Measures, Ginthrie Co., Iowa.

Genves LAMBDODUS, St. J. and W.

Teetly small, base posteriorly prodnced, more or less laterally expanded, long-elliptical or subecircular in outline, broadest behind the cormua, slightly produced in front, gently concave, or sometimes convex below, superior surface convex A single strong, slightly sigmoidally curred, recurved, eceentric cornua arises from the anterior angle of the base, terminating in a sharp apex, compressed in front, broadly rounded. behind, with more or less distinct cutting edges and irregular vertical costre.

The teeth recognized muder the above generic term were at first supposed to pertain to some part of the dental economy of cladodus. The accession of material, mainly throngh the effurts of Mr. Springer, affurding a more complete knowledge of the individual characteristics of the teeth of the two most abundantly represented forms, has resulted in the development of no further intimacy with the above genus, while it has conclusively proved the persistency of the characteristies which distinguish them from Cladodus, and lead to the recognition of their generic distinctness. It is distinguished from Cladodus by the single coronal cornua, the absence of lateral denticles. The basal portion bears some resemblance to Thrimucolus, but the coronal features are entirely dissimilar. The genns is, so fur as at present known, restricted to the Lower Carboniferous formations, occurring in considerable abundance in the npner Burlington and Keoknk limestones, and extending upwards in the St. Lonis and Chester formation.

Lambdodus costatus, St. J. and W.

Teeth of small size. Base laterally oval or snb-circular in ontline comparatively thin, inferior surface slightly concave, anterior border moderately produced ant slightly thickened. Coronal ensp strong, gradually tapering to the acute apex, slightly deflected laterally and sigmoidally cmred backward, slightly compressed laterally, orate section, with shan'p cutting elges well delined towards the apex, but gener-
ally obsolete below; anterior face occupied by six to ten strong sharp crested costre, which inerease by implantation, beeoming obsolete towards the apex where the exterior pair merge into the lateral margins, producing the sharp eutting angles, strongest in the middle, and towards the base of the cone often swelling into strong plicæ, which give off subordinate carinæ by bifureation; posterior face apparently destitute of strix or eostation. A perfeet, medium sized tooth will measure in greatest antero posterior diameter of base . 26 inch, lateral diameter .31, thickness .10, hight of cone .32, greatest diameter at base about. 12 inèb.

The form here described was first brought to our notice by Mr. Springer, and subsequently fine suites of specimens have been obtained at the localities in the environs of Burlington. They usually oceur as strong eusps without the base, which has been worn or broken away. But eren in this condition they may be readily identified, the strong costation of the outer face serving to distinguish them from similarly preserved specimens of the forms with whieh they are associated, L. calceolus. As in the ease of the latter form, there oceurs in the Keokuk limestone a very similar form of teeth; but our material from that horizon is insufficient more than to establish the fact of the close relationship existing between them and the Upper Burlington teeth. A large suite of speeimens may disclose differenees by which they may be distinguished from each other, suel as we have pointed out in connection with the above mentioned form.

Position and locality: In the fish-bed horizon of the Upper Burlington limestone ; Louisa and DesMoines counties, Iowa; and loealities in Henderson and Warren eounties, Illinois. The loealities in the Keokuk limestone are in the vicinity of Warsaw, Ill., Boonville, Mo., where Dr. Williams has obtained speeimens of the Keokuk teeth; Bentonsport, Iowa.

Lambdodus calceolus, St. J. and W.

$$
\text { Pl. V, Fig. } 5 .
$$

Teeth small. Base moderately thiek, elliptical in outline, narrow, greatest expansion posterior to the coronal eusp, in front slightly produced, narrower than behind and rounded, posterior extremity usually obliquely rombled or truncated. The eoronal eusp rises from the anterior extremity of the base, in a strong, rapidly tapering, conical, slightly twisted cone, which bulges outward, recurved and more or less defleeted from a vertical line, in hight probably two-thirds the antero-posterior diameter of the base ; the transverse seetion of the cone is elliptical or sub-oval, the long axis being in the same direction as that of the base,
lateral angles sharp, thongh generally obsolete from wear, outer face marked by rather fine, irregularly disposed sharp-crested carinæ, inner face apparently smooth, the enamel-like layer terminating inferiorly in a faintly defined border. A specimen of ordinary size measures in greatest diameter of base .45 inch, lateral diameter .24 , depth .15 , hight of cone about. 30 , greatest diameter at base 14 , lateral diameter .11 inch.

The teeth of this form present considerable individual variation, which appears to be mainly attributable to wear. We have a few specineus from the Keokuk limestone, which are very intimately allied to the form especially referred to above, to which we have provisionally referred them, as a variety, under the designation L. robustus. The latter tecth are uniformly more robust, and, although the base has the same outline viewed from above, it is deeper and sometimes strongly angular or heeled in the inferior surface, instead of being plane, as almost always occurs in the Upper Burlington teeth; the anterior extremity of the base is also more prominently produced, while the form of the cone, which in the ferr examples examined is worn smooth, is in no marked degree unlike that of the form described. The differences between these forms are strikingly similar, in degree, to those which distinguish the teeth of Cladodus micropus, N. and W., in the same horizous ; aud it is not, perhaps, unreasonable to look for a greater intimacy in the relationship of these two groups, than the data possessed at this moment would seem to justify.

Position and locality.-Not uncommon in the fish-bed of the Upper Burlington, Louisa and DesMoines counties, Iowa, and localities in the same horizou in Illinois. The Keokuk form occurs at Warsaw, Illinois, Keoknk and Bentonsport, Iowa, and Lagrange, Missouri.

Lambdodus transversus, St. J. aud W.

```
Pl V, Fig. 4.
```

A single specimen of a minute tooth from the St. Louis limestone, apparently referable to the above genus, is distinguished by its relatively great lateral diameter of base, which is two and a half times greater than its antero-posterior diameter, comparatively thick, laterally oval in outline, anterior border nearls equally produced with the posterior margin, and beveled to a thin edge, coarsely roughened. The coronal cusp is very strong, rapilly tapered, moderately recurved, antero posteriorly compressed, lenticular in transverse section, lateral angles acutely rounded, surface smooth. Hight of tooth . 07 inch, cone nearly central, lateral diameter of base .15 , antero-posterior diameter .06 inch.

The present form appears to be most nearly allied to L. costatus of the Upper Burlington limestone, from which it is distinguishable by its greater lateral diameter of base and more compressed and centrally situated coronal cusp. The unique example described belongs to Mr. Van Horne's collection.

Position and locality: Upper beds of the St. Louis limestone, Alton, Illinois.

Lambdodus hamulus, St. J. and W.

Pl. V, Fig 26.

Teeth small. Base strong, thick, laterally compressed, posteriorly produced and truncated or rounded, inferior surface uearly plane or slightly arched laterally and nearly straight from front backwards, contracted anteriorly where it terminates in an obtuse marginal prominence or border, which distinctly defines the base from the crown, posterosuperior surface morlerately convex laterally, with a more or less well-defined mesial ridge exteuding from the base of the cone to the posterior border, both surfaces more or less roughened and longitudinally striated. Coronal ensp strong, gradually tapering, prominently produced in front, recurved, laterally compressed, thickest in front, presenting an orate tiansserse section, apparently smooth. Hight of tooth about .18 inch, antero-posterior diameter of base .25, lateral diameter .16 , vertical depth of base in middle .09 , greatest diameter of cone at base . 10 , lateral diameter .08 , hight of cone .15 inch.

The above form is clearly related to L. calceolus var. rolustus, of the Keokuk limestone; indeed so intimate is the resemblance, that, were the present tooth obtained from the same horizon, one would scarcely hesitate, in the absence of means for more critical comparison, to refer it to that form. But, occurring in a position several hundred feet above that in which the above mentioned form is found, in a division which is otherwise quite distinct from the Keokuk beds, there are also certain peculiarities presented by the form here described, which, should they be found to be persistent, must establish its distinct specific character. The most striking of these apparently distinctive characteristies are, the more prominent forward projection of the cone, and the reversed position of the ovate transverse section, which in the Keokuk form is narrowest in front, and its base less symmetrical.

Position and locality: Rare in the lower fish-bed of the Chester limestone, Chester, lllinois.

Lambdodus reflexus, St. J. aud W.

Abstract

Pl. V, Fig. 25. Tceth of small size. Base broad, apparently rectaugular, laterally and posteriorly cxpanded, considerably produced in front beyoud the base of the cormua and broadly rounded, margin thin, inferior surface slightly concare, both surfaces irregularly striated or roughened. Coronal cusps strongly recurved, slightly twisted, gradually tapering to an aente point, laterally compressed, ovate in transcerse scetion with the broad margin anterior, appareutly smooth and polished. Elevation of tooth abont . 27 inch, lateral diameter of base about . 30 .

The single example of the above form at present known, unfortunately, does not preserve the entire ontlinc of the base, especially the posterior border, althongh in other respects it is quite perfect, permitting satisfactory comparison with other allied forms. Of the latter L. costatus, from the Upper Burlington limestone, bears the most intimate resemblance to the form under consideration, which, however, is distinguished from that species by its thimer base, which is more prominently produced along the frout border, and the more strongly recurved cone. With L. transversus, from the St. Louis limestone, it agrees in the central position of the coronal cusp, but differs in a marked degree in other particulars, as its more slender or much higher cusp, which latter is laterally instead of anteroposteriorly flattened, as in that form. The apparent smooth surface of the cone may be duc to attrition, but there is no evidence of costation or other superficial ornamentation.

Position aind loculity: Upper fish-bed of the Chester limestone; Chester, Lllinois.

Genus HYBOCLADODUS, St. J. and W.

The collection from the Upper Burlington and - Kcokuk formations aftord a ferv examples of a gronp of tecth, which presents certain peculiar combinations of external features not hitherto observed in the dental remains of the Hybodonts of the Lower Carboniferous epoclis. They consist of strongly cuspilate tecth, with a broad, posteriorly expanded base, in which last respect they exhibit an ummistakable affinity to Cladodus ; but differing so widely in other and no less important particulars, as to leave littlo donbt as to their distinct generic character.

Teeth attain medium sizc. Base clliptical in outlive, vertically arched between the extremities, which are more or less sharply rounded, anterior face ucarly straight, curved laterally, terminating below in a welldefincd marginal border or ridge, posterior margin broadly rounded,
inferior surface excarated immediately behind the marginal border, with a beveled space extending along the posterior margin, superior surface more or less convex and beveled to the posterior edge. Crown well-defined from the base, constricted in front and laterally, forming a sub-acute crest, gradually increasing in prominence from the extremities tomards the middle, cnlminating in a more or less prominent anteroposteriorly compressed median cone; both coronal surfaces are marked with more or less regnlar, vertically or radiatingly disposed plica or ridges, the apical terminations of which prodnce a delicate, sometimes strong, denticulation in the crest; crown enameled.

In the gronp of teeth here designated, the crown bears a strong resemblance to that of Hyborlus (especially H. plicatilis, Agassiz, of the European Muschelkulli), and also Mascalodus, while its affinities with Orodus are, nerhaps, less striking. Indeed this peculiar group apparently presents a Hybodus-like crown planted unon a Cludorlus base; or, in other words, a combination of characters which, separately considered, find their peculiar development in groups or genera pertaining to remotely separated geological epochs. That it constitutes a type holding a position intermediate between Hybodus and Cladodus, combining in its exterual features characters which are peculiar to one or other of those genera, and thence forming, as it were, a connecting link between these geologically widely separated groups, seems to be most apparent.

In his great work on the Fossil Fishes of the Old Red Sandstone,* Professor Agassiz has described a form of teeth under the name Cladodus simplex, from the Deronian in the environs of St. Petersburg, which seems to exhibit precisely the same coronal features pertaining to the teeth under consideration. Bnt, since its base is imperfect, important characters are wanting, without which its identity with the present genns cannot be determined. I have also recently examined a specimen obtained by Robert Drinkwater, from the Coal Measure shales near Manchester, England, which appears to be generically identical with the teeth designated above, thongh it differs in having the lateral portions of the crown occnpied by a few very strong, conical tnberculations, the median cone relatively low, and oruamented by a few strong, sharp, bifurcated vertical costa. I have not been able to ascertain whether the form here indicated has been described.

[^25]
Hybocladodus plicatilis, St. J. and W.

Pl. V, Fig. 9.

Teeth of medium or small size, symmetrical in form. Base elliptical in outline, gently arehed vertically, lateral extremities neatly and regularly rounded, the posterosuperior surface beveled to the broadly expanded and rounded posterior margin, anterior face gently arehed, or nearly straight, slightly recurved at the extremities, forming a welldefined marginal ridge projecting downward and slightly outward, moderately excavated below, and bordered posteriorly by a rather wide beveled belt, sometimes coarsely striated or punctate. Crown oceupying nearly the entire lateral diameter of the base, strongly constricted basally in front, moderately so behind, lateral extremities obtuse, crest sub-acute, regularly rising into the prominent median cone, which is lenticular in transverse seetion with delieate cntting edges, more or less nearly rertical and slightly recurved; the anterior face is marked by rather strong vertical plicie whieh originate in slight protuberances, sending off bifureations above and below, those above producing a delicate denticulation in the lateral portions of the crest, but which are generally obsolete from abrasion, the plice in the median cone perceptibly finer than those in the lateral extremities; the vertical plications in the posterior face are very like those described, except that they may be less strong. A medium-sized tooth is .36 incli in lateral diameter, hight. 21 , antero posterior diameter of base .12 inch.

The individuals of this beantiful form vary considerably in size, attaining twice the size of the specimen indicated in the above measurements. Howerer rare perfect teeth are, fragments of the erown are not infrequent, and when these show any portion of the lateral extremities, or the anterior median region of the base, they are not likely to be confonnded with Cladodus, which they somewhat resemble, as also Orodus, especially worn specimens.

Position and locality: Fish-bed of the Upper Burlington limestone; Lonisa connty, Iowa.

Пybocladodus tenuicostatus, St. J. and W.

Pl. V, Fig. 10.

The collections from the Keokuk limestone afford a few imperfect specimens of strongly enspidate teeth, which are apparently referable to the above gemas, though specifically distinct from the last deseribed form from the Upper Burlington. None of the examples before us preserve the base entire, but the symmetrical, gracefully tapering median
cone is well shown in all; and a specimen from Warsaw exhibits one extremity of the coronal portion nearly entire, also cnough of the base remains to render its generic identity with the last noticed form almost certain.

In gencral form the present form bears a close resemblance to H. plicutilis, being symmetrically proportioned and apparently of nearly the same dimensions. The base appears to be somewhat narrower, its inuer margin more attemated and rather more strongly frehed laterally than in the case of the former species. The coronal crest is sharp along the lateral portions, and produced into a strong, regularls tapering median cusp, which is slightly compressed, with sharp lateral edges extending half way to the apex. The basal portion of the erown is slightly excarated in frout, and the lateral and median portions are ornamented with fine, angular, thread-like vertical costie, which become coarscr near the extremities, obsoletc in the upper half the median cone and more numerous and crowded in front than behind. Lateral diameter of mediumsized specimen about . 45 inch, hight. 35 .

Associated with the above teeth, there occurs a form which possesses peculiarities which seem to indicate a distinct species, which we have provisionalls designated by the name Hybocludodus intermedius, on aecount of its relationship to H. plicatilis of the Upper Burlington. Particularly is this relationship displayed in the wide base, the postcrior expansion of which is creu greater than in the latter form. The median conc approaches ncar that of H. temuicostutus ; aud, while the ornamentation of the erown is coarser than observed in the latter, the costie are more regular and widely spaced than in the former species. The two imperfect specimens representing the form here alluded to, show only enough to render doubtful their ideutity with either of the forms above mentioned, though not sufficient to enable a satisfactory elimination of their specifie characters.

Position and locality: Fish-bed horizon of the Keokuk limestone; vicinity of Warsaw, Illinois, Keokuk and Bentonsport, Iowa.

IIybocladodus conpressus.

Pl. V, Fig. 8.
Helodus comprewnes, Newberky and Worthex; 1866, Geol. Ill. II., p. 78, Pl. V, Fig. 1 ; not Melodus compressus, N. and W., vol. iv, p. 360, Il. III, Fig. 15.

Tceth small. Crown anteru-posteriorly compressed, and remarkable for the laterally deflected, stout, low, obtuse median cone; besides the crest is suddenly compressed to a thin edge, interrupted by faint serrations, and latcrally produced at an acute angle beyond the base; the body of the outer face is occupied by short, nearly vertical plice, while
that of the inner face is smooth in all our specimens, though in wellpreserved individuals it will probably be found to be similarly ornamented. The base presents all the characteristics of the above group of teeth, the anterior marginal ridge is well defined, nearly straight, and but slightly arched vertically; inferior surface moderately excavated, the posteriorly expanded portion projects sharply downward at a slight angle to the posterior crown face, broadly romided along the inner margin. Lateral diameter of crown abont .35 inch, or slightly exceeding that of the base; elevation of outer face of tooth .16, greatest thickness of crown at base .07 , antero-posterior diameter of base .10 inch.

The original of the present form, although somewhat abraded in the coronal portion, and so imbedded as to expose only the outer aspect of the tooth, is readily identified with more perfect specimens since obtained from the same horizon at other localities, which latter teeth exhibit, apparently, unquestionable generic relatiouship with Hybocladodus, and dissimilar in all essential characters from Helodus, as evidenced by the peculiar form of the base and acuminate crest. The compressed crown and laterally deflected median cone afford the widest contrast with the typical species Hybo. plicatilis, with which it is associated, but which more intimately ally it with Hybo. nitidus, described from the Chester limestone, from which latter, however, it is distinguished by its more compressed crown, and, perhaps, greater regularity of the crest line, etc.

Position and locality: Fish-bed of the Upper Burlington limestone; Louisa county, and Augusta, Iowa.

Hybocladodus nitidus, St. J. and W.

Pl V, Fig. 7.

Teeth very small. Outline of base elliptical, considerably expanded posteriorly in the same horizontal plane as the crown, and gently arched vertically, moderately excavated below, anterior marginal ridge strong and well defined from the crown, slightly produced outward. Crown stroug, prominently distended in front, defined from the base behind by a slight augle, constricted at the extremities, crust obtusely angular, median prominence eccentric, strong, and laterally deflecterl, with a small, obtuse secondary cone at either extremity, surfaces appareutly despitnte of ornamentation.

This species is fomded upou a simgle specimen, a nearly perfect tooth, which measures scarcely one-tenth of an inch in lateral diameter, and is the sole representative of the genus thas far bronght to our knowledge in the upper division of the Lower Carboniferous deposits. Closely
allied to Hybo-compressus of the upper Burlington limestone, it is readily distinguished from that form by its more robust proportions, less compressed crown, and less obliquely produced posterior expansion of the base. The median cone presents the same lateral deflection, althongh it is relativels less prominent, and it is possible the present form may possess similar vertical ruge as appear in the crown of the above form.

Position and locality: Chester linestone; Chester, Illinois.

Genus Thirlnacodus, St. J. and W.

Teeth of small size. Basc posteriorly produced in a long, sometimes twisted, vertically flattcued, or latcrally compressed, clavate plate, longer than wide, anterior face narrow, and abruptly bevelcd from the basal line of the crown; posterior extremity more or less obtusely ronuded; inferior surface narrow, plane or faintly excavated; superior surface gently convex, concare anteropostcriorly, or corresponding to the curvature of the inferior surface. From the antero-superior extremity of the base spring three more or lcss relatively stout, nearly equal, trenchant, acutely pointed, recurved cusps, the cxterior pair divergent, the central one more or less rertical, slightly sigmoidally curved, transverse section sublentieular, eompressed in front, rombled behind, with simple cutting edges, and more or less strongly costate in either face.

The generic pecnliarities of the tecth here referred to, as contrasted with Diplorlus, Agass., with which they are most intimately allicd, consists in the relative more slender base, which lacks both the anteroinferior protuberance and the postero-superior pad-like prominence characteristic of the above genus. The eoronal cnsps are also nearly equal in size, the cutting cdges are destitute of cremmations, and their anterior and posterior faces more or less strongly ridged vertically. The form of the trident-like ensps are very like that of Cladorlus, being slightly constricted basally in front and faintly defined from the base behind.

As here definel, the genns includes the forms originally described by Messrs. Newberry and Worthen, muder the name Diplodus incurvs and I). duplicntus, of the Keoknk limestone, which scem to be modistingnishable from a form not nucommon in the upper Burlington limestolle.

Thrinacodus nanus, St. J. and W.
I'l. V, Fig. 1, 2.
Teeth minnte. Base thick, moderately produced posteriorly, or appa. rently sub elliptical in ontline, constricted or romuled below, and faintly
excavated; coronal cusps nearly equal in size, terminating in a sharp point, with sharp lateral edges, lenticnlar in transverse section, more compressel in front than behind, the exterior pair diverging and recurved, central cone crect or laterally deflected, and ornamented with a rery few sharp, irregularly disposed costre in the onter faces. Hight of medium size tooth .05 -inch, and .07 inch between the tips of the exterior denticles.

The few individuals showing the crown cntire present the appearanees described above. But the collections afford several imperfeet teeth, apparently referable to the same speeies, which show the base considerably produced posteriorly, tlattened and slightly twisted, preciscly in the same manner as in the allied forms occurring in the succeeding Burlington and Keoknk divisions. In case of this identity, the laterally elliptical outline of the base, as described above, is probably due to mechanical abrasion.

These teetli are most intimately allicd to the form which occurs in the Burlington limestone, Thrinacodus incurvus, (N. and W. sp.) from which, indeed, they are chiefly distinguishable by their excecdingly minute size. The costr seldom exceed threc in the outcr face of the coronal cusps, the inner face showing obscure traces of fine and more numerous strix.

Geol. position and locality: Not uncommon in the upper fish-bed of the Kinderhook division ; Burlington, Iowa.

Genus MESODMODUS, St. J. and W.

Teeth laterally elongated. Base consisting of one inferiorly flattened, posteriorly obliquely produced, massive plate, of which the posterior face slopes downward and slightly backward at an obtuse angle to the posterior crown face, anterior face slightly produced along the shoulder which extends parallel with the base of the crown, vertical or beveled, and occupied by a more or less prominent median protuberance which extends to the edge of the inferior surface; both faces more or less roughened or pitted, lateral angles truncated or rounded and more or less constricted above, equaling the lateral diameter of the crown. Urown rising along the anterior border, sharply constricted in front and laterally, and well defincd, sometimes constricted, from the posterior basal faee, nearly equaling the base in antero-posterior dianeter, but more or less compressed along the crest, which rises into a more or less prominent median or submedian cusp, vertieal or laterally deflected and recurved, usually compressed, with distinct, sometimes sharp eutting elges; the lateral portions of the crown are more or less strongly alenticulated, the extremities bearing slightly more prominent cusps than
the intermediate spaces, both faees more or less strongly ridged rerticalls, the onter face of the median conc often strongly buttressed and descencling to the basal protuberance; eoronal surfaces covered with a polished enamel-like layer.

The teeth of the sereral forms of the present genus at present known, are small, or attain medium size. The individuals of certain forms are very variable, and yet, when perfect, their minor or specific characteris. ties are readily determinablc. The aftinities of the genus are clearly intermediate between Orodus and Hybocladodus of the Carboniferous genera, and its relation to the Jurassic Hybodus reticulatus of Agassiz, would appear to be most intimate, but for the presence of the median protuberance in the anterior face of the base. The general and someWhat marked resemblanee to Cladodus, as especially displayed in the denticulation of the lateral extremities, reeurvation of the median eusps, and the posterior expansion of the base of ecrtain forms, suggest a mueh more intimate relationship of the latter gems with Orodus than has before been pointed out. The genus thus far is known only in the lower members of the Lower Carboniferous, extending from the Kinderhook npwards to the Keokuk formation.

Mesodmodus exsculptus, St. J. and W.

Pl. V, Fig. 18-22.
Teetlı attain meäium size, though very variable, according to the position they occupied upon the jaws. Perlaps three varietics may be recognized, at least for the purpose of their specific definition, and which are supposed to represent the dentition of the median, anterior and postcrior portions of the jaws, althongh these merge into one another so that there is practically a regular gradation from one extreme to the other. Of these the median tecth are the largest and most syminctrical, attaining nearly an inch in lateral diameter. They are gently and regnlarly arched between thic extronities, which are sometimes curved forward, though generally directed backward, or nearly lincar. The base nearly or quite equals the crown in hight and lateral diameter, excceding the antcro-posterior diameter of the crown, massive, obliquely and moderately produeed posteriorly, or nearly vertical to the crown, posterior face gently consex vertically, anterior face beveled from the narrow shoulder to the broad inferior surface, whieh latter occupies nearly the same horizonal plane as the erown; both basal faces are more or less coarsely roughencd, the anterior face more so than the posterior, inferior surface smooth, or pitted with minute foramena. Crown moderately convex and sliglitly compressed immediately
beneath the crest in either face, the posterior slightly exceeding the anterior face in elevation, gently constricted inferiorly, extremities slightly produced laterally, crest acute, minutely denticulated, and gradually ascending to the more or less eccentric median prominence, which forms the apex of an obtuse angle, slightly defleeted laterally toward the shorter extremity, gently convex or distended in the midde before and behind, supported in front loy the moderately prominent basal protuberance; the coronal faces are uniformly sculptured in strong, sharp, closely arrauged, sometimes bifureated rertical ridges, one, two or more of which culminate in the minnte denticnlations along the crest, which latter are more or less irregularly developed, or variable in prominence, the extreme lateral ones sometimes quite prominent, the interspaces are oceupied by short thread-like lines descending from exceedingly delicate denticnlations in the crestand rising from the base, produciug in the highly polished enameled surfaces the most exquisite coronal ornamentation.

The anterior tecth are smaller, trpical examples areraging . 4 inch in length. The base is relatively more massive, less bereled or slightly produced in front, inferior surface very gently arehed upward, sometimes straight, plate, conserging to the posterior margin, forming one side of an equilateral triangle, of which the other two sides eonstitute respectively the posterior and anterior corono basal faces in the lateral wings of the tooth. The arerage hight of the crown about equals the deptlo of the base, it is slighty constricted inferiorly, rapidly eonverg. ing to the crest, which is flanked laterally by somewhat stont, laterally deffected, recurved denticulations, and thence, witlo intermediate lesser and rariable denticulations, mimoaches the abruptly prodnced, eccentrie median prominence, which is situated about ove-third the distance from one or other extremity, the sharp, romded apex direeted towards the short extremity and recurved, in elevation as great again as the lateral wings, lenticular in transverse section with slarp cutting edges, the base in front somewhat more prolonged into the basal protuberance and posteriorly notched than ocenrs in the median teeth; the eoronal scoupturing is the same as leseribed in the former variety, the elief differences distinguishing the present one consisting in the relatively more massive, inferiorly expanded base, the stouter denticles at the lateral extrenities, and more prominent, compressed median cone.

Associated with the above varieties, a third ocenrs, which, more intimately like the median teeth in form and general proportions, is distinguishable by its linear ontliue, the median prominence being scarcely distinguishable, the body of the teeth being quite regularly and very gradually attenuated from the short to the long extremity, the crest interrupted by more or less widely spaced denticulations, the intervals
between which are most delicately wrouglit into short rertical ridges. The anterior basal area preseuts a series of small protuberances corresponding to the denticulations in the crest, as slown in fig. 20 b -a feature not observed in the other varieties. These teeth are also of smaller size than the median teeth, from which fact, and their linear ontline, they may be regarded as having constituted the posterior rows noou the jaws.

For the means of studsing this interesting form in all its phases, we are indebted to the careful investigations of the local fama of the Kinderhook at Burlington, first begun by Mr. Frank Springer, and sub. sequently in connection with Mr. Wichsuutn, which have been prosecuted with most raluable results in the acquisition of abnudant and authentic materials. The teetlo moder consideration differ in so marked a degree from the npper Burlington form of the genus, as scarcely to require detailed comparison. Anong themselves, the varieties described above exhibit every degree of gradation, by which they are shown to be merely the varied deutition of one and the same form. While in the ormamentation of the coronal region, as also the form of the base, there is marked persistence in all the teeth, the coronal contour presents a range of variableness which, in extreme examples, hardly affords a clue to their specific identity, as is shown in what we have termed the anterior and posterior teeth.

Position and locality: Common in the lower fish-bed of the Kinderhook; a solitary specincu said to have been derived from the upper fishbed of the same formation, ocenrs in the collection of Mr. Giles, now in the Museum of Comparative Zoülogy at Cambridge; Burlingtou, Iowa.

Mesodmodus explanatus, St. J. and W. Pl. V, Fig. 15-17.

Teeth minnte. Base irregularly longelliptical, or elliptical, in ontline, moderately arched npward, bereled in front from the nar row, generally obscure shoulder, protuberance proportionately large, globular, median, inferior surface plane or faintly excavated, posterior face prodnced downward and backward at a slight angle, or sometimes nearly at right angles to the vertical phate of the crown, broally rounded along the posterior margin, extremities romderl, anterior face coarsely roughened, posterion face more finely pitted. Crown prominent, compressed, slightly constricted basally, lateral angles divergent, anterior face moderately convex, posterior fice less so, median prominenco more or less produced, median and obtusely romder, or eecentric, the atnte apex laterally deflected towards the short extremity, recurved ; lateral wings occupied
by one to three relatively prominent secondary cusps, which are connected with each other and the median prominence by the sharp coronal crest, very variable in occurrence, sometimes a pair on either extremity, of which the exterior are smallest, sometimes one strong cusp on the short extremity, and three in the long opposite wing, again, the one extremity being formed by the even prolongation of the sharp lateral edge of the median cusp, with only a single denticle upon the opposite extremity; surfaces enveloped in a polished emamel-like coating, and marked, especially in the basal half, by a few short, sharp, thread-like vertical lines, which become olosolete in the upper portions of the crown. Lateral diameter of a symmetrical medium sized specimen . 19 inch, antero-posterior diameter about .07 , greatest elevation of tooth .09 inch; some specimens are proportionately shorter and more considerably prodnced posteriorly, others are marrower, but the specimen measured probably represents the normal proportions of the teeth.

We have examined but few examples of the form described above, which, however variable among themselves, exhibit a persistence in coronal markings which readily contirms their specific identity. They bear, at least in some examples, even closer resemblance to M. ormatus of the Upper Burlington, than they do to MI. exsculptus, with which latter they are associated. It seems barely possible, indeed, that they may pertain to the latter form ; but their distinctive features, as exhibited by the comparatirely smooth coroual surfaces and sparsely denticulate crest, and the broader basal support, do not larmonize with the variable chatacters of the latter form, while their individual variation is quite as marked, though apparently never approaching that of M. exsentptus sufficiently to furnish satisfactory evidence of their specific identity.

Position and locality: Rare, in the lower fish-bed of the Kinderhook; Burlington, Iowa.

Mesodmodus ornatus: St. J. and W.

Pl. V, Fig. 12-14.
Teetli very small, lateral diameter about equal to twice the hight. Base subcrescentiform in outline, broadly produced posteriorly and rounded, gently concave in front, anterior face low, beveled, roughened, protuberance median or submedian, moderately prominent, posterior face gently convex laterally, forming an obtuse angle with the posterior crown face, finely punctate, inferior surface slightly oblique to the horizontal plane of the crown, relatively broad, plane or faintly concare, gently arched upward, lateral extremities sharply ronded in front. Crown relatively strong, prominent, more or less strongly produced in frout and constricted inforiorly and laterally, well.defined from the base
behind, principal prominence median and rertical, or eccentric aud laterally deflecterl, the apex directed towards the short extremity, recurved, strongly buttressed in front, the vertical ridge terminating in the basal protuberance below, lateral wings sharp-crested, and bearing a strong secondary cusp at the extremities, which is sometimes flanked exteriorly by a smaller denticle, one or more simitar denticles between the lateral cusps and the median prominence; in the perfect condition, these denticulations are observed to be produced by the convergence in the crest of one or two relatively strong, vertical ridges, which appear in both faces, thongh more conspicuous in front, the median buttress forming a prominent, angular ridge, which is perhaps ormamented with delicate thread-like lines. A specimen of medimm size measures. 10 inch in lateral dianneter, greatest hight .06 , autero-posterior breadth of base . 04 iuch.

The present form also presents considerable variability, though perhaps to a less extent than noticed in the preceding forms, and which would appear to be largely due to the state of preservation of the indiridual teeth. Our material contains several examples some of which are larger than the typical individuals, but which are perfectly smooth, simply exhibiting the general coronal contom, the crest, median and lateral prominences obtusely romided-features doubtless attributable to abrasion, as they otherwise differ in no respect from the typical examples. The form recalls that previously mentioned under the name M. explantus, with which, indeed, it bears resemblances in general ontline and proportions; but the coronal ridges are stronger, and the anterior face of the median cusp is much more prominently buttressed. A specimen obtained by one of the writers from the Keoknk limestone, though not perfect, exlibits no appreciable differences by which it cau be distinguished from the present form.

Position and loculity: Not rare in the fish-bed of the Upper Burling. tou limestone; Buffington creek, Lonisa county, and at other localities in the same horizon, in Illinois and Iowa.

Gexus ORODUS, Agassiz.

Orodus? parallelus, St. J. and W.

I'l. V, Fig. 23.

Teeth very small, oceurring in serial rows, apparently soldered at their bases, which thins form a common smpport, probably also ocemring isolated, stontly built, and symmetrical. Individualls, the base is very strong, very obliquely produced backward, anterior face deeply channeled aud defined from the crown by a narrow, sharply projecting hori-
zoutal shoulder, posterior faee nearly plane or slightly beveled below, laterally abruptly truucated and angular, inferior surface broad and flattened in nearly the same plane as the crown, both sides coarsely ronghened. Crown equaling the greater diameter of the base, strong, linear, s'ightly coustricted inferiorly, extremities very gently curved forward and abruptly truneated vertieally, crest nearly central, sharp, even, or in some examples produced into a slight submedian prominence, onter and inner faces nearly equal in hight and gently arched vertieally, in the outer face bounded by delicate coronal plica forming a belt aseending obliquely from the basal border to the upper coronal angles, constituting the only semblance of basal fulds; both faces are similarly ornamented with mumerons angular, slightly deftected or divergent vertical ridges, imegularly bifureated below, with short implinted ridges extending downard from the erest, sometimes mote or less intervinted in their direct eonsse, prolucing a delicate ant singularly beautiful senlptuting, and covered by a dense enamel-like layer. Length of medium sized specimen . 19 ineh, hight. 08 , eleration of crown .03 , greatest antero-posterior diameter of crown . 04 inch.

Of the present form we have examined only two examples, and the identity of one of these (an imperfect tooth which exhibits certain pecnliarities in eommon with the type), is not well established. The form of the individual teeth readily distinguishes them from other species of Orodus ; but this very peculiarity, and the manner in which the specimen oecurs, has led us to question its generic inlentity. The type consists of two teetl, in every respect perfect individually, but which are firmly united at their bases; the inferior surface of this basal plate is evidently no part of the ossified mandibular support, on the contrary, it always constituted the inferior surface of the bases of the teeth, as shown by the presenee of a faint suture indicating the margins of independent teeth. It is hardly probable that the two teeth in the example deseribed eonstituted the complete row, which was doubtless made up of several additional individnals; yet there is not the slightesteridence of other teeth having been as intimately conneeted with them as they are with themselves-there being no fracture or other sign suggesting such intimate association. Hence, it would appear that, under certain eonditions, the consolidation of two or more contiguons teeth by the impingement of their bases, which are soldered into a eommon basal support, may be effected, and the occurrence of specimens in this eondition, therefore, may not indieate a departure from the normal eondition of more than abnormal importance.

The peculiar evemess of the coronal erest, whieh, iu the type, is destitute of median prominence, though sueh a character is more distinetly exhibited in the doubtfully referred specimen previously mentioned
abore, and its regular parallelism, seem to point to a more intimate relationship with a group of closely allice but generically distinct teeth, which were first made known by Messrs. Newberry and Worthen under the name Lophotus (IIl. Rep., vol. IV, p. 360), a designation which, unfortunately, is preoccupied, and for which we have substitnted Agassizodus. But the teeth under consideration lack the very essential characters by which the teeth of Agassizodus are distinguished, that is, the strongly buttressed anterior coronal face, in the present teeth both faces presenting the same degree of vertical corrngation. The appearance of the vertical ridges also recall that in Mesodmodus exsenlptus; but they are much more delicate in the present form, while there exists not the faintest trace of the sub-coronal protnberance in the anterior border such as characterizes the abore genus.

Position and locality: Rare in the areno-magnesian beds in the upper part of the Kinderhook formation ; near Richmond, Washington comsty, Iowa.

Orodus Whitei, St. J. and W.

Pl. VI, Fig. 25.

A unique specimen, discovered by Dr. White, presents a series of eight teeth apparently firmly soldered at their bases into a common basal support, which is remarkable for the slightly spirally inrolled ontline and contour, recalling the shape of the dental plates of some of the Cochliodonts. Together the teeth occupy a deltoidal figure, of which the diancter in the direction of inrollment nealy corresponds to that of the inner margin, which is broadly rounded and from which the teeth successively and regnlarly diminish in size, the exterior or ollest tooth of the series being about one-thind the greatest diameter of the inner or newest tooth; the antcrior margin is gently arched, while the opposite margin, corresponding to the "oblique" margin of Cochliodonts, is slightly concave or sigmoidally curved from the subacute postero-inner angle to the outer inrolled extremity; the median concs of the individual tecth form a prominent coronal ridge, slightly posterior to the median line, which traverses the series from the inner to the exterior extremity. The inferior surface is smooth or faintly striated in the direction of inrollment, transsersely marked by obscure sulci, which apparently indicate the former prescuce of sutures, and thongh excechingly faintly. marked, they correspond in position to the interspaces scparating the individual teeth composing the series, and which, as seen from the side, are too apparent to be mistaken. Individually, the teeth comprising the series are quite miform in appearance, the extreme outer individuals showing ummistakable evidence of attrition from wear
while fulfilling their functions during the life of their possessor, but which becomes less and less notieable towards the inner or newer teeth of the row, or those which have not been brought into position for use, and the innermost one is nearly perfeet. Wherever the crowns have suffered abrasion, the surfaee presents a coarse punetate strueture, otherwise it appears to be enseloped in the usual polished enamel-like layer. In outline as seen from above, the crown is moderately arched backward, the lateral extremities more or less constrieted at the base of the great cone, thenee vers gradually diminishing towards the extremities where they are abruptly truncated; viewed from the side, the general outline is slightly arched, the median cone forming a conspieuous conieal, slightly eccentric prominenee, with indications of irregularly disposed subordinate tuberculations in the lateral wings, which appear more strongly defined in the larger inner teeth, apparently indieating the gradual introduetion of modifications in the coronal contour of teeth found at different stages in the growth of the animal to which they belonged ; the crown is sharply eonstricted along the basal line in both faces, the swooth inbeveled portion bearing faint traces of a delieate reticulated ornamentation, abore which the coronal surfices are oceupied by numerous rather strong more or less regular vertical folds, with short plice oceuping the interspaces immediatels bencath the crest, and more slender ridges encircle the median eone, which latter is produeed into a small callosity near the base in front at the point of impingement with the preceding tooth; the erest forms an obtusely angular or obscurely defined submedian line in the lateral wings, apparently obsolete in the median cone, and in the majority of the teeth of the series it is entirely, obliterated by wear. Base equaling or slightly exeeeding in its greater diameter that of the erown, forming an oblique plate whieh is flattened in the same plane as the erown below and smooth; produeed along the inner margin and roughened by irregular coarse vertieal folds and pits, deeply channeled in front, with a narrow shonlder extending just beneath the base of the crom. The following measurements present the comparatice dimensions of the second and eighth tooth of the series: Greatest length 68 inch, and 25 inch, breadth across median cone . 15 inch, and .04 incb, hight at median cone .13 inch, and .03 inch.

The specimen herein described presents the anomalons feature of sereral teeth of the same row so firmly mited at their bases as to form a continuous and solid basal plate, with, however, faint traees of sutures indicating the individuality of the sereral component teeth, which, taken separately, present no features by which they may he distingrished from typical forms of Orodus. Whether this condition is due to chemical aetion subsequent to their deposition, and by means of
which changes in the mineral constituents have taken place whereby their substance seems to merge into uninterrupted continuity along the lines of impingement, or whether it is the result of the co-ossification of these parts in the course of the life of the animal of whose dental armature they formed a part, is not so apparent from the examination of this example. It is well known that in some of the existing Mylio. donts, especially Aetobatis of Müller, the anterior teeth become so solidly impacted in their basal portions as to present virtually the condition of a solid scute capable of great resistance. And in the various other genera, representatives of which occur in the Tertiary deposits, the series are as oftell firmly cemented, the posterior or newer teeth being perhaps most generally found isolated, the same as would be the result in macerating an existing jarr. In other extinct families, however, we meet with identical instances where two or more teeth of the same row have become firmly welded together, e. g., a specimen of Chomatodus elytra (N. and W. sp.) showing fire or six teeth intimately united at their bases, and one other marked instance represented by a beautiful little form discovered by Mr. Van Honne in the St. Lonis limestone, Desmiodus tumidus, amongst the many specimens of which we have examined, it is no uncommon occurrence to find series of two to six or eight teeth, exhibiting different stages of solidification, from those in which the suture is unmistakable to those where the inferior surface is nearly smooth with scarcely a vestige of division, as in the present form. In none of the latter have several contiguous rows of teeth been found, and their association mon the jaw can only be inferred from the outline presented by the examples of isolated rows. Hence, it is extremely hazardous attempting to ascertain the character of the jaws upon which these teeth were planted-whether they were of the transrerse type so characteristic of the typieal Rays, or, on the other hand, approached the anteriorly pointed type common to the Cestracionts, as also the Cochliodonts. The extremely rapid dimiuntion in size of the teeth from behind outward, and the consequent deltoidal figure which they collectively present, strikingly bring to mind the Cochliodonts, and especially that group to which Prof. Agassiz applied the namo Psephodus, forms in which the mandibles were produced forward much after the fashion of Cestrucion. Presuming, on the other hand, that these teeth rested upon a transverse jaw similar to that of the great Carboniferous type A gassizodus, it is necessary to assume there were very few rows, probably not more than three or five, in evidence of which, however, the faets are as yet meagre and unsatisfactory.

The individual teeth present characters in their ornamentation and contour which readily distinguish them from other forms of Orolus from the same deposits, examples of which are noticed in this report. The
ornameutation of the coronal region bears somewlat close resemblance to O. major of the Lower Burlington limestone ; lout in the latter form the base is relaticely narrower and of greater depth. They may also be compared with the Keoknk form O. carinatus, from which it differs in the relatively broad erown and obtusely angular crést.

Geological position and locality: The specifie designation is given in honor of Dr. C. A. White, by whom the unique specimen deseribed was found in the upper beds of the Kiuderhook formation; Legrand, Marshall comuty, Iowa.

Orodets decussatus, St. J. and W.

Pl. Y), Fig. 10-15.

Teeth of small and medimm size, attaining .75 inch in length, symmetrieal thongh somewhat variable in form, laterally elougated, vertically arched, extremities slightly curved formard. Base comparatively shallow, enpecially in the large median teeth, oblique to the crown, beyond the inner margin of which it is more or less strongly prodnced forming a wide, linear area, with angular lateral extremities, inferior surface smooth, bereled to the thin posterior edge, deeply chameled in front with a more or less well defined angulation or shonlder parallel with the coronal margin. The erown is moderately arched rertically, and presents a lange median cone, more or less eeceutric to the middle, flanked by two to four smaller though well-marked dentienlations in either wing, which regulaly aud rapidly diminish in size toward the extremities, and which are ornamented, in the same manner as the prineipal cone, by a few rery strong, wither widely spaced ridges comberging towards the apices of the prominences, which latter are comected by a more or less obseure coronal erest ; the vertical ridges are quite regular in the posterior face, but in the anterior, or more abmut faee, they irregularls bifureate descending, each bifurcation bearing the delicate lateral decnssations which eonstitute the peenliarly ornate characteristics of the form. The anterior teeth are much smaller, base proportionately deeper and narower, genemally more considerably arehed, median promineuce strongly produced inferiorly behind, lateral extremities rapidly attemated, contour and ornamentation similar to the median tecth, with indications of basal plice, and varyiust in length from . 15 to .5 inch. Postorior teeth long, nearly linear, depressed, erown slightly arched, principal tone submedian, obtusely conical or seareely distinguishable from the contiguons denticles, of which latter three or four oecur in one wing and probably one or two less in the opposite extremity, relatively large and radiatingly sculptned, as deseribed above. The median prominence is often truncated from wear, but in the perfect
condition it is obtnsely conieal, as are also the lateral denticles; the entire surface of the crown may present a fine grannlose punctation, generally, howerer, this structure is visible only in worn surfaces, the lateral extremities of the crown being enveloped in a polished enamellike layer.

The present form was first brought to our notice by Mr. Springer, and snbsequently Mr. Wachsmuth made interesting accessions to the material illustrating the species, from the same locality. It is distingnishable from Orodus mummilluris, N. and W., with whieh it is somewhat closely allied, by the less regular and stronger radiating ridges in the coronal prominences, and whieh are more delieately decussated instearl of being strongly beaded or nodose, as in that form. In their perfect condition the teeth of this speeies are anongst the most beantifnl and highly wrought of the numerous speeies of the genus; and eren when imperfect from long nse or abrasion, they may be in most cases reeognized from the above mamed species, and readily so from other species in the same and sncceeding formations.

Position and locality: Not meommon in the lower fish-bed of the Kinderhook formation; Burlington, Iowa.

Orodus Dedaleus, St. J. and W.

 Pl. VI, Fig. \%. 8.T'eeth somewhat variable in form, of medinm or small size, attaining .7 inch in length. Large wedian teeth laterally elongated, nearly straight, and moderately arehed vertically. Base relatively shallow, obliqnely expanded and rapidly beveled to a thin edge behind, the opposite side presenting a broad channel, which separates the plane inferior surface from the crown ; the crown exceeds the root in brealth and hight, forming in the middle it strong symmetrical eonieal prominenee, which is strongly distended to ward the base behind and in front, where it terminates in a slight node, and is abruptly defined fiom the lateral wings, which extend on either side in nearly linear direction, or very gradually converging to the rounded extremities, which are slightly deflected posteriorly; the crest and apical point are snbmedian, or situated nearer the onter margin of the crown, more regnlarly and broadly convex posterionly than in front, in the lateral portions of the crown produced into a series of well deffued tuberculations, which are ormamented with delicately decussated radiating ridges, two or three of which are contimed downward from each cone and merged into the irrecrularly phicated or reticulated basal border, which is more coarsely dereloped in the onter margin and somewhat closely resembling the plicated basal margins in o. plicutus; the large central conc is beauti-
fully maked with delicate ridges radiating from the apex to about the middle, where they are interrupted and deflected, or replaced by intercalated ridges, which are gathered in an el"gant reticulated border at the base of the inmer face, a slight mesial ridge ascending the outer face of the great cone, gising offi at intercals a few lateral spcondary ridges. A somerhat smaller variety, in position probably anterior to the teeth just described, varying from .15 to .5 inch in length, are reeognized by their more strongly arched outline, the lateral wings often anteriorly deflected, root narrower and less obliquely produced along the inner margin, ceutral cone relatively larger, and the denticulations of the lateral crests decreasing in number with the abbreviation of the lateral wings—otherwise presenting no marked contrast with the large median teeth. In the perfect condition the erown is enveloped in a firm, polished enamel-like layer, a fine punctation appearing in worn surfaces.

In general ontline the present form is somewhat like O. elegantulus, N. and W., of the Upper Burlington limestone, although a direct comparison of the two forms diseovers differences which widely distinguish them specifically, as remarked in the details of coronal sculpturing, which is much more delicately wrought. The dentition presents a similar range of variation observed in the above and other species, while the persistency of the specific cliaracteristics readily affords the means of identifying the isolated teeth from various parts of the jaws.

Position and locality: Common in the lower fish-bed of the Kinderhook; Burlington, Iowa.

Orodus major, St. J. and W.

 Pl. VII, Fig. 10.Teeth of large size, strong, symmetrical proportions. Lateral diameter of base equal to that of the erown, in depth exceeding the general elevation of the crown, but narrower, massive, moderately oblique, posterior angles sharply rounded, posterior face gently arched in both directions, with a more or less marked depression parallei with and just beneath the coronal border, anterior face moderately and broadly excavated, the slooulder beneath the coronal margin apparently obscurely defined, inferior surface gently arched vertically, and moderately bereled to the obtuse posterior margin, anterior aud posterior surfaces coarsely roughened or pitted. Crown geutly and regularly arched between the extremities, which latter are more or less curved forward, rising into a strong, obtusely conical median cone, which is somewhat strongls produced before and behind, and broadly rounded, rapidly narrowed to the nearly linear lateral extensions, which are abruptly
truneated or broadly rounded, strongly eonstrieted basally, traversed by a low, undulated, obscurely defined median crest, which bears at irregular and infrequent intersals obtuse, or nearly obsolete, sceondary prominences, from which deseend obscure plicæ, which bifureate below, forming numerous vertical ribs in the region of the basal margins; the median prominence, as well as the lateral erests, is smooth, only the middle and basal portions of the crown are distinctly costate, the relatirely narrower anterior surface is eren less strongly folded, and the entire coronal surface is regularly and mimately pumetate. Greatest diameter of me?inm-sized tooth about two inches, greatest hight of tooth .95 , anteroposterior diameter at base of median cone .70 , breadth of lateral wings 43 , greatest hight of erown . 50 , elevation near the extremities . 18 ; greatest thiekness of root .40 inch. Other examples attain abore three inches in lengtlı.

The abore species, of which we have examined but three or four representatives in the collections of Messrs. Springer and Wachsuitm, is one of the largest and finest of the genus, and the interest which attaches to these speeimens is further enhanced by the fact that they are amoug the very few examples of ichthyie remains which the researches of the above gentlemen lave brought to light in the Lower Burlington limestone. The specimens mfortmately are not perfect, although their state of preservation is such as to enable their form and superfieial eharacteristies to be quite fully determined. The coronal region bears umistakable signs of abrasion, by which the vertical rigate have been obliterated in the region of the erest, and consequently obscured in the basal portions; but their general form and direction is still discernịle, and aid in the determination of the characteristics by which the form is especially distinguished in the absence of the enamel layer and any delicate markings it may have preserved.

These tecth have only remotely intimate resemblanees with any of the numerous species of Orodus now known, bearing, perhaps, as close resemblance to O. romosus, Agass., as to any of its congeners from American localities. It las little in common, save the miformly punetate condition of the abmaled coronal surface, with the form so nmmerously represented in the Upper Bulington fish-bed, to which we have applied the name O. cariocostatus, the costa being less widely and irregnlarly spaced, and the median prominenee less prominently produced.

Posifion and locality: Rare in the Lower Burlington limestone; Burlington, Iow:a.

Orodus variocostates, St. J. and W.
II. VII, Fig. 1-9.

Teeth ranging from small to above medinm in size, presenting considerable rariation in form and coronal contomr. Large teeth laterally elongated, extremities more or less cursed anteriorly, generally insequilateral, gently arched rerticalls. Base moderately thick, more or less oblique to the crown, molerately excavated in the outer face, superior shoulder narrow but well-defined, posterior surface slightly arched in both directions, both faces coarsely ronghened, iuferior surfiee smooth, beveled to the obtuse posterior border in nearly the same liorizontal plane as the crown, postern-lateral angles sharply rounded. Crown prodnced into a median, or generally snbmedian, turgid, more or less quadrangular or pyramidal, amd often obtusely truncated cone, which is protruded beyond the basal line in front and belind, and well defined from the lateral wings, which latter are also constricted basally, very gradnally tapering toward the extremities, which aro broadly rombled, and equal or slightly excend the lateral extension of the base; the crown is trayersed by an irregular, tortmose, nstally obseurels defined, though sometimes sharply angular submedian crest, which is contimed nearly to the apex of the principal prominence in some individnals, from which sharp or ohtusely angnlar, very irregnlar and obliquely deflected costie descend to the basal margins, where they often form buttress like supports, tlanked by faint secondary rilges or bifurcations, which sometimes prodnce the appearance of rude basal folds; the median prominence is surrounded by similar vertical plica, which, however, become obsolete before reachiug the upper third of the coue, except the more or less prominent angular mesial ridge, which is generally discernible in either face, and of ten contimed to the apical extremity in examples which have not been abraded ; in some individuals the coroual carine present a vermiculose appearance, and are clnstered at the base of the median cone in an elegantli, though irregularly plicated belt. Teeth possessing the above mentioned characters range in size from those above one inch in lateral diameter to small forms not exceeding one-fourth inch in length. With these more regular teeth there is found a variety represented by smaller teeth, which are especially distinguishable by their abbreviated lateral extent, relatively greater anteroposterior diameter, and depressed smmit. In sone of the latter teeth the base is very strong and deep, and deeply excavated in the anterior face, the crown strongly produced in front, and gently arelied along the posterior border, the median prominence very depressed, and occupying the greater portion of the coronal area, lateral extremities berang one to three irregularly developed lobes, but in general appeatance and
surface markings intimately agreeing with the preceding rariety, and varying in lateral diameter from .15 to . 55 ineh, (Pl. VII, Fig. 2, 3, 4.) Some of the latter may be individuals of the former variety, whose median prominences have been worn down by attrition; but it seems probable that the majority of them represent the dental armature of the posterior portious of the jaws, and that of the extreme anterior portion of the jaws mas be represented by a peeuliar form of small, proportionately sleuder, high-crested, strongly buttressed teeth, whieh bear some resemblance to the first mentioned variety, as shown in the illustrations, Pl. VII, Fig. $1 a, b$.

This interesting form is one of the most numerously represented in the Upper Burlington fish-bed. It is not apparently allied with other species from the same horizon, but a form occurs in the Keokuk limestone, originally described muder the name of Helodus gibbosus, N. and W., (Ill. Rep. II, p. 79, Pl. V, Fig. 3,) which bears most intimate relationship with the present teeth. Fortunately the collection of Mr. Van Horne affords a fine large example from Hamilton, Illinois, which, though slightly worn, exhibits the specifie identity as also the true generie relationship of the original specimen above referred to, showing the latter to be a very worn tooth. Our collections from the same vicinity and from Keokuk and Bentonsport, Iowa, furnish several additional smaller specimens of the same form, so that now we have the means to institute a very satisfactory eomparison between them and the form deseribed above. The Keoknk form, while it exhibits about the same variability, is chietly recognizable by its generally more robust proportions, thieker and more massive base, generally less attenuated lateral extremities, less sharp erested vertieal ridges and coarser punctation of the coronal surfaees.

There are few species, the dental remains of which are so variable, that possess peculiarities which are so readily recognizable as those whieh facilitate the identifieation of the isolated teeth of the present form. Some of its variations are at first sight seareely recognizable, and especially is this true of the small posterior (?) teech, the depressed contour and broad, subcircular outline of which widely contrast with the large laterally elongated teeth. But in all varieties the same style of coronal ormamentation and form of base prevails, and a careful scrutiny cannot fail to reveal the same pattern of form, though modificd to a greater or less extent, according to the place the teeth held upon the jaw.

I'osition and locality: This form is apparently confined to the fishbed stratum in the Upper Burlington limestone, and its geographical distribution is probably as extensive as that of any other speeies of the
same horizon; at the numerous exposnres of the horizon in Louisa and 'DesMoines counties, Iowa, Henderson county, Illinois.

Orodus fastigiatus, St. J. and W.
Pl. V1, Fig. 1-3.
Teeth small, robnst, triangular in general outline. Base very oblique to the crown, thick, laterally expanded below, (in worn examples the margins are qnite parallel or rounded) and slightly concave along the lower edge, lateral diameter little greater than the vertical, posterior face gently convex, opposite side more or less deeply excavated, with a well defined shoulder parallel with the coronal margin, inferior surface forming a rather wide, angnlar area, obliqnely beveled to the posterior edge. Urown inbereled below and sharply defined from the base, strongly arched vertically, rising into a high pyramidal prominence, flanked by the lateral wings, which are sharp-crested and marked upon either side by two or three angnlar vertical ridges which terminate below in nodose promineuces, sometimes bifurcated, meeting in the crest where they sometimes produce obscure denticnlations; the median cone is flanked in the onter face by a very strong, angnlar buttress, abruptly descending and strongly prodnced towards the base, and ornamented with lateral ridges similar to those occurring in the lateral wings, besides being delicately marked with undulated rugæ; the posterior face of the crown is also occupied by an angnlar, though less promineut, mesial ridge, which rises from a turgid basal prominence, and marked abore by delicate decussations similar to those observed in the sharp crest of the lateral wings; miginally the crown was acutely pointed, bot in the larger number of specimens it is trnncated, and in some examples it is reduced to less than half the original elevation. The coronal surfaces are uniformly enveloped in a dense, highly polished enamel-like coating. A specimen of ordinary size measnres in greatest lateral diameter . 25 inch, greatest antcro posterior diameter of crown .16, hight of tooth .34 inch.

The form here indicated is represented by numerons iudividuals in the collections from the Upper Burlington fish-bed horizon, and withal they present considerable individual variation, we have been unable to trace their specitic identity with other forms known from the same localities. The peculiar form of the texth strongly impresses one with the belief that they occupied an anterior position upon the jaws. But we know of no species whose median teeth can be satisfactorily identified with those muder consideration, while they vary in size and in certain coronal features among themselves to such an extcut as apparently to justify the conclusion that they are specifically distinct from
their associates. In the depth and excaration of the outer basal region there is strong resemblanee to O. tuberculatus, N. and W.; but the coronal portion is so markedly different as to render their identity with that speeies hardly probable, and the peeuliar pyramidally produced apex and strongly arehed eontour of the erown afford eharacters whieh may be relied upon in the determination of the identity of the individuals.

Assoeiated with the above mentioned teeth, there are a few individuals of the same general form, but whieh have their erests reduced to the eondition of a smooth arehed plate-indeed sueh as might be produced by the wearing away of the erown to a line little above the basal margin. The individual variations of the latter teeth are almost as striking as are the differences by which they are distinguished from the teeth above described, and with whieh they are probably specifieally identieal.

The Keokuk limestone fish-bed horizon also affords teeth which somewhat closely resemble the present form, but whieh are in too inperfect condition for satisfaetory determination.

Position and locality : Common in the tish-bed of the Upper Burlington limestone, Louisa and DesMoines counties, Iowa.

Orodus carinatus, St. J. and W.
Pl. V. Fig. 24.
We have from the Keokuk limestone a eouple speeimens of a peeuliar form of Orodus, which secms to be distinct from those with which it is associated at the same loeality, and which are distinguishable by the following charaeteristics: Teeth of small size, a medium sized specimen measuring in lateral diameter 13 ineh, and in hight nearly . 05 . Base thick, obliquely produeed behind, more or less arehed vertieally, anterior face moderately ehanneled, inferior surface relatively broad, both anterior and posterior faees marked by rather eoarse vertieal grooves or pits. The erown forms a very compressed, gently and regularly arched sharp-crested prominenee, slightly overeaching the lateral borders of the base, and constricted before and behind, and occupied in either face lyy strong, buttress-like, laterally deflected earinæ, which cuminate in the crest and give rise to a series of delicate tubereulations in the lateral portions; the posterior basal portion of the erown is further delieately ornamented by the pecnliarly interrupted plica, such as char. aeterize certain species of the genus, but the character of the opposito basal border is not satisfactorily exhibited by the specimens before us. The crown is remarkably thin, resembling in this respeet Chomatodus, but its vertically ridged surfaces clearly indicate its generic identity with Orodus.

From 0 . minutus, N. and W., with which it is most intimately allied of all its associates, it differs in the relatively thinner crown, also in the less numerous and stronger vertical ridges; but in the character of the basal plice it strongly resembles the above species. In 0 . minutus the vertical ridges of the crown show a tendency to decussate, recalling a similar style of coronal sculpturing obsersed in the form called O. ornatus, N. and W.; but in the present teeth we fail to detect the slightest semblance of similar decussations, although it is barely possible they may have become obsolete from wear. Orodus parvulus of the St. Louis limestonc, perhaps, bears the most striling resemblance to the present form ; it is, howerer, distinguished by the slighter and more numerous vertical ridges, and deeper base.

Position and locality: Rare in the upper fish-bed horizon of the Keokuk limestone; Bentonsport, Iowa.

Orodus neglectus, St. J. and W.
Pl. VI, Fig. 26.
Teeth of medium size, robust. Crown more or less strongly arched rertically and moderately so backward, culminating in an obtuse, swollen median prominence, at the base of which, in front, occurs a slight callosity, lateral portions marked by obscure mammilloid undulations with an indistinctly defincd, angular crest, sharply constricted along the basal borders, from which ascend with more or less regularity strong vertical ridges; in worn surfaces the crown presents a coarsely - punctate structurc. Base oblique to the vertical plane of the crown, posterior surface slightly convex and forming a rather broad area projecting behind and parallel with the base of the crown, deeply excavated in front, with broad beveled intcrior surface ; both sides coarsely roughened and pitted, inferior surface comparatively smooth. Greatest diameter . 50 to .55 inch.

The present form is apparently closely allied to the teeth described under the name (o. vuriocostatus from the Upper Burlington, also O. giblosus (N. and W. sp.) of the Kcokuk division ; it is, however, distinguishable from those forms by the greater regularity of coronal contour, and the more regular disposition of the rertical ridges.

Geological position and locality: It is a very rare form, only two specimens being known to us, one from an arenaceous bed in the St. Louis division of Monroc county, Ill., and the other (represented in Pl. VI, Fig. 26) was obtained by Mr. Van Horne, in the calcareous shates of the same formation at Pella, Iowa.

Orodus parvulus, St. J. and W.

Fl. VI, Fig. 6.

The form for which we have proposed the abore designation is represented in our collections by two minute teeth, the perfect preservation of which, howerer, readily enable the determination of their affinities and distinctive pecnliarities. The form may be distinguished from the species so numerously represented in the same horizon, O.plicatus, N. and W ., by the marked dissimilarity in the outline and contonr of the crown, which is thiuner, more evenly crested; it is geutly arched between the extrenities, which latter are rery slightly curved outward, slightly constricted basally, culminating in the middle in a well-defined, though not prominent median cone, the lateral wings, which are abruptly terminated at their extremities, are occupied by numerons, closely sct, vertical or lateralls deflected, bifurcated ridges, which terminate in delicate tuberculations along the shap crest. The base is nearly or quite equal to the lateral diameter of the crown, thin, deep, exceeding in depth the elevation of the crown, obliquely prodnced behind and broadly. arched in both directions, anterior face broadly channeled and defined above by the well-marked superior shoulder, inferior surface narrow, beveled to the obtuse posterior border in nearly the same horizontal plane as the crown, postero-lateral angles sharply rounded, anterior and posterior faces dense, or delicately roughened or pitted. Lateral diameter of tooth .27 inch, hight abont . 08.

The abore form also bears a close resemblance to O. mimutus, N. and W., of the Keoknk limestone; but the vertical ridges are stronger and less claborately wronght, besides there is no indication of the presence of a delicately semptured basal belt, such as occurs in the latter form. From O. carinutus, also from the Keoknk, it differs in the relatively thicker crown, aud more closely approximated, rounded vertical ridges. As in O. elegantulus, N. and W., of the Upper Burlington limestonc, the vertical plice terminate in the crest along its lateral extensions in minute tubercles, aud the mediau promineuce is also similarly marked by radiating ridges, but the latter are muth stronger and fewer in number than those encircling the median cone in the latter specics, while the crest is much more compressed antero-posteriorly, and the base proportionately much deeper.

I'osition und locality: Rare in the upper beds of the St. Louis limestone; Alton, Illinois.

Orodus turgidus, St. J. and W.

Pl. ${ }^{\text {VI, Fig. }} 4,5$.

Teeth very small, robust, gently arched posteriorly. Base of moderate depth, less than that of the crown, as also its transverse and lateral diameters, moderately oblique, posterior face vertically arched in nearly the same plane as the posterior coronal slope, anterior face deeply channeled, shoulder of slight prominence, both faces coarsely punctate or roughened, inferior surface broad, smooth, and gently beveled to the sub-acute posterior margin, gently arched vertically, postero-lateral angles sharply romnded. Crown moderately and more or less regularly arched between the extremities, inflated below, inbeveled along the basal margins and sharply defined from the base, a strong turgid or obtusely conical, more or less eccentric median prominence occupying the middle region, the lateral wings regularly diminishing towards the extremities, traversed by an obtuse subcentral crest, interrupted by a few relatively strong tuberculations, from which descend one or two prominent vertical or diverging carinæ, the median cone being apparently similarly though less strongly and more numerously plicater. The coronal surfaces, when perfect, enameled aud highly polished. Lateral diameter of tooth about .17 inch, hight about 04 .

The form described is known by only two minute and somewhat worn teeth, but which are readily recognizable by the stout build and turgid median cone. It bears some likeness to O.plicatus, N. and W., with which it is most iutimately allied, but apparently lacks the delicately plicated belt characteristic of that form, besides it is relatively much stouter.

Position and locality: Rare, in the upper fish-bed of the Chester limestone; Chester, Illinois.

Orodus Alleni, St. J. and W.
Pl. VII, Fig. 19
Teeth medium in size, laterally elongaterl, and strongly arched upward in the midddle. Crown moderately elevated, with an obtusely angular crest centrally traversing the lateral portions, the sides irregnlarly corrugated rertically, the median region occupied by an obtusely conical prominence, oral in outlinc, projecting forward and backward beyond the line of the lateral wings, bordered by numerous vertical folds similar to, though smaller than those in the lateral portions, and which reach upward from the base half way or more towards the summit of the cone; the surface is evenly and rather finely punctate, the
punctie being encircled by a slight rim or raised border-a not unusual feature in the surface structure of teeth of widely distinct fanilies of Carboniferons Selachians. The base is thick, massive, nearly as extensive laterally as the coronal region, in depth somewhat exceeding the hight of the crown, from which it projects backward at a slight angle to the rertical plane, posterior face gently arched, postero lateral angles sharply rounded, anterior face moderately excarated, inferior surface smooth, beveled at a slight augle to the horizontal plane, posteriorm.rgin obtuse, anterior and posterior faces roughened by vertically disposed vermiculose markings. Viewed from above the crowu presents a gently arched outline, the extremities directed forward, the transverse diameter equaling, if not exceeding the eleration of the same parts. Greatest length of tooth .87 inch, hight .38 , antero-posterior diameter across the median cone . 30 , greatest elevation of crown . 17 inch.

The preseut form is described from a specimen obtained from the upper portion of the Lower Coal Measures of Iowa, by Mr. J. A. Allen, to whom we have dedicated the species as a slight token of esteem. Not absolutely entire, it preserves the median cone and one of the lateral wings and base in a nearly perfect condition, enabling its distinctive characters to be tolerably clearly defined, as also a satisfactory comparisou with other forms. Of the Coal Measure Orodi, the above species bears closest resemblance to O. (?) corringatus. N. and W. ; it differs, howerer, from that form in the more prominent median cone, and fewer and proportionately stronger coronal corrugations. Its closest ally is found in a species from the Upper Burlington limestone, 0 . variocostatus, from which it is distinguishable by its more symmetrical form, relatively deeper and more massive base, and more regular corrugation of coronal surfaces. In consideration of its geological position, it deserves close comparison with the forms of Agassizodus from the same deposits; but its apparently equally strougly vertically plicated anterior and posterior coronal surfaces would seem to preclude its reference to that genus, while they suggest intimate relationship with typical Orodus.

Position and locality: Upper part of the Lower Coal Measures; Greene county, Iowa.

Gencs AgAssizod Un, St. J. and W.

Late in the antuma of 1873 , one of the writers was farored with a commmuication from Prof. B. F. Mudge, Director of the Geological Survey of Kansas, in reference to the discovery of the remains of a

[^26]remarkable fish, consisting of a part of the jaw presersing about three hundred teeth in their natural position, and which was obtained from Upper Coal Measure strata in Osage county, Kansas. Subsequently, or late in the following Janmary (1864,) Mr. Springer, while passing through Topeka, chanced to come upon another specimen, which he kindly forwarded to Cambridge, the examination of which, together with the fact that the latter specimen was derived from the same locality as that reported by Prof. Mudge, led us to suspect that the two specimens might prove to be fragments of one and the same individual-an inference which was most conclusively confirmed not long thereafter, on bringing the two specimens together. The former proved to be about two-thirds the posterior portion of what appears to be the left ramus of the mandible or lower jaw, the latter apparently completing the anterior prolongation of the ramus, besides showing along the inner margin, though much displaced by compression, a series of teeth belonging to five or six of the anterior rows of the opposite ramus. But the posterior portion of the right ramus has been broken away, and it is apparent only a few teeth belonging to consecutive rows from the symphysis backward remain of what constituted this side of the mandible.

Considering the left ramus, which apparently presents quite the entire dentition of this side of the jaw, the specimen exhibits the posterior two-thirds, or the teeth from the first row in advance of the row of large median teeth, in the normal condition as refers to the natural relative position of the rows ; but in the anterior portion of the ramus the rows towards the inner margin have been displaced or crowded forward so as to give to the vertical or symphysial line a reversed deflection approaching that of the postero outer dentary border. The abore features of the ramus are well shown in fig. 1, Pl. S, which besides showing the accidental displacement or spreading of the rows of teeth above alluded to, also shows the ramms much flattened, so as to obscure the convoluted imrollment, characteristic as well of the Cestracionts, giving to the jaw almost precisely the same appearance the spread-out diagram of the dental armature of Cestracion would present, as obtained by stripping off the teeth and spreading them upon a flat surface. Heace, in attempting the restoration, (Pl. 8, fig. 22,) it is obvious that sufficient allowance may not liave been made for the inrollment of the anterior portion of the jaw, thus producing an outline more obtusely angular in front than mas have obtained in reality. Yet, compared with the modern Cestruciom, the jaws of the remarkable fish under consideration were doubtless less acutely produced forward, and in this particular holding a mean between its modern representative and some of the Rays (e. I. I'rigon) in the relative obtuseness of the anterior extremity of the jaws. But the resemblance here ceases. In all other respects, as the
form of the individual teeth and their arrangement upon the jaws, we observe unmistakable Hybodont affinities.

The ariieular extremities of the jaw are not preserved, though frag. ments of the substance of the cartilage are seattered through the rockmass upon which the teeth are imbedded. These cartilages were doubtless comparatively thin, the onter and inner folds giving away to the pressure which flattened the rami, as shown in their present condition.

The tecth are disposed in serial rows haring a consoluted inrollment from the inner to the outer border, and gradually increasing in size from the posterior extremity to the row of large median tectl, anterior to which the rows as regularly diminish in size towards the symphysis. Posterior of the median row the ramus presents six to nine rows, the extra threc rows appareutly not reashing the extreme outcr borders, but sprcading over the inner portion of the jaw, the extreme posterior row diminislied to half the rertical extent of the fouth in the series, the mature teeth of which present no perceptible differenee, except in their diminished size, to the teeth of the other rows. These teeth are remarkably uniform in their shapc. They may be described as laterally clongated, very slightly arched along the obtuse angle of the crest, and slightly curved forward, the anterior end perceptibly slightly more thickened than the opposite extremity, but without defined median prominence. The crown, thereforc, is sery uniform in proportions, and robust. The middle portion of the ramus is occupied by a row of proportionately very large teeth, which differ from the postcrior teeth in laving the outline of the crest quite strongly arched vertically between the extremities and produced into a strong, obtuscly conical, eceentric prominenec which culminates at a point more or less posterior of the middle of the tooth. It should be here stated that the tceth of the posterior contignous row also show faint indication near their posterior extremities of an apical culnination, from whiclı point the crown very slightly tapers anteriorly. The tecth of the anterior portion of the ramus are very similar to those situated posterior of the median row, and of which there are eight, possibly nine rows, gradually diminishing in size anteriorly, or in the reversed order to that mentioned above. The teetl! of the row immediately in advance of the median row are distinguished from the teeth of the corresponding row next behind the median teeth, by their slightiy greater length and more slender proportions, very slight forwarl curvature, and the more marked detinition of the eccentric apical culmination, which is situated about a third, or less, the distance from the posterior extremity. The tecth of the other 1ows do not show the latter feature so distinctly, though it extends to the third or fourth row, and in the latter there is a tendency to irregnlarity in the more central position of the obsenre apical point. The teeth of
the sereral rows, as mentioned in eonnection with those of the posterior portion of the jaw, present but slight differences to one another, until reaching the extreme anterior rows, where they appear to assume irregularities which give rise to considerable diversity, especially in the presence in the extreme anterior row of minute, nearly circular teetl, which exhibit in the form of the crown and its sculpturing strong likeness to Petrodus ; besides other scute-like and irregular forms, the position of which is not so clear, more particularly noticed further on.

The single ramus above described shows about four hundred and fifty individual teeth, and in its perfect state there were probably not less than five hundred, or one thousand teeth for the entire mandible.

Remarkable as this specimen is, showing as it does the nearly complete details of the dentition of the jaw, it unfortunately reveals no facts relative to that of the maxillaries or upper jaw, detached teeth of which, for all the aids afforded by the example before us, might be mistaken for representatives of distinct specific forms. But it is a matter of much importance to the student of these remains, the discorery by Prof. Tond, in the shales of about the same stratigraphic horizon of the Upper Coal Measnres of south-western Iowa, of a mass of detached teeth, occurring within so limited a compass and nuder conditions which leave little room to doubt but that they constituted the dental remains of a single fish. Prof. ToDD obtained in all some two hundred specimens of individual teeth, the greater number of which are quite detached, though a few are still associated in rows and parts of series precisely as represented in the before mentioned specimen from Kansas. Unfortunately the existence of these interesting fossils was not made known sufficiently early to secure the entire set, as many, in fact the great majority of the teeth were lost by being concealed in the debris from the quarry, from which, indeed, many of the specimens here alluded to were rescued. Yet this collection, assuming that it represents the dental armature of one and the same individual, supplies, in part at least, exactly the data not exhibited in the previously noticed specmen, inasmuch as the same sort of teeth are found amongst these Iowa specimens, besides other forms which it were difficult to account for on the ground of abnormal developnent, but which probably pertain to the opposite or maxillary portion of the jaws. While these materials afford additional data contributing to a more extended knowledge of the somewhat variable dentition of this group, we are still left in doubt as to the character and the extreme extent of the variableness of the teeth which occupied the anterior and posterior portions of the maxillaries, as the collection last referred to affords no individuals of a kind of extremely acuminate tectl, examples of which have been discovered in the Upper Coal Measures of Illinois.

Generically eonsidered, the teeth present elosest affinities to Orodus, Ag., a group prevalent in the Lower Carboniferous formations. But the present gromp of teeth is distinguished by the prevailing prominence of the buttressed eourlition of the anterior coronal borders, and the relative uniformity or evenness of the posterior face, besides the relatively fewer rows of acuminate teeth, as inferred from this feature being so prevalent in all collections of Orodi, while the linear forms are least eommonls met with. The teeth of the extreme anterior rows present the most marked divergenee from the normal features just alluded to, assuming a more or less circular outline as seen from above, sometimes with the anterior faee produced into a single more or less prominent buttress. The latter feature may be readhly explained by examining the tooth figured Pl. 8 , fig. 15 , in which the extremity of a small linear tooth shows a tendeney to throw off a pair of minute independent teeth whose anterior angulation correspond to the buttresses in the other portion of the crown. The variety assumed by the teeth of the extreme rows of the jaw, as thes oceur in at least one specifie form, is partially shown in the figures PI. 8 , fig. $15-20$; of these, $15-17$ probably belonged to the maxillaries, $18-20$ to the mandibles. The basal portion of the teeth would seem to partake to greater or less extent in the variableness obserred in the eoronal region : the normal teeth presenting a quite persistent uniformity in general outline and proportions, being more or less compressed anteroposteriorly and obliquely produced downward and backward, vertieally arehed below with a more or less prominent transverse ridge beneath the coronal border, extremities angular, one or other (mobably the anterior) more produced laterally; anterior face vertically eoncave, interrupted along the upper horders by the supports of the coronal buttresses which originate in the basal surface; inferior surface well defined, flatteued nearly in the same plane as the crown, with which it agrees in proportionate outline, thongh relatively narrower antero-posteriorly, plane or faintly ehanneled, smooth or obliquely striated, the strise or ridges being directed from the immer margin obliquely forward to the outer edge; either face of the base more or less deeply and irregularly pitted. The coronal region is enveloped in an onamel-like layer, and which is almost miversally of a light eolor, often a lustrous white, producing a marked eontrast to the black basial portion of the tooth, only rare examples obtained from pyritose shales having a uniform black color. In the details of coronal ornamentation, as well as those persistent proportional features, the various specific forms are reeognized.

Besides the teeth, there remain to be mentioned some peculiar little bodies which are intermingled in the mass of shate in which the tecth were imbelded, with fragments of the cartilages of the skeletal frame,
and which do not appear to be referable to the dentary system. These bodies are exceedingly small, irregularly cireular in outline, with a depressed eonvex coronal portion which rises into an eecentric acmuination or transverse ridge along one side, and delicately seniptured with imegular carinte radiating from the apex towards the marginal borders. The base is sometimes slightly produced opposite the abrupt face in a thin border, and more or less concave below. There is great diversity of form, no two specimens presenting precisely the same shape, though all partaking in a general resemblance, and espeeially in the dark, horny histre of the enameled erown, by which they are readily distinginishable from the teeth with which they are associated. It seems not improbable that these minute bodies constituted part of the dermal or shagreen covering of the tish. One of the better preserved of the scales is shown in fig. 21, Pl. 8. Often the long slope of the crown exhibits greater or less iudications of abrasion in the smooth surface it shows, aud which may indicate the relative position of the anterior and posterior sides.

Neither of the remarkable suites of fossils noticed above furnish any elue to the nature of the dorsal fin defenses, if with such these fishes were provided. Remains of the firmer cartilages oceur, which probahly belonged to the supports upon which the teeth rested. These fragments are of variable thickness, portions fiom the dentary ridge of the jaw attaining a thickuess of 40 inch, while fragments of what may have constituted the imer-fold or other less exposed walls of the jaw, are of extreme thinness, sometimes not more .05 inch in thiekness. These masses appear to be composed, in the one case of an aggregation of semi ossified particles, and in the latter of similar points presenting an elongated polygoual ontline ; the sutures between the hard parts are of ten filled by mineral matter, giving to the mass a minute reticulated or honey-eombed appearance when the smbstance of the partially ossified tissue has beeu dissolved away.

The present group of teeth was first brought to notice by the investigations of Messrs. Newberry and Wordmen, published in 15io, in the preceding fourth volume of this Report, where it is designated under the generic name Lophodus. This term having been previonsly employed by Col. Romanowsiry to designate a gromp of teeth from the Lower Carboniferous formations of Russia, and which are also common in the same deposits in Great Britain and America, it is obvious that the above name must give way.

In the above meutioned volume, two species were deseribed under the names I. variubitis, from the Upper Coal Measures near La Salle, and Orodus corrugutus, from the Lower Coal Measures near Alton, in this State. The latter, as suggested by Messis. Newberry and Wortilen, is unquestionably generically allied to the teeth described under the
former name, the specimen figured (Vol. IT, Pl. III, fig. 1S,) preserving four teeth of the median row, probably of the right ramus of the mandible, or left maxillary, besides three successive rows of two and three teeth. Speeifically, however, the latter species exhibits strongly contrasted characters in comparison with the former, in the more tnmid, spreading figne and the more elaborate tracery of the snperfieial coronal ormamentation. One of the specimens figured by Messis. New. berry and Worthen, (Pl. IV, fig. 11,) which is referred to the former species, cxhibits in its lofty median summit, flanked by comparatively slender, diverging lateral prolongations of the crest (which converge at an angld of about 90°) a most striking eontrast to the form generally preseuted by the teeth of this species. Neither of the magnificent series of teeth from Kansas and Iowa, have representatives of the form here referred to ; and jet, from the symmetrieal form of this tooth, it seems very improbable that it is abnomal. It is possible that the anterior portion of the upper jaw bore a single row of these cuspidate teeth, or it may be the representative of a distinct specific form. The Iowa and Kansas specimens, above deseribed, are apparently specifically identical with the teeth here referred to.

In a former volume of this Report, Messrs. Newberry and Worthen deseribed a tooth under the name IIclodus denticulatus (Tol. II, p. 81, Pl. V, fig. 6 , which was reported fron the Keokuk division of the Lower Carboniferous series. This mique specimen certainly possesses marked aflinities with the teeth of the genns under consideration; indeed it might readily be mistaken for an abraded tooth from the anterior por. tion of the median row of aenminate teeth, showing the bnttress-like projections in the anterior face, bint possessiug at the base of the posterior crown face, beneath the eecentric median cone, a protuberance or callosity, such as ocenrs in some forms of Helodus (Lophodus, Rom.,) as well as in Orodus. Since the above deseription was published, we have hat opportunity to examine large aceessions ilhastrative of the ichthyie fanna of the Keokuk epoch, but withont meeting a solitary companion to the tooth here referred to. This naturally suge gests the possibility of some error in assigning the specimen in question to the Keokuk limestone.

With the single exception just alluded to, the present genns would appear, for anything to the contrary furnished by present data, to be confined to the Upper Carboniferons or Coal Measure period in our earth's history, in the lower and upper members of which examples are known to occur. It is not at all improbable, as snggested by Messers. Newberry and Wommen, that this gronp constitutes the representative of Orodus in these horizons, since only a single form of the latter
genus has becn uoticed from the Coal Measures, (O. Alleni, St. J. and W.,) and this form may prove to belong to the present genus.

In the dedication of this remarkable gemus of Hybodonts to the memory of Professor Agassiz, we but poorly, however appropriately, express our appreciation of the profound labors of the great natnralist in this field, and the impetus his researehes gave to the cultivation of fossil ichthyology; aud, in no less degree, the affection of a pnpil for his lamented preceptor.

There remains to be noticed the following forms relating to the genus above described, of which it is thought there have already becu determined four distinct species.

Agassizodus variabilis, (N. and W., sp.)

> Pl. VIII, Fig. 1-22.

Lophodus variabilis. Newheriy and Wonthen, 1870; Ill. Rep., Vol. IV, p. 361. Pl. 4, Fig. 4, 5. 11.
The typical species upon which the genns was bascl, is that here referred to, and which was described from fragments of two teeth, and the nearly perfect specimen, fig. 11, Pl. IV, of the fourth volunc of this Report. The two former specimens, figs. 4 and 5 , respectively represent nnequirocal examples of teeth from the median and probably one of the anterior rows of the mandible of the same species as that to which the great jaw specimens previously noticed belong; fig. 4 showing the median prominence of the cromn of the new tooth, as indicated by the unabraded statc of the triturating edge, and fig. 5 prescrviug a fragment of the antcrior extremity of a tooth probably referable to one of the anterior rows of the right ramus, as indicated by the direction of the oblique striation of the inferior basal surface. The tooth fignred in Pl. IV, fig. 11, however, apparently presents the anomalous condition of a perfectly symmetrical tooth, the center of which is suddenly prodnced into a very strong, lofty, laterally compressed cone, the apcx rounded from front to back, the angles presenting a delicate cutting edge marked in the upper portions by the minute deeussations or downward enrved carinte common to the other examples. Towards the base in the autero-lateral portions of the conc, the crown is continued in a pair of lateral crests of apparently the same symmetrical proportions, and which diverge forward and downward at an angle of about 90°. Only about one-third of their extent is represcnted in the figure cited, and which partake of the characteristic conformation of the more regular formed tecth. The lateral arms equal, at least, in length the entire elevation of the median cone, differing from the normal appearance of the teeth of the lateral rows only in their comparatively more slender proportions, being much compressed antero-posteriorly, and the apparent obliquity of the anterior butteresses to the
sloping crest line, thongh they are nearly rertical to the general horizontal plaue of the tooth. The base presents the same outline as the crown, the comparatively thin lateral portions gradnally cxpanding in thickness and depth posteriorly, terminating in an obtusely ronnded angle behind, the inferior median portion being deeply chameled, the vertical or transverse striæ becoming oblique when extended into either lateral prolongation. In the direction and contonr of the anterior and posterior faces of the base, as also the lateral portions of the inferior surface, no essential differences are observed by which it might be distinguished from the prevailing individuals. But in the symmetrical form of the tooth, as indicated not only in the coronal region, but also in the conformation of the infcrior basal surface, there would seem to be strong evidence that there existed but a single row of these teeth and that this row was confined to the symphisis, the lateral wings resting respectively upon either ramus. As no similar shaped teeth are present in the mandibular specimen described at length above, it would scem apparent that, in case the present form belongs to the above species, it probably pertained to the upper jaw.

On the position of the teeth upon the jaw, reference has already been made in the foregoing description. It remaius to note in general the variability of the individual tecth, and to what extent it is dcpendent upon the relative position they occupicd upon the jaw. In the rami of the lower jaw there occurs as many as eighteen rows of teeth, or eight at least anterior and nine posterior to the large median row, which latter possessed above twents five individual tceth, while the lateral rows ranged from forty to fifty and more, the posterior rows apparently possessing the larger number. The diminution in size consequently from the inner to the outer teeth of a row is very gradual, and the evidence afforded by the large, mature ramus from Kansas would seem to indicate the persistency of the tectl to au extent far in excess of that of the modern Cestracion, or even of the Liassic Hybodonts, the decidnous character of which, howerer, affords but a faint idea of the number of teeth shed from the jaws as compared with the comparatively small number permanently in use and in process of development at the same time upon the jaws. It is cvident that both jaws of a mature fish probably possessed at least two thousand to two thonsand five hundred teeth. It may be of some interest liere to make some estimate of the probable size attained by this species. The common Cestracion of the Australian seas, one of the most nearly allied living represuntatives of these Carboniferons Selacians, presents the most accessible data upon which to base our calculation. Of the latter an individnal thisty inches in length from snont to the candal extremity, possesses jaws the mandibular portion of which are about four inches in length.

Assuming that the Carboniferous fish was of similar shape, which seems highly probable, that is remarkable for the brealth of the anterior or cephalic region, the mandibles of the ancient fish, which were near twenty-eight inches in length, wonld indicate a total length of from fiftecn to twenty feet-truly formidable dimeusions compared with the largest known individuals of the existing Cestraceonts.

The teeth of the posterior rows are generally distinguishable by their more robust proportions and the rounded extremities. Those of the anterior rows are appreciably more slender, their extremities more angularly terminated. Only the teeth of the median row are prominently acuminate, though the first contiguons rows either side present a partially dereloped eccentric cone. As seen from above, the tecth are slightly sigmoidally curved, those of the median row with the arch backward, while those of the lateral rows are slighly arched forward. In the relatire number of buttresses in the anterior face there is marked irregularity, the buttresses increasing in uumber in the same row with age, at the same time subject to nomerical modification by accidental causes; yet the extreme posterior rows appear to possess a relatively larger number of buttresses than the teeth of the corresponding rows in front, while there would also appear to be an irregular diminution in the number in the successive rows from the median row towards either extremity of the ramns. The same irregularity obtains in the disposition of the buttresses of contiguous tecth in the same rom, so that no two individuals present precisely the same details of superficial conformation, although in general proportions and outline the most marked persistency prevails, which may also be applicd to the lesser details of ornamentation.

The examples given in illustration of the varions forms of teeth from different portions of the ramus at the same time exhibit the details of moditication presented by the various individuals. We have included therein certain specimens found with the group of teeth discovered by Prof. ToDd, which it is supposed probably belonged to the upper jaw These latter are represented by teeth which differ in certain particulars to such an extent as to present strong contrast to the teeth of the opposite jaw, as determined by comparison with the great mandibular specineu from Kansas. The teeth here especially referred to are represented in Pl. 8, fig. 6 and 7. The former, on account of its rery eccentric median cone, is not comparable to the teetl constituting the median row of the lower jaw, which, as shown by comparing the Iowa and Kansas specimens, possess marked persistency in form and proportions; it would therefore seem more probable that we have here a tooth which occupied a corresponding position upon the right ramus of the upper jaw. The latter specimen, tig. 7 , also presents characters which appear
not to admit of its reference to the mandibular rows: no similarly shaped! teeth occur on the lower jaw, their marked sigmoidal curvature, and the central position of the slight apical prominence, constituting the chief distinguishing features. Their comparatively slender form would indicate that they belonged to the anterior rows, and it would seem rery probable that they constituted the row contiguous to that of the median teeth of the right maxillary. In tigures 15,16 and 17, Pl. 8, we may possess representatives of teeth pertaining to the extreme postcrior rows of the upper jaw, since the mandibular specimen from Kansas affords no similar tceth. On the other hand, the latter specimen exhibits tecth in the extreme anterior rows inmistakably like those represcnted in figures 18 and 19.

The shagreen scales, and other semi-ossified fragments of the cartilaginous jaws which pertain to this species, have been mentioned in the forcgoing notice of the genus.

Position and localities: So far as our data show anything to the contrary, the present species appears to be restricted to the Upper Coal Measure strata, in which position authentic specimens from the following localities have been obtained: LaSalle and Springfield, Illinois, at both places above the horizon of coal No. 9 of the Illinois section; Fremont county, Iowa; Osage county, Kansas.

Agassizodis Virginianus, St. J. and W.
Pl. 8, Fig 23, a, b, c, d.

A unique specimen of a tooth discovered by Prof. J. J. Stevenson in the Upper Coal Measnres of West Virginia, seems to possess distinctive features, as compared with the forms prevailing in the Coal Measure strata in the Mississippi valley, sufficient to cstablish its distinct specific character. The tooth in question is small in size, half an inch in lcigth, and about .30 inch in greatest hight. The crown is very stout in its build, slightly arched backward, the crest forming an acute angle, and regularly rising into the somewhat prominent, slightly eccentric median cone, rounded and intlexed at the extremities ; the posterior face is considerably distended about midway between the basal line and the crest, and besides the sharp ridges descending from the faint secondary cones half way to the base, and the delicate intermediate carina marking alike both sides of the crest, the inferior half of the surface is ornamented by delicate, wavy vertical lincs; the anterior face prescuts six buttresses, which are relatively strong, three in the long extremity, and two in the opposite extremity, with a wide space intervening between them andthe median buttress-the inferior half of the surface betwcen the buttresses similarly ornancuted as described in the
opposite face. The base is relatively shallow, stout, in depth about two-thirds the hight of the crown, and proportionately thick auteroposteriorly.

The little tooth above described, which has apparently never been brought into mse for triturating purposes, and therefore in perfect coudition, probably belonged to one of the lateral nows, either anterior, or more likely posterior to the median row, and indicating a species in this respect quite strongly contrasting in its dentition to that previously noticed. Mowever, the specimen may have belonged to a median row, but in either case its distinctive peculiarities are too marked to suggest identity with the other forms of the genus. It probably belonged to a young fish, else it represents a species which never attained the formidable size of the fish which bore the teeth of A. variabilis.

Position and locality: From strata abont 100 feet above the Mahoning sandstone, or lower part of the Upper Coal Measure series of the Appalachian region; near Morgantown, West Virginia. The above strata have afforded Prof. Stevenson a few very interesting ichthyic remains, some of which are described in the present report.

Agassizodus scitulus, St. J. and W.

Pl. 6, Fig. $16 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, 17 \mathrm{a}, 18 \mathrm{a}, \mathrm{b}, \mathrm{c}$.
This form is represented by very small and minute teeth prevalent in strata of the Middle Coal Measures, or upper part of the Lower Coal Measures, of which ouly a few detached teeth are thus far known to us. These would indicate some rariableness in shape, but no more than is consistent with their relative position mon the jaws, and of which it is believed we have examples pertaining to the median and lateral rows. The superficial characters presented by the various forms at present known are ilhstrated in the figures in Pl. 6, and need not be detailed in the text, further than to remark their distinguishing characters as compared with the previonsly noticed species. The teeth of the supposed median rows of this form bear a somewliat close resemblance to the un:que Virginia example noticed in the foregoing description, only the coronal faces are more strongly ornamented, and the posterior face mure gibbose and aborptly inbeveled to the basal line below. The opposite face betwen the prominent rertical buttresses exhibits traces of what appear to have been transverse strise; the latter feature is indistinetly shown in a group of three teeth from lowa, although it is not represented in the figure given of the specimen, Pl. 6, fig. 17 a. The relative shallowness of the base (which is made to appear of greater depth than is really the case in the figure just cited, as also in fig. 18,) in all these examples, together with their small size, distinguish them
from the teeth of A. variabilis, of the Upper Coal Measures. A tooth of one of the lateral rows, probably anterior of the median row, is; illustrated Pl. 6, fig. $16 \mathrm{a}, \mathrm{b} . \mathrm{c}, \mathrm{d}$, showing enlarged views of the various aspects of the tooth, which was also from Iowa, in a stratum a little abore that whence the preceding specimen was ohtained. While the figure $18 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{Pl} .6$, shows a tooth obtained by Mr. Fuller from the shales orerlying coal No. 5, near Springfield-a horizon probably nearly corresponding to the lower coal bed of the Middle Coal Measures of the Iowa survey.

We also possess an interesting specimen preserved in a nodule from Mazon creek, which apparently shows the remains of the entire cranial and jaw cartilages of a fish of the present species, but which is iu so crushed and distorted a condition as to afford little additional information. From the size of the teeth and the traces of the extent of the jaw, there would appear to have been comparatively fewer rows than obtained in the species A. variabilis; but further than this the specimen scarcely affords more than conjectural eridence on those more important details of the arrangement and character of the teeth of the opposite jaws. The cartilages present the appearance of minutely reticulated sheets, the substance of the semiosseous matter haring been quite dissolved, learing in relief the mineralized interstices, the apertures having the same elongated outline described in connection with the cartilages of A. variabilis under the preceding generic notice.

Position and locality: Specimens of the teeth of the above described form are known to occur in the lower strata of the Middle Coal Meas. ures of southern central Iowa, also in nearly the same or subjacent horizons of the Lower Coal Measmres of Illinois, near Springfield, Bloomington, and Mazon creek, iu Grundy county,

Agassizodus corrugatus (N. and W., sp.)

Pl. 8, Fig. 24.

Orodus corrugalus, Newbierey and Worthen, 1870, Ill. Rep., vol. IV, p. 358, PI. III, Fig. 18, 18 a.
Our collections afford a few detached teeth from various localities and horizons, representative of the species formerly described by Messrs. NEWTBERRY and WORTHEN under the name Orotus cormugutus, a brief notice of which is here offered. The original specimen was obtained from a position referred to the lowest workable coal bed of the Lower Coal Mcasmes, near Alton, Illinois. Mr. FULLER obtained fiom the shales of coal No. 7, near Danville, a tooth of one of the median rows of the same species, while Mr. ALEx. BUTIERs procured fiom the roof of coal No. 5 , near Carlinville, tecth also probably referable to the same species. But one of the most interesting discoverics in this conncetion
is that by Prof. Mudge, of a tooth represented Pl. 8, Fig. 24, from the Upper Coal Measures in the vicinity of Manhattan, Kansas. The latter specimen pertained to one of the median rows, and exhibits in the details of ornamentation and general conformation precisely similar features possessed by the original specimen ; the ouly dissimilarity is in the comparatively great elevation of the median cone. But we would hardly venture to place great stress on this character alone-indeed, the tooth from Danville presents an intermediate condition in this respect. Hence, it would seem highly probable that we already possess anthentic evidence of the extensive stratigraphic range of this species.

Genus PERTPLECTRODUS, St. J. and W.

Teeth symmetrical. Base more or less expanded laterally, or sometimes very compressed, symmetrically inrolled from within outward, sometimes embracing, as in the whorls of Natilus, again but gently arched rertically, the lateral edges beveled and grooved, inferior surface excarated. Crown consisting of a transserse series of strong median cusps, flanked by at least a pair of small lateral denticles, one on either side, and which regularly increase in size from the outer to the inner extremity or with age; coroual cusps enameled, smooth or vertically striated.

The marked resemblance in form of the teeth above indicated to the detached teeth of Plectrodus, Agassiz, of the British Upper Ludlow "bone-bed," suggested the term by which thes are here designated. But their mode of implantation and apparent succession is quite differeut from that of the Upper Ludlow teeth, the prescut teeth apparently, as in the Cochliodouts, constituting a complete row, in which only the coronal portion exhibits the individual elements and which are inerged into a common basal support. Taking the coronal region, a single set of the transverse cusps, the large median cone flanked on either side by a small lateral denticle, and we have almost the connterpart of an individual tooth of Cludodus. But here the intimate resemblance ceases; the basal region scarcely presents the least element in common with Cladodus, lacking the broad, posterior expausion-indeed the posterior face of the base more markedly suggesting the anterior aspect of the latter tooth.

The symmetrical or exact rertical inrollment of the teeth would appear to indicate that they occupied an isolated position, either constituting the sole dental element of the fish by which they were possessed, or restricted to some part of the mouth other than the maxillary elements: or, if associated with other and probably quite differently
shaped teeth, they may have occupied the symphysial position upon the jaws.";

Representatives of the genus have beeu found ouly in the Lower Carboniferous formations, which have afforded the forms noticed in the following descriptions.

!Periplectrodus Warreni, St. J. and W.

Il. 8, Fig. 25, a, b, c.

The torm here indicated is distinguished by its robust proportions and relatirely large size. The basal portion is moderately expanded laterally, the hercled superior edge nearly equal to one-fourth the transserse diameter of the tooth, slightly channeled, and rounded into the thick inferior edge, the surfaces roughly striato-punctate; the lateral borders regularly and somewhat rapidly couverge from the moderately produced, obtusely rounded postero-lateral angles towards țhe outer extremity; the posterior face is relatively deep, nearly plane rertically, slightly arched inward laterally and below, and defined from the crown above by a faint shoulder, as shown in fig. 25c ; the inferior surface presents a deeply excarated area, bordercd laterally by the downward produced walls of the latcral borders, which is, howerer, concealed in a mature specimen by the inrolled anterior extremity, as seen in fig. 25.c. A mature specimen exhibits at least seren transserse series of coronal cusps, of which the median one is rery strong, rapidly tapering to the acute apex, slightly curved sigmoidally with the apex'directed slightly forward, slightly compressed antcro-posteriorly, giving an oval transverse section, with delicate eutting edges, and ornanconted in both faces by numerous, delicate vertical costre, much as in Cladodus; the latcral denticles, of which there is one on either side the great cone, from which latter they are quite detached, are relativcly rery small and similar in slape and ornamentation to the median cone; the screral sets of coromal cusps rise from transversels elongated coronal bases, which completely isolate the contiguons sets, but which are firmly connected with the basal portion withont any visible suture or other line of demarcation. The specimen figured represents a large-sized specimen, which, but for the abrasion of the anterior portion of the crown by which the cusps are more or less worn down, is quite cntire.

The collections afford above a scorc of examples of the above form, inchinding specimens in various stages of growth, and some abormally developed individnals wortly of particnlar notice. Amongst the latter, it is apparent that large and mature teeth sometimes produce extra cusps in the newer or posterior portion of the crown ; or, perhaps, by
accident one set of cusps has been displaced or crowded to one side, thas destroying the perfect symmetry observable in the normal condition, and sometimes two median cones are placed side by side or in alternating order. In certain examples of medium-sized teeth, which show ouly three or four scts of coronal cusps, the antero-inferior margin presents a broad, inbeveled area, in shape nearly correspondiug to the posterior face, and from its smooth condition appearing necer to have been articulated or cemented to the teeth in advance, which must have preceded these more mature developments. The latter examples would seem to indicate that, by accident, perhaps, the dental plate sometimes presents two or more segments quite perfect in themselves, but parts of the complete scries as represented by a perfect specimen. Again, in vers foung cxamples, showing three or four sets of cusps, we find the same proportions as arè maintained in the older examples. But there occur in the collections very small specimens, showing as many as eight set of coronal cusps, completely inrolled or cmbracing, but with the cusps and lateral basal borders so worn down as to leare little room to doubt but that these minute examples are but part of the dental plate which has become detached from the newer or posterior portion of the series. This would indicate that a perfect, mature example may present all the way from eight to twelve, or even more, sets of cusps, but those of the anterior extremity beiug hidden from view by the inrollment of the older extremity of the plate.

The present form is dedicated to the memory of an esteemed young friend and companion, Master Warren Springer.

Position and locality: Upper Burlington limestone; Buffington creek, Burlington and Augusta, Iowa.

Periplectrodus compressus, St. J. and W.

$$
\text { Pl. 8, Fig. } 26 \mathrm{a}, \mathrm{~b}, \mathrm{c} .
$$

The present form is represented by a unique and perfect specimen, discovered by Mr. Van Horne. It is characterized by the extreme lateral compression of the base, the lateral walls of which are but slightly produced ontward in their descent and relatively shallow, defining the lateral bondaries of the correspondingly narrow, deeply channeled iuferior surface, and but moderately arehel antero-posteriorls. The crown partakes equally in the lateral compression of the basal region, the specimen slowing four sets of cusps, of which the two anterior ones are much worn by attrition; the median cones are relatively very large, the long diameter of their elliptical transverse section extending in the direction of growth or antero posterionly, instead of transversely as in the preceding form; they taper to the rounded apex,
with a faintls defined lateral canina in either face, but without visible striation or other ornamentation, the anterior and posterior faces sharply rounded ; at the base in either side, sometimes nearly median but generally slightly anterior to the median line, arise a pair of tumid, almost rudimentary lateral denticles, which are not nearly as distinctly defined from the median cusps as in the preceding and following forms herein described.

The tooth above described differs so markedly from the two other species of the genus at present known, as scarcely to need further comparison ; while, iu its general features, it presents unmistakable geueric affinities with those more typical forms.

Position and locality: Upper beds of the St. Lonis limestone; Alton, Illinois.

Periplectrodus expansus, St. J. and W:

> Pl. \&, Fig. 27, a, b, c.

The single example of the present form which has come to onr notice, is distinguished by the great lateral expansion of the base, the gently bereled upper edges being grooved in a manner similar to that observed in P. Warreni, moderately arched antero posteriorly, the anterior extremity obtusely pointed, the posterior face of moderate depth, interrupted by a shallow median sinus defined on either side by tumid protuberances which converge into the acute postero-lateral angles; the inferior surface is somewhat deeply excavated, the concavity being transverse, the lateral walls not so conspicnons as in P. Warreni. The coronal region preserves three set of cusps, the anterior ones nearly obsolete from wear, and which are characterized by the stout median cone, which is nearly circular in transverse section or but slightly compressed antero-posteriorly, with extremely delicate lateral edges, and ornamented with numerous delicate, sharp, widely spaced vertical costa; the lateral cones, which are separated from the base of the principal cusp by only slight intervening space, are exceedingly minnte, rapidly tapering and recurved, and ornamented similarly to the median cone.

The nuique example shows the two posterior set of coromal cusps in perfect state of preservation as to abrasion, bnt the median cones are broken off so that ther entire !ength and shape is not shown. The form bears closest resemblance to P. Warreni, described from the Upper Burlington furmation, from which, however, its extreme lateral expansion and relatively shallow base readily distinguishes it.

Position and locelity: Lower fish-bed of the Chester formation; Chester, lllinois.

(rexts STEMCMATODUS', St. J. and W.

Amongst the colletions from the Upper Burlington limestone, our attention was first drawn to a group of teeth, quite mumeronsly represented, but of so anamolons and withal rariable character as seem. ingly to indicate representatives of several distinct though closely allied generic groups. Subsequently, however, we have had opportunity to examine a fine lot of these remains in the collection of Mr. Springer, from a single locality, but all as detached or isolated teeth, which has resulted in the conviction that they all probably belong to a single genus, and of which there wonld appear to be several kinds, varietal or specific. As to the character of these latter forms, whether thes merely represent the rariableness of the dental elements according to the relative position of the tecth, or really indicate speeific distinctions, may remain an open question so long as our material consists of these isolated elements of the dental armature.

These teeth may be arranged under at least two typical subgroups, which, taken by themselres separately, would appear to offer distinctive features sufficient to suggest their possible generic distiuctness ; but, as we shall attempt to show, these subgroups seem to be connected by a most raried and almost complete gradation, as shown by a large suite of specimens exhibiting the intermediate stages almost uninterruptedly. The first of these subgroups abore alluded to may be represented by teeth possessing the followiug general features: Teeth, as secn from abore or below, triangnlar in ontline, the anterior extremity forming the more or less acute, rounded angle, one or other of the lateral margins exceeding in length the opposite side, therefore conclusively showing that there were rights and lefts, whether associated in pairs or greater mombers. The basal portion is but slighty prodnced beyond the coronal region anteriorly and laterally, is generally rounded, possibly by abrasion, into the inferior surface, which latter presents a slightly arched ontline between the front and posterior extremities, plane or slightly concare laterally. The crown consists of three or more longitndinal rows of stout, depressed denticles, which originate near the anterior extremity, gradually diverging and increasing in size posterionly, the individual cusps of the varions rows alternating, their apices directed backward, and in worn specimens, especially towards the front, scarcely individnalized on account of the attrition to which they have been subjected while in use ; the perfeet cusp is more or less compressed antero-posteriorly, with more or less well-defined lateral angles or cutting edges, and striated as in Cludodus ; the posterior ones are much produced backward, projecting far beyond the posterior basal border,
from which the crown is defined by the more or less distinct termination of the enamel layer. See Pl. 8, fig. 30.

The second subgromp alluded to abore, is represented lo comparatively simple teeth, in which the basal region is much narrower, though probably presenting much the same contour as in the preceding teeth, but generally being worn to a romuded ridge below, gently arehed between the extremities, and surmounted by a single row of coronal cusps, which in shape and succession are much like one of the single rows in the teeth abore noticed. Sce I'l. S, fig. $3 \overline{7}$.

The intermediate forms, or those connecting the extremes above described, are represented by (1) teeth possessing basal features generally preserved in the condition last noticed above, but which when perfect show a more or less deeply excavated inferior surfate, bounded by the walls of the lateral margin, and terminated anteriorls in a downward produced process, the crown occupied by two rows of teeth, the cusps depressed and irregularly alternating. See Pl. 8, fig. 32. (2.) Teeth, represented in fig. 33, Pl. 8, in which the two rows of cusps are less individualized, seeming to originate in a single row towards the extreme front, though probably the two rows becoming merged in widely spaced irregular alternating order, such as is maintained throughont the crown in (3) the variets represented in fig. 35, Pl. 8. The latter teeth are also apparently in pairs, but those represented in figs. 32, 33, appear to be symmetrical and therefore may have occupied a median position.

As to the nature of these little dental bodies, whether they pertained to the jaws or other part of the mouth, it may not be possible conclusively to decide. Thes may have occupied the tongue or back part of the roof of the month, a supposition suggested at least by their resemblance to the dental plates of some of the Deronian ganoids, e. g., Dipterus ; while, on the other hand, ther are not so strikingly mulike the dental armature occurring on the jaws of Ceratodus. But the latter suppositions, again, seem less probable on account of the occurrence amongst these remains of apparently symmetrical teeth, so that, were they referable to the maxillary elements, they must have occupied the extreme auterior portion of the jaws, and hence iudieating a fish whose jaw extremities were not edentalous. In the former position, they may have occurred in pairs or threes, as also in case they belonged to the anterior or symphysial region of the jaws.

The several more or less distinct forms thas far obsersed are further noticed below, where the several rarieties are designated by a provisional term, in the absence of data showing their true character and relationship.

Stemmatodus cheiriformis.

Pl. 8, Fig. 30 a,b,c.

Under this term is included the form represented in the above referred to illustrations, teeth whieh exhibit the extreme derelopment of coronal cusps, of which there are from three to four rows-the outline, as previously stated, being triangular, with one or other of the lateral margins considerably more extended than the opposite side, thus producing an unsymmetrical figure suggestive of the lateral position of the tooth or its association with one or more companion teeth. The basal portion has already been described; it deserves mention, however, that this portion of the tooth, as shown in the several specimens, is more or less modified by aceidental causes, so that none of the speeimens may exhibit a perfect individual in this respect. But in the coronal region, save what is due to attrition while the teeth were in nse, there is quite persistent uniformity in the number and disposition of the cusps and rows. A specimen of medium size, as that figured, shows seven eusps in the longer marginal row, five in the sliorter or opposite row, and six in the median row. In all these specimens the first three or fomr cusps of each respective row in the anterior portion of the crown, seemingly present a disproportionately small size as compared with those in the posterior portions of the tooth; but this may be attributable, in part at least, to abrasion by which the anterior cusps have been reduced iu size, appearing as mere tuberculose prominences. In the larger and more perfect posterior cusps, the form is moderately compressed anteroposteriorly, rapidly tapering to the acutely rounded apex, the lateral angles sharp, and both faces marked with munerous, sharp vertical costre, those in the posterior face being relatively finer. In the majority of specimens, perhaps, not a vestige of the coronal ornamentation remains, and in some examples the cusps are so worn down thronghont as to give to the crown a striking resemblance to the teeth of Ctenodus, which they also recall in sliape. The specinen slown in fig. 29, PI. 8, is probably a very eecentrically developed tooth referable to the present form.

Stemmatodus bifurcatus.

Pl. 8, Fig. 31 a,b,c.

The singular form here indicated is represented by a unique specimen. In shape it is like that above described, possessing three rows of coronal cusps in the anterior half, but the median row suddenly terminates with the fifth cusp, the two lateral rows being continued poste. riorly in independent rami, bearing respectively eight and nine eusps,
which latter, though forming but a single row, are somemhat irregular in their disposition or alternating from side to side, instead of forming a direet line. Taking into view the posterior rami of this tooth, there is no pereeptible distinetion between them and some of the irregularly single-erested teeth notieed further on. The erown is worn, and although the shape of the eusps is well preserved, there remains no traee of the rertical eostre or other ornamentation.

Stemmatodus bicristatus.

PI. 8, Fig. 32, 33, 35.

Of the present form the colleetions eontaiu several speeimens, that illustrated in fig. 32 being a very small indisidual but in a more perfect state of preservation than its assoeiates, which latter are mueh worn, the basal region rarely indicating its true contour. In the perfeet condition, the teeth present a postero-anterior elongated ontline, the base slightly expanded laterally beyond the limits of the erown, and produeed downward forming the rather strong lateral walls of the exearated inferior surfaee, the anterior extremity considerably produeed downward in a laterally compressed wedge-shaped proeess, between which and the tumid posterior extremity the outline is moderately arehed upward and rounded into the posterior coronal faee; a faint mediau ridge extends from the anterior process into the inferior basal area, which is also irregularly pitted. The coronal region is oecupied by two slightly sinuose rows of cusps, of which latter there are respectively seven and eight in one or other row, depressed and quite regularly sueceeding and increasing in size from front to rear, but without risible ornamentation; the rows are separated by a deep, angular median groove, and seem to originate in a single primary eusp at, the anterior extremity, the cusps of the respective rows are arranged in an irregular alternating order.

A varicty apparently of the same form is represented in fig. $33, \mathrm{Pl} .8$, in whieh the principal dental plate, though much worn, exhibits quite the same elaracters, the only observable differenee eonsisting in the less distinct individualization of the rows of eusps, which are more erowded, and towards the posterior extremity an extra denticle is developed in one side, which was probably succeeded by others-the extreme posterior portion of the tooth being broken off, so as not to show a third row of dentieles if such existed. But the most remarkable feature of the specimen is the possession or assoriation with a pair of very small, similerly shaperl dental plates, one on either side of the extreme anterior extremity, between which accessory teeth the primeipal plate seems to have been wedged from below, but with which they are apparently firmly
melded. The relative position of these accessory teeth is shown in the figures. Io shape they are not unlike worn examples of the large tooth to which they are attached, and though firmly cemented where they iupinge upon the central tooth, their basal ontline is perfectly preserved by the presence of the decp groose shown in the side riew of the specimen; they are much worn, and the character of the coronal region is consequently indistinctly shown ; there wonld appear to be but a single row of cusps, such as obtains in the variety illnstrated in fig. 37, PI. 8 , an extremely abmaded individual of which these accessory teeth strongly resemble. At all events, we evidently here possess an intimation of the retatire position of three indiridual dental plates, since it is difficult to conceive accident could have any share in their so symmetrical disposition ; and, further, it seems very probable that the intimate relation of two quite distinct varieties is hinted at at least.

One of the most common varieties contaned in the collections is that represented in fig. $35, \mathrm{Pl} .8$, a form which it is not always easy to distingnish from the midlle tooth of fig. 33. These teeth, howerer, always appear to be rights and lefts, as shown by the curvature in their outline viewed from above. The basal region does not differ from that of the tooth allnded to, but the crown presents a double row of alternating ensps, but which are so intimately associated as scarcely to indicate their real character, and which in the anterior portion of the crown become still less distinct and finally merge into a single row towards the extreme front. The unsymmetrical form of these teeth readily suggests their identity with the accessory teeth in the specimem above referred to. The latter form is quite variable in the minor details of size and the number of cusps aiong the crown, but not to the same extent as occurs in the form representing the median tooth, fig. 33 , isolated examples of which, or those in which the accessory teeth have become detached, show the cusps originating anteriorly in a single row, diverging into two rows in the middie, and towards the posterior extremity presenting three such rows of cusps

Stendiatodus simplex.

$$
\text { Pl. 8, Fig. 3t, } 37 .
$$

Teeth represented by four exmmples, showing similar ontline to the vanieties last noticed above, apparently symmetrical, and in which the cnsps are arranged quite regularly in a single row. The tooth fig. 36, which preserves the enamel, shows no trace of strice, from which it is inferred the cusps were smooth. The specimen just referred to exhibits the anomalons feature of the bndling of an accessory arm bearing three cusps, fiom one of the lateral surfaces about midway between the
extremities. This accessory branch is ummistakably firmly attached to the parent body, there being not the faintest trace of suture or other indication of its independent origin. The specimen is unique in this respect, thongh recalling the appearance of the tooth shown in fig. 33; but no similar detached teeth have as set been found-the oblique direction of the cusps of the accessory branch, which appear nearly at right angles to the direction of those in the principal plate, would at once attract the attention in case they are hereafter discovered.

A specimen of the form under consideration, in which a portion of one of the lateral faces has been broken away, reveals something of the internal structure, or sufficient to show that in the dentine portion of the tooth the individnality of the cusps is maintained nearly to the inferior plane of the base, presenting a segmented condition, which is quite concealed by the external coating of enamel in the crown and the density acquired by the exposed portion of the base. Were these dental plates always found in the symmetrical condition of the specimen, Fig. 3 , the question might arise whether they are referable to the dental apparatus of the tish, but pertain to the dorsal defense and akin to the segmented defensive spine originally described by Dr. Leidy under the generic name Edestus, which they also somewhat intimately resemble in general shape.

Stemmatodus shminetricus.

Pl. 8, Fig. 28.

A form, of which we have seen very few examples, represented by rery small teeth, having the lateral diameter equal to or exceeding that from front to rear, and nearly symmetrical in shape. The basal region is considerably produced laterally, beveled above to the lateral edges, which are sharply rounded and rapidly converge towards the anterior extremity from about the middle, whence posteriorly they are nearly parallel or but slightly diverge; in front the superior borders are marked by a pair of lateral and median tolds, the inferior surface presenting an elliptical ontline, moderately excavated and defined by the strong, ohtuse anterior and posterior border, sometimes arched downward laterally, as shown in the specimen figured. The coronal region presents two rows of chsps, which gradually diverge posteriorls, the ensps in the respective rows irregnlarly alternating, and regularly or irregnlarly increasing in size posterionly-the specimen fignred shows five and six in each respective row, depressed, the posterior ones strongly produced begond the basal line; the cossis are morlerately compressed anteroposteriorly, sublenticular in transverse section, with sharp lateral angles, which rapidly converge towards the sharply rounded apex, the anterior
face oceupied by relatively strong, sharp vertical costre, which in the opposite face are mucli less strongly marked.

The very few speeimens of the present form indieate considerable individual variableness, and which, it is interesting to note, is preeisely of the nature obsersed in other forms of the group, as in that eited in conneetion with S. cheiriformis, wherein in one or other, or both, of the rows the eusps present the appearance of arrested growth near the middle of the tooth, thence continued by disproportionately large eusps. So far as refers to the coronal elements there is much similarity to the form described above under the name S. bicristatus, though the rows diverge more rapidly posteriorly, in which respeet thoy reeall a pair of the rows in the form S. cheiriformis, as also in the shape of the cusps, the eostation of whieh, however, is stronger.

Position and localitics: All the above described forms oeeur in the fish-bed of the Upper Burlington limestone, intermingled with the various other remains of fishes peeuliar to this horizon; Buffington ereek, Burlington and Augusta, Iowa, the former locality affording the majority of the specimens, and all those, with a single exeeption, employed in the illustrations.

The Keoknk limestone has afforded a few examples of the present gromp of teeth, but the specimens, unfortunately, are in so imperfeet a state of preservation as seareely to permit of satisfactory eomparison with the Upper Burlington forms. There oecur amongst these speeimens apparently the same varieties as notieed in the preceding deseriptions, though the teeth resembling S. chciriformis are most eommon. But the Keokuk speeimens of the latter type seem to have the cusps more ereet and arranged in three or four rows, and the basal region would appear to be shallower. It is, therefore, very probable that a suit of well-preserved specimens of these teeth would show distinctions of specifie value. The cheiriform examples are labeled s. Keokut. All the Keokuk specimens are from the ricinity of Warsaw, Illinois, Keokuk and Bentonsport, Iowa.

Stemmatodus compactus, St. J. and W.

Pl. \& Fig. 38, a, b, c.
'Iooth very small, robust, long-elliptieal in outline viewed from abore. l3ase deep, lateral walls slightly converging in their deseent, laterally compressed infront and produced downward into a process, posterior extremity rounded, inferior surface moderately excavated and forming less than half the antero-posterior diameter of the entire tootl. Coronal region moderately prodned laterally, though the longer axis extends antero-posteriorly, and oceupied by a single median row of depressed
cusps, which regularly increase in size posteriorly and as regular in the order of their succession, the posterior one produced nearly its entire length beyond the basal border; the crown is enveloped in a polished layer of enamel, the cusps are apparently destitute of ornamentation.

A solitary specimen is all we possess from which to recognize the above described form, but which is amply sufficient to show its distinguishing features in comparison with the previously noticed forms from the Upper Burlington formation. Of the latter, that described iuder term S. simplex most intimately approaches the form here indicated. But the present tooth is distinguished by its more compact, robust build, and especially by the more produced lateral borders of the crown, and proportionately deeper base.

Position and locality: Lower fish-bed of the Chester formation; Chester, Illinois.

Genus LeIODUS, St. J. and W.

Teeth of medium and small size, in general form like Orodus. Crown more or less arched laterally and vertically, basal margins constricted and sharply defined from the base, culminating in a more or less produced apex with obscurely defined lateral crests, convex in either face, the anterior face generally produced or buttressed beneath the median cune, and both faces occupied by comparatively faint, simple rertical sulci, which sometimes extend to the crest, producing obscure secondary prominences; surfaces gencrally smooth, polished, punctate, and sometimes, especially in immature tecth, verrucose or reticulately roughened in the basal margins. Basc, as in Orodus, relatively deep, gently con vex behind, concave in front, with a more or less prominent shoulder above parallel with the inferior coronal margin, bclow obliquely beveled to the inferior cdge.

The teeth here referred to are closely allied to Orodus, from which they are mainly distinguished by the comparative smoothness of the coronal surfaces, which are simply and generally obscurcly lobed, or quite plain, instead of being corrugated. And the apparent diversity in the form of the tecth from different parts of the jaws, indicates a much more varied dentition than obtains in Orodus, in this particular approaching the modern Cestracion. The following are the sole species as yet indicated.

Leiodus calcaratus, St. J. and W.

Pl. VII, Fig. 11-18.

Teeth variable in size and form, and separable into three or four varieties, which, however, are not persistent, blending into each other by almost impereeptible gradations, but whielr may be distinguished under three heads, (posterior, median and anterior teeth,) aecording to their supposed position upon the jaws. Of these the median teeth are the largest, presenting a massive build and a somewhat strongly arehed outline; base as long, and more or less oblique to, the crown, deep, thick, angular in outline, deeply channeled on one side, with a more or less angular eonrexity occupsing the opposite side, both sides eoarsely roughened and vermieularly pitted, inferior surface smooth, and obliquely bereled to an edge along the inner margin ; crown generally strongly arehed vertically, sharply constricted basally, rising into a more or less tumid, eccentrie prominence, which is more or less produced inferiorly in the outer margin, surmounted by a slightly reenrved aente apex; lateral wings gradually narrotred towards the extremities, which are obliquely truncated or rounded, and nsually slightly cursed forward, more or less undulated along the margins, with an obseurely defined median erest, surfaces nearly equally and regularly conrex rertieally, obscurely and irregularly lobed, with one to three or four narrow vertical sulci in one or other extremity, giving rise to an annulated appearance and faint secondary eones in the erest ; basal margins marked by more or less numerous, faint ruge-otherwise the eoronal surfaces are smootl and finely punctate. From indiriduals possessing the above elaracteristies there seems to be a gradatiou into smaller forms, some of which are of minute size, and which are readily reeognizable by the extremely produced, slender, eccentric eone, whieh latter is also more or less deflected laterally, as well as recurved, more strongly produced basally in front, and seldom, if ever, lobed, though in in the larger indiciduals the lateral extremities are faintly undulated vertically, in the smaller ones laterally abbreviated, and the apex less eccentrically produced; in other respects presenting a commnnity of characters which intimately connect them with the larger teeth. A third form, which may have formed the posterior rows, is represented by individuals differing in no respect from the median teeth, except in the truncated or obtuse cone and depressed lateral wings. A fourth and sparsely represented variety is distinguished by the rather elevated, sharppointed, anteroposteriorly compressed crown. Coronal surfaces enveloped in a thin, polished enamel-like layer, and very fantly rerrucose; in worn surfaces the punetate structure is much more distinct, and in immature teeth the crown presents an clegant verrucose or roughened
appearance. In transverse diameter the teeth range from less than .15 to 1.05 inch.

The raried dentition indicated by these teeth renders this one of the most interesting of the numerous Orodont species occurring in our Carboniferous rocks. In the mature or larger teeth, the coronal lobes approach more nearly the condition ascribed to Orodus, while in the small teeth, with the exeeption of the aeutely produced median cone, the superficial charaeters even more resemble eertain forms of Helorlus, or the small teeth of certain Psephodi. In their diversity they recall the dentition of Cestracion-the small, acutely conical teeth eorresponding to the prehensile teeth in the anterior part of the mouth, while the posterior teeth beeome less and less prominent and aeutely apiculate, until reaching the low, obtusely conieal or depressed teeth which eomposed the rows in the posterior portion of the jaws.

The collections from the Keokuk limestone also afford a few examples of teeth, which are indistinguishable from the Burlington specimens, exeept that they are apparently more eoarsely punctate. Our series of these speeimens is so small, however, as not to exhibit their distinguishing charaeteristics, if such they possess, by whieh they may be reeognized from the form described above, though they may be indicated provisionally by the name $L_{\text {.. grossipunctatus. The latter specinens }}$ oecur in the Keokuk fisl-bed horizon at Keokuk, Iowa, and Warsaw, Illinois.

Position and locality: Not uneommon in the fish-bed of the Upper Burlington limestone; Louisa aud DesMoines counties, Iowa; Henderson and Warren eounties, Illinois.

Genus DESMLIODUS, St. J. and W.

Teeth ocenrring in series or rows extending from the inner to the outer border of the jaws. Individually the teetli are of small size, robust. Crown laterally elongated, more or less strongly arehed vertieally, culminating in a strong, subconical, nedian prominence, which is strongly buttressed in the outer or concave face by an angular vertical ridge, laterally flanked by the obtusely angnlar crests, whiel are more or less strongly denticulated, inner face more or less regularly arched in both directions, anterior face gently coneave or plane vertically, more or less strongly produced along the basal line in the median region, extremities rounded, basal borders inbeveled and oeeupied by a simple, wide coronal fold, which slightly overlaps the produced borders of the superior coronal region; surfaee polished, smooth or delieately marked along the crest by sharp thread-like costax, and in the edge of the coro-
nal fold execedingly delieate strix. Base narrower and thimer than the erown, relatively deep, and produced posteriorly slightly obligue to the vertieal plane of the crown, rectangular in ontline, posterior face slightly eonvex, anterior face of less depth, moderately excavated, with a narrow shoulder parallel with and just beneath the eoronal border, which is produced into a more or less eonspicnous basal protuberanee corresponding to the median angulation in base of the eoronal region, inferior surfaee well-defined, very obliquely beveled to the posterior edge; basal surfaces more or less coarsely roughened or pitted.

Many specimens present the teeth in serial order, in which eondition they are sometimes soldered at the impingement of their bases into a eommon basal support, the inrollment of which strikingly reealls the form of the large triturating plates of Psephodus; again, in other series, each tooth is distinctly separated by snture from the eontiguons teeth, and in isolated specimens the basal portion is entire, proving that all the teeth were not intimately associated by the eo.ossification of their bases.

From the general figure of these series of teeth, it is difficult to aroid the use of the same descriptive phraseology employed in defining the outline and contonr of the large inrolled crushing teeth of the Cochliodouts. Whether the small apical or terminal teeth are defaeed by the effeets of attrition while in use, or that they have suffered abrasion subsequent to their remoral from the jaws, it is diffieult to determine. In the latter ease these terminal teeth might appear to be the immatme inner teeth of the series; but we cannot overlook the fact that in most of the Cochliodonts the apieal extremity of the inrolled teeth was buried in the integument of the jaw upon which they rested, and whether or no they were so buried, they alwass present the imperfectly preserved or abraded condition which is noticeable in conncetion with the lesser tectl of the series of the present forms. Further, in all individuals of Cochliodonts the coronal smrface bordering the inner margin of the teeth is usually withont blemish, exeept in sueh as bear evidenee of having been beach-worn prior to their having been imbedded, and it is a noteworthy faet that quite all the specimens of the species notieed under the present genus present the larese teeth of the series in a remarkably perfect state of preservation. In view of these facts it is difficult to resist the conclusion that these teeth constituted part of the dental apparatus of a Cochliodont genus. On the development of the teeth some of our material exhibits interesting data. In rare instanees, and in none better than in a specimen discovered by Mr. Van Horne, series show the innermost or newest formed tooth to be markedly less in size than its immediate predeeessor ; thus it would appear that the formative matrices do not at the outsetde termine the full dimensions of the
tooth, but the peripheral region and base is left to later processes for completion. It is often of importance in determining the identity of isolated tecth to be able to recognize the comparative degrec of derelopment of the individuals under examination. In the present examples the much-worn anterior teeth, with their strong and usually cutire base, would scarcely be recognized as specifieally identical with the immature coronal shell of the incomplete teetl, whose partially formed bases have entirely perished, but whose eoronal markings are preserved with extremest sharpuess.

In the group under consideration a combination of charaeters oeeurs which seem to indicate affinities with both the Orodi and Chomutodi, as represented by the genera Mcsodmodus and Tcmustodus. Yet they may prove to be widely distinct from either of the above groups, and more closely allied to the Cochliodonts.

The represcutatives of the group belong to the Lower Carboniferous formations. The Orodus minusculus of Messrs. Newberry and Worthen, of the Kcokuk limestone, is a representative speeies, and closely allied to the typical form D. tumidus, of the St. Louis limestone.

Desmiodus tumidus, St. J. and W.

> Pl. XA, Fig. 7-9.

Teeth minute, varying in outline from subtriangular to long-clliptical, strongly built. Crown moderately arched laterally, obtuscly rounderl at the extremitics, with an obtusely angular crest cmminating in a strong, tumid, median promincnee, which is nearly central in the laterally abbreviatcd varieties, but more or less eccentric in the elongated tecth, lateral portions of the crest bearing three to five, more or less, rather strong denticulations, which diminish in size towards the extremities and similar in shape to the median prominence, posterior face gently arched in both directions, sometimes sigmoidally so, anterior side more abrupt, faintly coneave or nearly plane vertically, more or less produced in the median region where it is interrupted by the strong vertical angulation suporting the median cone, at the base of whieh, in the angle of the basal fohl, occu's a small node-like protuberance; basal borders of the crown abruptly inbeveled and occupied by a simple wide coronal fold, the sharply defined upper edge of which slighty overlaps the prodnced borders of the superior eoronal region, and which encireles the crown in a continuous band, gently arehed upward in the median region and at the produced lateral extremities; coronal surfaees guite smooth and polisherl, the denticulations in the erest being defined by fant vertical sulci, and the anterior median buttress distinctly earinate. Base equal to the crown in depth, slightly less in lateral diamo-
ter, and but slightly produced posteriorly to the rertical plane of the crown, subrectangular in outline as seeu from the posterior face, whieh latter is gently arched laterally, uearly plane vertically and faintly beveled below, anterior face rather deeply excavated, shoulder welldefined, produced into a delicate basal protuberance beneath the coronal angulation, inferior surface well defined and very obliquely beveled to the thin posterior edge; surfaces coarsely pitted. A specimen of medium size measures in lateral diameter .17 ineh, antero-posterior diameter . 06 ; the abbreviated variety is proportionately shorter and wider in the same diameter, and the base relativels deeper.

The above species, examples of which were first discovered by Mr. Van Horne, is numerously represented in our collections, the majority of the specimens being in a very perfect state of preservation. It is usual to find three teeth arranged in a row, and some specimens present as many as seven teeth thus associated, and which are sometimes apparently firmly co-ossified at the impingement of their bases. That the consolidation of the tecth upon a common basal support is not the nor. mal condition, is shown not only by the examples, which are visibly separated by suture, but also by those detached individuals in which the basal portion presents no indication of such intimate union with the teeth of the same rertical series. Both the short and the elongated varieties occur in the above condition. In examples in which several teeth are associated, the same general proportion of parts is preserved in each individual of the series, except that in the small terminal teeth the crown is more or less abraderl, other individuals exhibit eccentric enlargement of one or other extremity, and along the imer border of the series is sometimes present the coronal cap of an iminature newly formed tooth; in the number of tuberculations of the coronal crests there is slight variation.

These teeth constitute a remarkably well-defined specific form, the variations of which are more dependent on individual proportions than on the modification of the characters which equally distinguish the abbreviated robnst as well as the elongated teeth, as intimated in the foregoing description. Intimately allied to D. mimusoulus of the Keokuk limestone, it is distinguishable from that form by the strongly defined coroual fold, the elongated teeth by tlieir broader and more regularly elliptical outline, while the short teeth differ from the corresponding variety of the above form in the proportionately greater elevation of the posterior crown face and the more strongly arehed basal line-

Position and locality: Although the teetly are found in greater or less abmindance in certain layers, they range through a vertical thickness of strata of thirty feet, more or less, in the upper part of the St. Lonis limestone ; Altou, Illinois, St. Lonis, Missouri.

Desmiodus costelliferus, St. J. and W.

P1. XA_{A}, Fig. 10, 11.
Teeth minute, strong, more or less symmetrical. Crown more or less strongly arched between the extremities, long elliptical in outline, obtusely rounded at the extremities, crest sharply detined, obtusely angnlar and gradnally ascending from the extremities towards the middle, where it is more or less suddenly produced into a strong subconical, more or less eccentric median prominence, which is strongly prodnceel in front forming a sharp vestical buttress, which is crossed by one or two (!elicate lateral carine, giving rise in the lower portion of the angulation to as many small nole-like prominences of which the inferior one is largest; posterior face moderately arched laterally and vertically, sometines with a broad convexity in the region of the mediau prominence, anterior face abrupt, gently concave in the lateral portions, but abruptly and sharply prodnced in the median buttress; basal borders strongly inbeveled, broadly arched upward in the middle and sharply so at the produced extremities, coroual fold wide, strongly defined along the obtnse angle of junction with the superior coronal region, the npper edge slightly overlapping and delicately striated vertically; the coronal surfaces are polished and smooth in the lower portion, along the crest sharp sertical costre appear, which culminate in the delicate denticulations, of which latter there occur four to seven, more or less, in either one or other extremity, in the abrupt lateral declivity of the median prominence still fainter thread-like lines are observel, and in the more or less tumid convex face a few stronger coste converge in the apex of the median prominence, sometimes only a single ridge ocenrs, forming a delicate vertical carina descending half way to the coronal fold. Base strong, nearly vertical to the crown, which it exceeds in depth, though considerably less in lateral and anteroposterior diameter, posterior face rectangular in outline, slightly arched laterally and faintly depressed vertically in the middle, with a faint fold at the base of the imbereled coronal border, and slightly beveled along the inferior margin, anterior face moderately excavated, superior shonkder prominent, with a relatively strong basal protnberance beneath the median angulation, inferior sinface well-defined, and very obliquely beveled to the posterior edge; basal surfaces coarsely ronghened and pitted. The teeth seldon exceerl 15 inch in lateral diameter.

Of the present form perhaps two more or less well-marked varieties are noticable, as represented by laterally clongated teeth, on the one hand, and on the other laterally abbreviated, stonter teeth, in which the median prominence is relatively stronger and the lateral portions of the
crest with fewer denticulations. We lave also observed in the collection of Mr. Van Horne a very minute tooth, apparently referable to the present form, in which the convex or posterior crown face is proportionately much deeper, regularly arched laterally, the lateral extremities of the basal fold more considerably curved upward in rounding the extremities, while the anterior face is exactly similar to that in the teeth noticed.

Notwithstanding their diminutive size, the specimens are usually absolutely perfeet, even the most delicate carine and serrations in the crest and upper edge of the coronal fold are distinctly and sharply defined. Compared witlo other forms, the peculiar ornamentation of the coronal region and the comparatively stroug basal protuberance readily distinguishes the present teeth from D. tumidus of the same horizon, as also from D. minusculus of the Keokuk limestone.

Position and locality: Not rare in the upper beds of the St. Louis limestone; Altou, Illinois, and St. Lonis, Missouri.

Desmiodus? ligonifomis, St. J. and W.

> Pl. XA, Fig. 12-14.

Teeth very small, subtriangular in general outline. Crown strong and thick, gradually compressed towards the slightly obtuse crest, which is nearly horizontal or bnt faintly acuminate and minutely denticulate, each denticle being marked before and behind by a short carina, the apical point bearing a few faint radiating carine and which are rather more widely spaced than their lateral diameter, lateral extremities abruptly truncated; concave face nearly plane above the coronal belt, which latter occupies the broad inbeveled space, broadly arched downward along the lower margin and rapidly contracted laterally, upper margin less strongly arched and somewhat irregular in its direction, or slightly arched upward in the middle, apparently withont imbrications but bearing a few obscure rertical plice in the region of its greatest rertical expansion ; convex face about two-thirds the hight of that just described, lateral portions above the coronal belt nearls plane, median region occupied by a strong angular vertical fold, which descends from the apex and rapidly increases in prominence towards the edge of the coronal fold, from which point it gradually decreases in elevation, terminating in a small basal protuberance, basal belt similar to that in the opposite face, though somewhat less in depth, simple, inbeveled, moderately arched upward in the middle and apparently considerably narrowed in crossing the median ridge and neariy parallel with the crest. Coronal surfaces, in certain conditions, ornamented with short irregular vertical or slightly diverging thread-like strix, but usnally, perlaps in
the majority of specimens, nearly smooth. Root short, thick, oblique, lateral margins slightly converging below, in breadth much narrower, and in depth less than the hight of the crown. Greatest lateral diameter of tooth of medium size .15 inch, or nearly equal to the entire eleva. tion of tooth, hight of eoncave crown face about .10 ineh.

Of the several individnal representatives of this interesting form, those furnished by Dr. Williams, of Boonville, are the most perfect. None of the speeimens preserve the root entire, and most of them are otherwise mutilated ; but the characters which distinguish them from other forms are sufficiently well displayed in all the examples. In regard to the generic relations of these teeth, it seems not improbable that perfect examples might prove them to be distinct from Desmiodus, to which genus they are here prorisionally referred, and with which they possess many features in common. The rigid root, vertieal crown and rather strong median fold in the cosvex face, together with the inbereled eoronal belt, present the same general characters which pertain to the above mentioned genus. They are readily reeognized from D. minusculus of the same deposits by the stronger and more compressed erown. They may, however, hold the same relation to that form as does D. costilliferus to D. tumidus of the St. Louis beds.

Position and locality: Upper fish-bed horizon of the Keokuk limestọne, Boonville, Missouri, and Bentonsport, Iowa.

Desmiodus? Flabelluay, St. J. and T.

- PI X 4 , Fig. 15.

Teeth small, moderately strong, flabellate in outline. Crown moderately thick, erest broadly arehed, lateral margins low and slightly divergent from the illdefined extremities formed by the union of the coronal belt, and irregularly notched by more or less widely spaeed, shallow serrations; concave face suboval, lateral diameter and light nearly equal, gently arched vertically, very slightly arched or nearly plane laterally, with the lateral border slightly raised into a faint marginal rim, basal belt broad, well-defined, rapidly contracted below, and occupying the inbeveled region, upper edge slightly arched upward in the middle and again curved upward in rounding the lateral angles, and marked by a few relatively strong vertical folds in the median region; convex crown face about one-third less elevated than the opposite face, very gently arclied laterally, in which direction it presents a broad, shallow chamel in consequence of the slight vertical ridge, coronal fold very similar to that in the opposite face, though slightly narrower, simple, inbereled, the upper edge apmoximatine the curvature of the crest; both crown faces marked by short, irregular, diverging, thread-
like lines, which increase by implantation and are much disconnected on approaching the erest, and much more strongly developed in the concare face where they reach half way to the upper edge of the coronal belt, enveloped in a polished enamel-like laser. Root apparently stout, thick, somewhat rapidly converging toward the inferior border, at its origin about latf the lateral diameter of the crown. Lateral diameter of crown 16 inch, hight of concave face above the coronal belt .10 inch, including the coronal belt . 14 inch, antero-posterior diameter .05 inch.

The form muder consideration is known to us by only a single specimen, an exceedingly handsome little tooth, which is nearly perfect with the exception of the root, which latter, unfortunately, has been broken away. In its general aspect it recalls the form referred to under the name Desmiodus ligoniformis, from the same geological position, the resemblance being especially striking in the character of the coronal belt encircling the broad, inbeveled base of the crown, together with the superficial ornamentation. It differs, howerer, markedly in the outer coronal aspect, as its less angular outline, the regular arching of the crest with its peculiar irregular serration, and the absence of the strong median ridge in the convex face; in each and all of which particulars it presents a striking contrast to the above mentioned form. The root was probably very slort and stout, and set in nearly the same rertical plane as the crown. The variations of the individuals of D.ligonijormis present no approximation to the peculiarities apparent in the prescut form; while our material is insufficient to demonstrate, perhaps, their generic identity, much less their spccific identity, by supposing these two forms to represcut the dental armature of opposite jaws of the same species.

Position and locality: Discovered by Dr. Willians in the upper fish-bed of the Keokuk limestone; Boonville, Missouri.

Genus YENUSTODUS, St. J. and W.

Tecth laterally elongated, vertically arched. Crown abruptly constricted at the base and defined by imbricating folds, which form a proportionately broader belt along the concave side than iu the opposite border, crest moderately elerated and usually well-defined, nniform or rising into a strong, obtusely conical, more or less eccentric median prominence, lateral portions more or less distinctly marked by obtuse denticulations, which gradually diminish in size towards the extremities; coronal surfaces enveloped in a polished enamel-like layer. Base forms a broad, shallow plate, more or less obliquely flattened inferiorly with well defined angles in front and behind, lateral and antero-post-
erior diameter less than that of the erown, with whieh it is nearly vertieal.

The above group of teeth ineludes a form originalls deseribed by Dr. LEIDY nuder the name Chomatodus renustus, whieh mas be regarded as a trpieal example of the genus. Besides the abore, two or three additional forms from the superimposed and subjaeent formations have come to our notice, which together form a remarkably well-defined generic eombination. Each of these forms presents in kind and degree about the same individnal variability, conelusively indicating their intimate relationship, while, at the same time, each retains its own wellmarked eharacteristies by which it is readily distinguishable from its congeners.

Chomatodus (Helodus) denticulatus, McCor, (Brit. Palr. Foss., p. 61S, Pl. 3 k , fig. $9 \mathrm{a}, \mathrm{b}$,) of the Carboniferous limestone of Armagh, may possibly prove to be congenerie with the above. The genus is thus far known only from the Lower Carboniferous formations, from whieh the forms noticed in the following descriptions have been recognized.

Venustodus robustus, St. J. and W.

Pl. IX, Fig. 15-18.

Teeth having the same general form as the following deseribed forms, and presenting two well marked varieties, espeeially distinguislred by the angular extremities and vertieally arehed convex face of the erown. The first or larger variety is distinguished by the gently arehed outline and the somewhat sudden eulmination of the erest in a strong, obtuselypointed median eone, whieh is often truneated from wear; erest welldefined, nearly central or nearest the convex border, lateral portions low or moderately elevated, and more or less distinetly dentieulated; coronal folds forming a relatively narrow belt in the convex faee, sometimes obsolete in the region of the swollen median prominenee, the upper imbrieations ofteu broken into short, oblique pliee terminating in the smooth area, lower folds forming a continuous belt with the broad, well-marked band of the coneave face, where it is composed of four to six folds, which are usually quite regular, or bifureated at intervals. Base low, narrow, deepest beneath the eonvex border, inferior surface plain and defined in the angular inner and outer margins. Of the seeond variety numerons representatives oceur in the eolleetion, distinguished by their smaller size, linear or gradually tapering outline, and low, uniform crest-line which generally traverses the erown centralls, giving to the gently convex face a relatively greater depth than observed in the preceding variety; the eoneave face forms a narrow, shallow depression, limited below by the broad coronal belt, whieh is composed
of as many as fire folds, but which are generally less regular than in the large teeth, and which by frequent anastomosis present a net-work of raised lincs. In many cxamples the upper fold is similarly interrupted by brief oblique plice as described above; the folds of the opposite face are less mumerons, forming a narrow belt, often intcrrupted, or obsolete in the greater portion of the median region; the denticulated character of the crest also varies widels, the undulations generally obscure and irregularly developed, or obsolete. The base is proportionately massive, in form like the preceding varicty.

The varieties above noticer seem to be specifically ideutical, as determined by the communty of their characters, while at the same time they diverge from those noticed in the following description in the same manner and degrce. There appear to be no indications of gradation of characters sufficient to aceonnt for the pcculiarities distinguishing these forms, yet it is possible they may prove to be only varietal expressions of one and the same species.

The small linear teeth bear, in some respects, striking resemblance to the group of tceth represented by Helodus angularis, N. and W., especially in the uniform convexity of the one face and the relatively strong base. The imbricated belt cucircling the crown, however, offers a contrast which readily distinguishes the present teeth from that above referred to, and associates them with the large acuminate teeth first noticed. In the marked convexity of the one side, the large teeth exhibit a somewhat intimate relationship with V. Leidyi; but the large size, central position of the crest, and more simple disposition of coronal folds, constitute features quite in contrast with those presented by the St. Louis species.

Position and locality: Common in the Upper Burlington fish-bed; Louisa and DesMoines counties, Iowa.

Venustodus variabilis, St. J. and W.

Pl. LX゙, Fig. T-14.
The collections from the Upper Burlington, cspecially that of Mr. Springer, contain fine and beautifulls preserved series of a form which is so intimately related to T. tenuicristatus of the Keokuk, that, notwithstanding the somewhat striking contrast presented by cxtreme examples, it is extremely difficult to define them from the Kcokuk form. Indeed, in many worn specimens, there is no distinguishable difference by which the teeth from different horizons might be recognized, and it seems hardly possible to foretell the results of an examination of a larger suite of the Keokuk specimens. The Burlington teeth, however, may
be recognized as a gronp, however rariable the individuals, and this fact has led to their being noticed, provisionally, under a distinet head.

While the present form presents all the variability obserred in the preceding and above mentioned forms, it is distinguished by the appreciably less robust proportions, though attaining the same size. The lateral extremities are more acntely rounded, and there is a very apparent increase in the number of coronal folds, espeeially along the concave erown face, although in this latter respect there is noticeable rery considerable variation-many examples elosely agreeing with the Kcokuk teeth in possessing onls three or four imbrications, while in some extreme example they attain double the ordinary number, and when strongly developed they increase by bifurcation, and more rarely by implantation; the folds along the convex face are also very like the above form, ranging in number from two to four, often interrupted at the median line by the more or less angnlar ridge of the prineipal eonc; the median prominence is also quite variable in shape, always more or less eecentric, lateralls deflected, the apex produced over the concave face, generally laterally compressed, thongh sometimes presenting a remarkably produced, symmetrieal prominence rertical to the horizontal plane of the erown; the lateral portions of the crest exhibit the same variableness in the distinctness of the denticulations, which are always present in well-preserved individuals, while the body of the erest is compressed, low, and striking the convex margin from which it is separated by the shallow intervening suleation-rarely traversing the erown centrally. The base is the same as in the preceding and above named forms, outer and inner margins angular, shallowest beneath the eoneave face, inferior surface flattened and beveled as in the above. The coronal surfaces are smooth and polished, but in worn specimens coarse punctre appear in the abraded spaces; in many teeth either one or other, sometimes both surfaces are ornamented with a delieate tracery of thread-like lines whieh ascend more or less obliquely from the npper border of the eoronal belt, beeoming obsolete near the crest.

Representatives of the seeond variety, as alluded to in conneetion with the Kcoknk form, have eseaped notice, and this seems not a little singular, taking into consideration the eomparative abundance of the material in the present instance. However, the eolleetions contain teeth in which the merlian cone forms a relatively ineonspieuous prominence, and the lateral elongation is an approaeh, at least, to the linear outline of the above referred to form.

The third raricty is also known from but few examples, which present the sane gencral ontline and contour, but whieh are distinguishable from the Keoknk form by the undulated or plicated and, perhaps, vertically more plane convex crown face, the angle in the convex face of
the median eone being very obseurely dereloped, lateral portions of the erest obseurely and irregularly dentieulate; the eoncare face is also sometimes more or less distinetly undulated in a manner similar to that observed in the large teetb, with which they otherwise bear features in common. Of the latter style of teeth the collections eontain few examples, and this is true in relation to all the other forms of the genus, with the exception of V. Leidyi, of which the colleetion of Mr. Van Horne affords a fine series of both the large median teeth and the anterior teeth, and the variety represented by the teeth just deseribed.

In regard to the gengraphieal distribution of the present form, it is known to occur at nearly all the loealities in the Upper Burlington where the fish-bed stratum is exposed. A noticeable feature of these collections is the persistenes of the eharaeters which distingnish, even though it appear slight, the Upper Burlington from the Keokuk teeth, and the present form from that previonsly deseribed, with which it is associated at the loeality whieh has received the most exhaustive exploration. But, however similar species may appear when eomparisons are limited to a few examples of one or other form, experienee oftener than otherwise proves, on the examination of large materials, a mueh greater divergenee in the eharacters peeuliar to each than it was possible to detect in a eomparatively limited series of speeimens.

Position and locality: Common in the Upper Burlington fish-bed; Louisa and DesMoines counties, Iowa, and Henderson, Warreu and Adams counties, Illinois.

Vencstodus tenuicristatus, St. J. and W.

Pl. IX, Fig. 19-24.

Teeth attaining medium size, variable in outline and proportions, in which latter respect at least three varieties mas be reeoguized.

The first of these attains the largest size and most robust proportions, ranging from . 35 ineh to 1 ineh in lateral diameter, and .10 to .33 ineh in antero-posterior diameter, presenting from above an irregular longelliptieal outline, sometimes sigmoidally curved, and moderately arehed between the extremities. Crown very gradually conserging from the median region towards the lateral extremities, whieh are obtnsely ronnded, one narrower than the other, lateral portions of the crest low, eompressed, forming a sharp, more or less distinetly and numerously dentieulated erest, which is suddenly produced into a relatively strong eceentrie prominence, which in mature individuals is laterally eompressed, erect or laterally deflected, generally towards the short extremits, and usually flanked in the eouvex face by an angular vertical buttress and a more or less prominent gibbosity in the opposite face,
the concare face is but slightly depressed rertically, areraging in width about one-third greater than the opposite face, which in the majority of specimens is also depressed rertically on either side of the principal cone-in rare examples the angle of the median cone is much distended, producing a broad convexity in the median region of the narrow face; coronal belt well-marked, consisting of threc or four imbrications in the concave face, and three in the opposite border, generally regnlarly disposed thronghout the median region, but often interrmpted by intercalated folds on reaching the extremities-in some instances the uppermost fold terminating in the acntely angular buttress of the median cone. Base forming a strong plate, considerably narrower than the crown, the narrow face beveled to the angularly-defined, flattened iuferior surface, and about half or two-thirds the hight of the face beneath the convex crown-face, which latter equals the greatest depth of the base. In worn teeth the crest is more or less reduced in elevation, the median conc is almost always truncated and frequently worn down to the level of the lateral portions of the crest ; coronal surfaces smooth or faintly undulated, and polished; basal region more or less roughened.

We have recognized a variety differing from the above by their more slender proportions, and linear or slightly curred outline, relatively inconspicnons and eccentric median prominence, the crest being remarkably uniform thronghout, the coronal belt containing an additional fold. Lateral diameter of crown .54 inch, antero-posterior diameter .11, cleration about .05. A third variety is distinguished by its relatively short lateral diameter, and strongly arched vertical ontline, and the predominance of the concase crown face over convex face in rertical hight; the lateral portions of the crest are faintly dcuticnlated, the median cone sometimes flattened in the convex face, the coronal belt showing threc folds in the concave and two in the opposite border, where they are sometimes interrupted, prescuting a beaded appearance. Latcral diameter of crown . 30 inch, lesser diameter about .12 , or cqual to the depth of the concave face, hight of median cone in the couvex face abont .07 inch.

The differences which distinguish the several varieties noticed above one from the other are not sufficiently characteristic to be deemed of specific importance, and probably indicate no greater difference than that dependent on the position the teeth ocempied upon the jaws. The first varicty probably held a median position, the third ocenpying the anterior portion, and the second rariety may have filled the intermediate space, or, perhaps, more probably the posterior portions of the jaws.

However variable these teeth may appear on casual examination, a more intimate acquaintance derived from the comparison of a large suite of specinens reveals a remarkable identity of features common to
all, such as readily distinguish them as a whole from the allied the igh specifically distinct forms noticed from other borizons. Nor does this variability shade off into thesc other specific forms, each of which, while they present an equal degrce of variation, are marked by certain persistent featnres peculiar to them.

From the St. Lonis and Chester specics, the present teeth may be recognized by the proportionately greater size, narrower coronal belt, and the peculiar compressed, carina-like crest, and the laterally compressed median conc. As in those forms, the denticulated character of the crest is quite variable, often almost obsolete, though, perhaps, never entirely absent cxcept when obliterated by attrition.

Position and locality: Common in the ichthyic horizon of the upper part of the Keoknk limestone; vicinity of Warsar, Illinois, Keokuk and Bentonsport, Iowa, St. Francisville and Boonville, Missouri; apparently rare at the latter locality, since few examples occur in the interesting collection of Dr. Williais, made at that locality.

> Venustodus Leidyi, St. J. and W.

Pl IX, Fig 1-4.
Chomatodus venustus, Leidy, 1856. Trans. Am. Phil. Soc., Phila., vol. xi, Pl. v, tig. 19-21.
The teeth which are arranged under the above specific designation present considerable individnal rariation in form, but which may be considered nuder two heads or varicties, as represented by individuals from different parts of the jaws.

First, tecth of small size, rectilincar in outline viewed from above, gentls arched betwecn the extremities, a tooth of arerage size . 50 inch in greatest length, and in breadth across the median portion of the tooth .15 inch. The crown forms a rectilinear plate, very slightly dis. turbed in the middle, lateral extremities angularly romnded, rising into a snbconical, more or less eccentric and usnally truncated apex, which forms an obtuse angle in the arelied ontline from which the crest gradually declines to the extromitics; the crest is more or less sharply angular, and occmpied by a variable number (10 to 18) of delicate though well defined denticnlations, which are generally more strongly developed and momerons in one than in the other wing of the crest; the concave face of the crown is gently depressed, about one third higher than the opposite face, which latter is slightly arehed vertically, and more or less protnberant in the median region beneath the apex; the coronal folds form a continnons belt cneireling the crown, broadest along the concave margin, diminished to a narrow belt in the convex border, and composed of a series of delicate interwoven thread-like imbrications, of which only the mpermost forms an minterrupted line spanning the crown ; both coronal surfaces are covered by a thin, smooth, enamel-
like layer, usually worn away for a short distance below the crest on the convex side, exposing to riew a minute punctate structure. The base forms a very low, relatively narrow plate, inferior surface slightly oblique to the horizontal plane of the crown, with more or less angular margius in front and behind, and in lateral extent ncarly equal to that of the crown.

The secoud raricty is represented by smaller tecth, which are principally distinguishable from those abore described by their strong bowshaped or vertically arched outlinc and acuminate apex, but which show a gradation from the acutely angular crest into the less strongly apiculate teeth. In the more prominently arched examples, a sharp, angular ridge descends from the tip of the apex to the base of the crown in the convex side, which latter is almost imperceptibly arched vertically, the opposite face gently chameled in the long diameter; towards the extremities, which are more or less asymmetrical, the crest is delicately denticulated, the same as observed in the larger teeth. In the character of the coronal folds, punctation of the convex margin of the crest, form and position of the basc, they are in no particular essentially dissimilar to the large teeth. The relative position occupied by these small teeth was probably anterior to those first noticed abovethe extremely arched forms may have occupied the symphysis of the jaws corresponding to the prehensile teeth of the Cestracionts. In size they also exhibit considerable variability, however, apparently never attaining the dimensions of the posterior or incdian tceth.

We are indebted to Mr. Van Horne for the use of a finc serics illustrative of the caried phases presented by the interesting form under consideration. The species was first made known by Dr. Leidy, who described it under the name Chomatodus venustus. The original specimen, which was kindly loaned us for comparison, was derived from the upper portion of the St. Louis limestone, probably from St. Lonis, Mo., and from Warsaw, II]., as we have most conclusively determined from the nature of the matrix as well as the fossil itself, in both which respects it agrees with the St. Lonis specimens, and prescnts the same strong contrast to the Keokuk species from the latter locality. Having adopted the original specific application to designate the generic group, of which the present form is regarded a typical representative, it gives us pleasure to rededicate the species in honor of its discoverer.

The above form is closely allied to V. argutus, from which it is particularly distinguishable by the more rectilinear outline and the interwoven or reticulated character of the coronal folds, and which are discernible in almost every condition in which the individuals are met with. With the Keoknk and Upper Burlington forms it scarcely needs comparison.

Position and locality: In the middle and upper beds of the St. Louis limestone; Alton and Monroe eountr, Illinois ; St. Louis, Missouri.

Venustodis argutus, St. J. and W.

Pl. IX, Fig. 5, 6.

Teeth of small size, gently arehed along the convex border, more or less arched vertieally, extremities rounled or angularly truneated, distance in a direct line between the extremities of a medium-sized speeimen .32 inch, antero posterior breadth of crown 09 inch. Of this form two more or less well-marked varieties may be recognized, the smaller of whieh is distinguished by its more strongly arched outline, and in some instanees faint sigmoidal curvature, obtnsely rounded at the extremities; besides, the erown is centrally traversed by a low or moderately elerated crest, which eulminates in a strong, eonical, laterally deflected median eone, which in worn speeimens is tumid, and flanked in either extremity by a row of more or less prominent dentieulations, which regularly decrease in size on nearing the extremities, and are more strongly developed upou that side overshadowed by the eecentrie median eone, varsing from eight to eleven in number; the eonvex surface is slighty arched vertieally, often intermpted in the median region by a tumid distension of the basal portion of the prineipal cone, in hight little less or even exceeding that of the opposite faee, whieh latter presents a shallow depressed area, terminated below by a comparatively wide coronal belt composed of as many as three more or less regular and strongly marked imbrieating folds, which are redueed to one or two narrow folds in the eonvex faee.
The seeond variety, whiel we have identified with the present species, is eharaeterized by its rectangular outline as seen from above, is less strongly arched vertieally, and traversed by a subeentral erest, whieh rises more abrnptly from the eonvex border, eulminating in a somewhat eeeentrie vertieal eone, with from four to seven lateral denticulations in either extremity ; convex faee relatively low, lunate in outline, gently arched in both directions, and margined below by two or three narrow imbrieating folds, which fold round the extremities coaleseing with the much wider belt of the opposite face; the eoneare face is about onethird ligher than the opposite side, of which fully one-half is embraeed in the aumerously imbrieated eoronal belt, which forms a broad border projecting outward and downward in a less abrupt descent than the declivity of the superior surfaee, lateral extremities abruptly truneated or but slightly rounded; the thread-like imbricating plice of the eoronal belt more or less frequently and irregularly anastomose, with intercalated folds in the stronger and more widely spaeed upper portion of
the belt, where they are upturned at their extremities, and becoming obsolete before reaching the lateral extremities of the crown, where the main belt is more or less suddenly deflected, sometimes at right-angles, and curved round the extremities.

In all these rarieties the base forms a thick, more or less angular plate, the inferior surface of which is slightly oblique to the horizontal plane of the crown, from which it is strongly defined on either side by a deep sulcation, and constituting less than half the vertical elevationt of the tooth. The crown is highly polished, but in worn specimens the crest is more or less distinctly punctate, in which condition the lateral denticulations are often nearly obsolete.

The present form was first recognized in a few specimens in the collection of Prof. Worthen, all of which represented the small arched teeth. Snbsequent discoveries brought to light larger and more symmetrical teeth, corresponding to the varieties in the St. Louis limestone which hare been specifically associated under the name V. Leidyi. Some examples among these teeth are remarkable for the prehensile character of the strong apicnlate median cone, and this feature is confined apparently to certain of the more strongly arched specimens, and has led to their reference to the anterior portion of the jaws, recalling. the acuminate teeth occupying a similar position mpon the jaws of Cestraeion. Others, again, thongh strongly arched, have the median cone nearly vertical and angularly buttressed in the convex face, the lateral denticulatious being less prominent, and the concave face more nearly approximating its condition in the last above described variety. Although, regarded separately, these varieties may appear to he characterized by persistent differences, yet, when we bring to our aid the evidence afforded by other forms of the type, one can lardly fail to recognize in these seeming differences the local and individual variations of the teeth of one and the same species. The evidence which may hereafter be obtained from a more complete series of specinens, will as likely prove the specific identity of these varieties as is the result, in the numeronsly represented and equally and similarly variable dentition of the previonsly described forms.

The present form is readily recognized from the species ocenrring in the smbjacent St. Louis formation, by the more regnlar disposition of the imbricating folds; indeed, it beas a more intimate resemblance to the forms described from the Keoknk and upper Burlington formations than to I^{+}. Leidyi.

Position and locality: Not uncommon in the mpper fislo-bed of the Chester limestone; Chester, Illinois.

Genus HARPACODUS, Agassiz.

Teeth laterally clongated, vertically arched, and gently curved ont. ward in the concave face, with nearly parallel margins. Crown compressed along the crest and dceply and regularly serrated, expanded below, convex face relatively low, nearly vertical, opposite face gently concave rertically, coronal borders more or less produced and sharply inbeveled to the base in either side, laterally prodnced and sharply rounded. Base strong, more or less obliquely produced to one or other side, less the lateral diameter of the crown, lateral angles well-defined, the relative depth of the two faces the opposite of the coronal faces, that beneath the convex crown face being deepest, gently cxcarated or plane, the opposite side also laterally chameled, defined below by the obtuse angle of the inferior surface, which latter is obliquely beveled to the more acute postcrior (?) margin. The coronal surfaces present the usnal dense, polished enamel-like external layer. .

Amongst some teeth from the Carboniferons limestone of Armagh, belonging to the collection of Lord Enniskillen, Prof. Agassiz recognized a peculiar type to which he gave the above generic appellation, and which, as originally understood, was smpposed to be represented by two distinct forms. One of these was designated by the specific term H. dentatus and so published in the cataloguc of types belonging to the collection of Lord Enniskillen, in 1869 ; the other form, which was represcnted by one or two imperfectly preserved specimens, had received no specific designation. In the course of our investigations, we have been so fortuuate as to secure additional material, representing several species which are closely allied to the forms noticed by Prof. Agassiz, and from which may be derived a somewhat more satisfactory idea of their character and relations than was afforded by the few European examples accessible to him.

From the study of these data, we have been led to transfer the form H. dentatus to the genus Ctenopetalus, Agassiz, with which it apparently has the most intimate relationship; although strongly marked specifically by the extremely developed serrations: amongst the American forms, however, we find those which, in the above respect, occupy an intermediate position, thus more closely comnecting this extreme form with the more delicately scrrated forms of the genus.

Of the type represented by the unnamed form above referred to, our collection also afford a few quite entire individuals, representing two forms, which fully illustrate the distinctive and congeneric characteristics which they in common possess with the European form alladed to above, at the same time furnishing conclusive eridence as to their gen-
erie distinetness from the first noticed form, H. dentatus. Thas limited and defined as above, Harpacodus constitntes a well charaeterized generic group, the affinities of which would appear to be near Chomatodus, as indicated not only by the low, eompressed erown, but also the eonformation of the basal region.

Harpacodus occidentalis, St. J. and W.

$$
\text { PI. XA, Fig. } 2 .
$$

Tecth small, laterally elongated, gently arched outward along the concave border and also along the crest. Crown compressed along the crest, expanded below in the coneare face, deeply pectinated with from ten to twelve rounded denticulations, the intervening sulci extending downwards ncarly to the basal border, very gradually diminishing in size torrards the extremities, which are abruptly rounded; the eonvex face forms a long, narrow crescent-shaped area, more or less strougly curved downward at the extremities, rising rertically from the basal margin; concare face about a third higher than the opposite side, gently depressed, and laterally and vertically gently arched, basal borders prominent, abruptly curved upward at the extremities, and continuous with the less prominent coronal border of the convex face, in both faces abruptly inflexed to the basal region. Coronal surfaces smooth, the crest sometimes delicately striated. Basc moderately thick, laterally uearly as long as the crown, which it equals in depth, the deep side beneath the conrex crown face gently excavated and nearly in the same rertical plane, a thind deeper than the opposite side, which is somewhat more deeply chancled, inferior surface phanc, obliqucly beveled to the acutely angular posterior (?) border, lateral angles well-defincd. Greatest diameter of a medium sized specimen .25 inch, vertical clevation of tooth . 10, antero-posterior diameter at base of crown . 05 , elevation of eoneave erown-face .07 inch.

The above form is based mpon specimens discovered by Mr. Van Horne, in whose collection there is a nearly perfect cxample, while we have obtained other more or less perfect examples, which exhibit but slight individual variation, and so well-marked is the form that eren fragmentary specimens are readily determinable.

Position amd locality: Upper beds of the St. Louis limestone; Alton, Illinois, and St. Louis, Missouri.

Harpacodus compactus, St. J. and W.

$$
\text { II. } \mathrm{X}_{\mathrm{A}}, \mathrm{Fig} .1 .
$$

A specimen obtained by M1. Worthen from the Chester formation, which exhibits the concave aspect of the tooth, eonstitutes a second and
closely allied form of the above genus known from American horizons. The present form is distinguished from that last described from the St. Lonis, H. occidentalis, by its stonter proportions, strougly arched outline, the obliquity of the deep face of the base, and relatively shallower opposite face, and more obliquely beveled inferior surface. The coronal region is very similar to the above mentioned form, the pectinations, perhaps, are more tnmid and the crest slightly acmminate.

There remains to be noticed ancther form with which the present species is closely allied. This is represented by small teeth occurriug in the Monntain limestone at Armagh, Ireland, specimens of which, with a rare suite of other forms, had been borrowed by Prof. AGASsiz from the collection of Lord Enniskillen, which we were so fortmate as to be permitted to examine at the mnseum in Cambridge before they were returned to Florence Court. These teeth are but little larger than the American form, from which they mainly differ in the less vertically arched and laterally enrved outline, and, perhaps, fewer pectinations, the median one of which is perceptibly more strongly produced and elliptically pointed at the apex, than is the case in the present form.

Povition and locality: Upper lish-bed of the Chester limestone; Chester, Illinois.

Genus CHOMATODUS, Agassiz.

Chomatodus comptus, St. J. and W.

Pl. X, Fig. 19-22.

Teeth attain large size, strong, variable in general proportions, and presenting at least two somewhat distinctly marked varieties. One of these varieties is represented by teeth which are mainly distinguished by their abbreviated lateral extremities, which are sharply ronnded, and traversed hy an obtuse though welldefined median crest, from which both sides alike rapidly slope to the abruptly constricted basal margins; the median portion of the crown is broadly prodnced in front and behind, and rises into a rery strong, prominent, obtnsely conical median cone whose apex orerhangs the concave face, which is gently concare vertically, the opposite face presenting a gibbose prominence gradually expanding below and distinctly defined from the lateral wings; the basal margin is regularly curved along the concare side, very slightly arched mpward in the middle and gently rounded to the extremities; in the opposite face it is suddenly intermpted in the median region by a more or less deeply notched border, in both faces ocempied by a narrow, more or less obscurely imbricated coronal belt, from which arise irregnlar oblique lines which prodnce an exceedingly delicato aud highly
ornate seulpturing extending over the greater portion of the eoromal surfaces, exeept in the courexity of the median promineuee, which is smooth and towards the apex finely punctate. The root forms a relatively deep, strong, angular plate, nearly equal to the lateral diameter of the cromir as also in depth, the deeper face nearly plane, the opposite side oceupied by a broad depression terminating above in the strougly produced basal margin of the eoneare faee, inferior surfaee well-defined, gently arched mprard and beveled at a slight angle to the horizontal plane of the cromn from the eoncave to the inferior margin. Lateral dianeter of erown abont .80 inch, entire hight of tooth .68 , greatest slope of crown iu the convex face .50 , greatest slope of erown in the eoneave face .31 , antero-posterior diancter of erown .38 inch.

A specimen of less robust proportions, in which the lateral extremities are greatly developed, presents a laterally elongated ontline, the median portion of the erown-thongh smaller and slightly eccentrie, and, perhaps, more regularly obtnsely conieal and less prodnced over the eoneave face-closely resembles that deseribed above; the wings, however, are extremely prodiced laterally, aud traversed by a high augular median ridge which is very gradually narrowed to the rommed extremities; the eoneave face bnt slightly depressed rertically or about equal in degree to the convexity of the opposite faee whieh slightly exceeds it in elevation. The coronal ornamentation is the same as observed in the first mentioned variets, with the obliquely ascending plice perhaps a little more distinetly marked. The root forms a very deep plate nearly vertical to the erown, rhomboidal in outline, eontour of onter and imer faces and basal surfaee similar to the base of the first described teetl. Lateral diameter of tonth 1 inch, hight . 58 , slope of eonrex side of median prominenee .31 , slope of enneave side .25 , antero-posterior diameter . 32 .

Associated with theşe teeth Mr. Springer has found seceral speeimens of sinaller size, ranging from half an iueh to a quarter of au inch in lateral diameter, the proportions and other eharacters of which seem to prove their specific illentity with the larger teeth above described. These smaller examples, or at least some of them, have the median portion of the crown less prodnced, and in very small specimens the eoronal surfaces are quite smonth and polished. The form is intimately related to C. angulatus (N. and W. sp.), and, perhaps, more so to C. elegans, N. and W., of the Kcokuk limestone. It is distinguished, lowever, by the peculiar sculptmring of the eoronal surfaces and the obscure definition of the coronal folds.

Position and locality: Fish-bed of the Upper Burlington limestone; Louisa county, Iowa.

Chomatodus parallelus, St. J. and W.

$$
\text { Pl. } X_{\text {A, Fig. }}, 4
$$

The Warsaw beds have furnished a few examples of a form of the above genus which seem to be specifically distinct from the forms indicated from the St. Louis, as also those known to occur in the earlier Keokuk and Burlington deposits, and to which we have applied the above specific designation.

Teeth of mediun or small size, laterally elongated, with the upper and lower margins parallel, moderately thick through the basal margins. Crown symmetrical, more or less compressed and sharp•crested, rounded at the extremities; the conrex face equals in elevation half the entire hight of the tooth, plane or slightly arched vertically, nearly straight laterally, with a narrow coronal belt cousisting of two or three imbrications; the concave face is occupied by a rather deep lateral depression, and bordered by three or four well-marked imbricating folds, which are geutly curved upward at the extremities where they are confluent with the folds of the opposite face; the crest and basal margins are for the greater extent horizoutal and parallel, and in the perfect condition the crown is enveloped in a coating of cnamel, which is usually more or less distinctly striated vertically, in worn specimens a coarse punctation appears and the crest presents a more or less jagged outline. The base is thick and strong, nearly perpendicular to the crown, iuferior surface relatively wide and obliquely beveled from the concave side to the opposite margin, the convex face nearly plane and vertically furrowed, the shallower concave face deeply chameled beneath the produced coronal margin. None of the specimens before us are entire, but some of them plainly indicate a leugth of three-fourths of an inch, with a hight of .20 , elevation of concave face .15 , elevation of convex crown face .10 .
The fincst example of the above form which has come to our notice was kindly loaned us for description by Dr. G. A. Wrillians, who obtained it from the Warsaw beds near Boonville, Mo. It is related most intimately with that described from the St. Louis limestone under the name C. incrassatus ; but, at the same time, its less robust proportions, more symmetrical form, parallel margins, less angular basal extremitics, and greater inequality in the cleration of the respective coronal faces, will readily serve to distinguish it from the latter form. Authentic specimens are known to occur ouly in the Warsaw beds, where it has been found on the Piasa, above Alton, while in the St. Louis limestone in the same region its presence has not been detected, although these deposits have been most thoroughly studied by Mr. Van

Horne with especial reference to the stratigraphic range of the ichthyic remains occurring therein.

Position and locality: Warsaw beds; Boonville, Missouri, and on the Piasa, above Alton, Illinois.

Chomatodus incrassatus, St. J. and W.

$$
\text { PI. X, Fig. } 18 .
$$

Teeth of small size, seldom exceeding half an inch in lateral dianeter, in outline linear, or slightly arched in the convex side, tapering towards one or other extremity, both extremities obliquely truncated from the conrex to the concave border. The base is nearly vertical to the crown, which it nearly equals in length and depth, very stont, compressed and sharply defined beneath the coronal margins, expanded or thickened below, the deep side slightly channeled laterally above, and broadly beveled below, opposite side relatively low, deeply chameled, inferior surface well-defined, rery broad, plane, and strougly beveled to inferior acute angle, in outline long-subrhomboidal as seen from the deeper face, which is more or less strongly furrowed rertieally. Crown shghtly exceeding the length and breadth of the base, the convex face rising abruptly from the basal margin, gently arched vertically and lat. erally, crest compressed, culminating in an eccentrie prominence near one extremity, broadly arched towards the opposite eurl, the opposite face descending in a broad, shallow concavity, which is limited below by a strongly marked coronal band composed of from three to five imbrications, which form a continuous band with that of the convex face, where it is only about half as wide and composed of fewer imbrications; the basal border in the convex face is nearly direct, sharply curved round the lateral extremities and somewhat prominently defined from the basal region; in the coneare face, the basal border is strongls prodncel, the mediau portion gently arched npward and inward, and sharply curved to the extremities in the obliquely trmeated lateral portions. The coronal surfaces are polished and present a delicate vertical striation in the lower portions; on nearing the crest delicate vertical sulci of cen appear, which prodnce a minute denticulation, and which is especially diseernible in the comvex side.

Mr. Van Home has brought together a beautiful series of teeth from the St. Louis beds, which we have been led to regard as the representatives of a distinct form. At Aton and St. Lonis these teeth are associated with the C. insignis, Leidy, and a more stender form closely allied to C. cullillus, N. and W., of the Chester linestone. The latter form also oceurs at the Pella (lowa) locality, associated with C. inconstons, with
which latter form the present tecth may possibly prove to be identical. But, taking into consideration the distinctive features presented by the above described teeth, it wonld be mere assumption to recognize such specific identity in the present state of knowledge regarding their variableness, and the absence of material showing the gradations such as have been illustrated by the large series of specimens of C. inconstans, whose association render their evidence almost conclusive, and which are equally strongly marked from the few examples of the present form occurring at the same locality. The teeth under consideration present some individual variation in size and form, though more to the extent noticed in the above mentioned form. They approach C. insignis in the ontline of the eonvex aspect, but are distinguishable by their stronger proportions and more angular general figurc.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois, St. Lonis, Missouri, and Pella, Iowa.

Chomatodus inconstans, St. J. and W.

$$
\text { Pl. } \AA, \text { Fig- 5-14. }
$$

The colleetions from a single locality and stratum, in the St. Louis limestone of Iowa, afford a fine series of isolated teeth, which present considerable variation in form and size, constituting three or fonr quite well marked varieties, but whieh are intimately united by the gradation of characters common to all, and which seem to furnish conclusive evidence of their specific identity, however widely extreme examples may appear to differ from one another. 1. The teeth here designated possess in common the same coronal characters, which undergo the least modification of any part of the tooth in the mutations which are traceable in the various individuals wheh depart most widely from the normal condition of the species. But in the basal region occur the principal variations, which give rise to the more or less strongly marked vertical forms herein noticed. The crown forms a rather stout, regnlarly sloping ridge, the crest of which is snbcentral or nearest the conrex border, which latter is gently arched in both directions, while the opposite face is occupied by a wide and usually deeply excavated furrow extending the entire length of the concave face, and margined below by the thin, straight or slightly arched border, the upper surface of which often presents a delicately wrought basal band composed of several imbrications; the crest of the crown usually culminates near one or other extremity, whence on the one side the slope is abrupt to the rounded or somewhat obliquely truncated extremity, while on the other it gradually diminshes in clevation towards the obtusely pointed extremity of the tooth; the basal band, instead of forming a narrow
belt, as in C. incrassatus, extends well up the conrex face in a wide belt interrnpted by obseure imbrications; it is, howerer, in comparatirely few individuals that the eoronal folds are well preserved, and probably in no instance were they as strongly developed as in the abore mentioned form. In the teeth whieh represent the normal aspect of the present form, the root is apparently produced downward in a plane nearly vertieal to that of the erown, moderately thick, nearly median, deeply ehanneled beneath the prodneed border of the eoneave faee, less so in the opposite side, and slightly beveled along the lower margin, inferior surface well-defined, very oblique, or nearly corresponding to the plane of the convex crown face, in depth equal to or exceeding the greatest eleration of the crown. 2. Among these teeth there are some which present a strong, irregular serration of the crest, as shown in fig. $7, \mathrm{Pl} . \mathrm{I}$; the root is vertical as in the before mentioned rariety, while in other respects they are very similar, the denticulate character gradually merging into those in which the crest is quite worm. 3 A third variety presents a more regular erest line, which, although it is not central, shows the side corresponding to the eonvex face to be slightly exearated, the root more obliquely prodneed in the plane of the convex crown-faee, and constitnting a conneeting link between the above mentionerl and the following extreme rarieties. 4. Under this head is included a series of teeth which might at first seem to be quite dissimilar from their associates, as above described. They are distingnished by their miform outline, the two longer sides being nearly parallel, the eoronal erest nearly central and moderately arched, the concave face gently depressed, the opposite face but slightly arehed rertieally, sometimes quite plane or faintly depressed; the basal folds are obsolete in all the examples before us. The root, which in the previously mentioned rarieties is more or less nearly vertical, in the present examples is remarkable for its extravagant obliquity, indeed so much so that in some extreme cases it forms an uninterrupted plane with the convex crown face, or eren miting at the basal limit at a slight angle, in some the basal border being slightly raised, in others, again, simply defiued by the angulation aud the perceptuble difference in the supericial strncture of the crown as compared with that of the basal portion, as shown in fig. 10. Howerer, the gradation which these latter teetl exhibit, in comection with the gradation observed in the preeeding varieties, seems to afford conclusive evidence of their specific identity. The surface ornamentation is much the sane in all the varieties, eonsisting of a more or less distinct, mimuto striato-punetation when not concealed by the dense, smootl, enamel-like coating.

From a careful examination of the above notieed teeth, it would appear that they probably constitnted the van iable dentition of one and
the same species. Anong themselves the farious forms are linked together by the mmistakable gradation of characters, while at the same time they are not easily confounded with others which are regarded as specifically distinct. Of the latter, the Keoknk and Burlington formations have afforded many beautiful examples, and which exhibit precisely the same range of individual variation, though assoeiated with other features of presumably distinctive importance. The latter forms were originally indicated under the name Helodus angulatus in the secoud volume of the present report.

Indubitable examples of the form under consideration have been obtaincd only from the St. Louis limestone, at a single locality in the northern extension of the formation in Central Iowa. However, our collections contain a few examples of tecth from the Warsaw beds, which are difficult to distinguish from the present form, since they present precisely the same variations as have been observed in eonncetion with the St. Louis specimens. Most of these teeth are so worn that a satisfactory comparison is out of the question; but a single specimen obtained by Mr. Van Horne in the Warsaw beds at Barrett's Station, Missouri, is deserving of particular notice: The tooth is of average sizc, and is distinguished by its linear or very slightly curved convex border, nearly uniform and prominent crest, relative great depth of the convex face, the lower half of which is occupied by a broad coronal belt composed of five or six strong, regular imbricating folds, which are seldom branched or implanted, concave face rising abruptly from the narrow marginal border, which is apparently composed of two folds, and presenting a relatively narrow, deeply channeled outline quite in contrast to that observed in the mumerous representatives from the St. Louis beds. The base formed a strong plate projeeting downward in a plane closely corresponding to that of the convex crown-face, from which it is defined by the produced and sharply inbeveled marginal border; the couvex crown-face is coarsely striato-punctate in the triturating surface along the crest, the opposite face is smooth and polished. From the same horizon, in the exposures above the month of Piasa ereek, Mr. Van Horne las obtained other specimens, but which, in the abraded condition, afford at best unsatisfactory comparison with the allied if not identical form from the superimposed beds.

The Ohester limestone, also, have afforded a few teeth, which preseut the same general features, but which, unfortunately, are not sufficiently well-preserved to trace more intimate relationship than in the case of the Warsaw form. They are, however, apparently distinguished by the fewer, stronger, and more regular coronal fulds, perliaps more rectangular ontline, stronger base, and perceptibly finer punctation. But in view of the variableness of the surface structure under the varying
conditions of the preservation of the crown, little dependence can be placed on the latter feature.

Of the last mentioned forms, which we hare provisionally indieated by the desiguations C. Varsouviensis and Chesterensis, we have introduced illustrations of a few of the better preserved speeimens, hoping by this meaus to eall attention more particularly to their ${ }^{\text {F }}$ consideration wheu the organization of more complete materials shall enable a satisfactory comparison with the form described above, and thereby settle their relationship with one another.

Position and locality: Common in the calcareous shales of the St. Louis formation; Pella, Iowa. The locality of the Warsaw form is indicated abore; the Chester form oceurs at Chester, Illinois.

Gentus LisGODUS, St. J. and W.

Teeth laterally abbreviated, strong. Crown thick, or moderately compressed, more or less acnminate, sharp-crested, and sometimes obscurely serrated, basal margins well defined from the base, descending lowest, or most prodnced, in the concave face, which is more or less strongly arehed laterally, the convex face lowest, forming a more or less vertical plane area, coronal belt encireling the erown, and eomposed of one or more imbricating folds. Base nearly vertical to the crown, rectangular in outline, thick, less than the lateral diameter of the crown, in depth equal to or execeding the elevation of the crown, inferior surface well-defined from either face above, and generally slightly beveled from the concare to the opposite border. Coronal smrfaces invested with a polished enamel-like layer, the worn erest striato-pmetate.

In regard to the affinities of the forms herein included to the species with which they are associated, we have songht in rain to diseorer features which would more than vagnels suggest their intimate relation to, much less their specific identity with, other generic forms. No gradation into the elongated forms of Chomatodus is observed, snch eas wonld hardly fail to be represented, did they exist, in the splendid collections which have been so generonsly made available to ns; white the mutual identity of chatacters of the several forms included in the present group would seem to be sufficient evidence of their generic distinctness. Yet one cannot fail to note the aftinities or resemblances which these teeth bear to typical Chomatorlus, as represented by C. pusillus, N. and W., or the representative of that species in the Upper Burlington fish-bed; and this gives rise to the snspicion that the aconisition of a series of the latter teeth in their relative natural position might prove these to belong to the dentition of one and the same forman arragement something like the tritnrating plates of the Myliodonts.

Thus we might expect to find the L. curtus associated with C. pusillus, and the L.selluliformis with Chomatorus insignis, Leidy. But as we have no facts leadiug to the positive demonstration of such relationship, and as they constitute amongst themselves a well-defined type, we have preferred to recognize their apparent distinctness in preference to assuming a probable geueric and specific indentity with the abose mentioned forms.

Lisgodus curtus, St. J. and W.

Pl. XA, Fig. 20-22.
Teeth very small, lateral diameter and hight about equal, robust, symmetrical in form. The crown forms a prominent, regularly arched, or slightly acuminate, sharp ridge, presenting from abore a semi oval or subelliptical outline; the convex face is sublenticular in outline, vertical, nearly plane or slightly arched laterally, inferior angle geutly or broadly arched downward in the middle, sharply beveled to the basal region, and bearing two comparatively strong coronal folds; concave face about one third higher than the opposite face, elliptical in outline, crest and basal line nearly equally arched, gently concave vertically, andi more or less arehed or couvex laterally, basal margin prominent, abruptly cursed downward from the extremities, and gently arched mpward in the median region, and occupied by two or three wellmarked imbrications; both coronal faces are enveloped in a dense, polished enamel layer, except along the crest, which is usually more or less worn and beveled along the concare side, in some instances it is worn down to half its original elevation, presenting a long, narrow, triturating area, ronghened by the exposed extremities of the tubular strmeture. The base varies somewhat in depth, the smaller the tooth the greater is its proportionate deptli; hut in all cases it equals the hight of the conrex crown-face, and in the small teeth it is as derp again, somewhat narrower and thinner than the crown, and apparently always nearly vertical to the crown, broadly chameled in either face, the one face being prominently defined from the projecting margin of the concave crown-face, lower angles well-defined in perfect specimens, inferior surface flat and slightly bereled to the convex edge. A specimen of large size measures in lateral diameter of crown .36 inch, entire hight of tooth .26, elevation of convex crown-face .15 , depth of base in the same side 11 , hight of concave crown-face .18 , lateral diameter of base nearly . 30 inch. A specimen of much smaller size is .18 inch in lateral diameter of crown, which is equal to the entire hight of the tooth, showing a relatively much deeper root than in the large teeth.

This elegant little form is not uncommon in the fish-bed horizon of the Upler Burlington, and is quite numerously represented in all the
colleetions from that horizon. A few imperfeet specimens from the Keokuk limestone, which hare eome to our notice, are undistinguishable from the teeth in the abore mentioned subjacent deposits, jet they may prove to be specifically distinct. The individual variation in size observed in this form has lead us to beliere that it does uot constitute a part of the dentition of other forms known from the same horizon. They are essentially dissimilar in many of the superficial details from other Chomatodi with which they are associated, and taking into account the variation in size and the slight modificatious of relatire proportions, we can scarcely fail to recoguize in these variations those features eommon to the more or less variable dentition of a Petulorlont speeies. ,

Position and locality: Upper Burlington fish-bed; at the several lnealities in DesMoines aud Lonisa counties, Iowa; Warren eonuty, Illinois. The Keoknk teeth mentioned above occur at Warsaw, Illinois, and Dr. Williams has obtained the same form in the Keokuk limestone at Boonville, Missouri.

Lisgodets serratus, St. J. and W.
PI. XA, Fig. 17-19.
Teeth exceedingly small and variable in relative proportions. Crown stout, semi-elliptical in outline viewed from above, more or less acuminate, sharp-crested, aud interrupted by rertical sulci, which produce an irregular serration, which, howerer, is scarcely perceptible in some of the more acmminate individuals, or limited to one or two faint indentations well down in the lateral edges of the crest; convex face nearly rertical, slightly arched laterally or nearly straight, basal margin welldefined from the root and marked by a proportionately wide coronal band, consisting of two imbrications, which span the tooth in a direct course, or sometimes gently arched mpsard in the middle, and again at the extremities; opposite face lalf as high again as eonvex face, but in the more strongly acnminate specimens the two faces are nearly equal in elevation, moderately concave vertieally, gently and irregularly arched lateralls; median region more or less swollen, basal line promiuently produced beyoud the root, arched upward in the middle, and again abruptly curved upward to the extremities, and oecupied by three imbricating folds, which form a lamd but little wider and continuous with that of the opposite face. The crown is covered with a polished enamel layer, the triturating surface being most strongly marked in the eoncave side, (though in none of the specimens is it as distinct as in L. curtus, and giving rise to the vertical striation and striato pronctate appearance eommonly obsersed for a greater or less distance below the crest. The base is well-developed, angular in outline, nearly vertical
to the erown, a little narrower and not as thick, in depth usually less than, though in some instances ncarly or quite equal to, the hight of the erown, both faces slightly chammeled laterally, lower edges worn or less angular, inferior surfaee gently beveled to the coneave side. A very acuminate speeimen is 20 inch in greatest lateral diameter, hight of erown . 14 ; a low, serrated tooth measures in lateral diameter . 18 , entire hight of tooth .17 , elevation of crown .08. There are individuals with eren a lower erown, but that last mentioned probably represents the normal proportions of these tceth.

This form is much like that deseribed under the name L. curtus, presenting nearly the same general outline and proportions. It differs, however, in the serrated charaeter of the erest, and the medially upward arching or horizontal basal line of the convex face, also in its smaller size. Otherwise it is most intimately allied to the above mentioned form, in the serrated condition of the crest does it depart most widely. Iet we fiud cxamples in which the latter charaeter is nearly obsolete, and which, but for the slight lateral position of the apex, as well as those other distinctive features noted above, might be mistaken for the form with which it occurs. From L. selluliformis of the St. Louis limestone, it differs in its less symmetrical outline and proportions, and the vertieal position of the base; in the charaeter of the coronal serration it elosely resembles that form.

We are largely indebted to Mr. Springer for the means of comparing a large number of individuals of this and the previously described form, all of which were obtained from a single locality in the ichthyie stratum of the Upper Burlington limestone; the same association is also known at other loealities, but the Louisa county (Iowa) locality has afforded by far the largest and most interesting suite of these teeth.

Position and loculity: Fiss-bed of the Upper Burlington limestone; Louisa aud Des Moines comuties, Iowa; Warren eounty, Illinois.

LisGodus selluliformis; St. J. and W.

$$
11, X A, F i g .16
$$

Teeth very small, thick, greatest hight exeecding the lateral diameter. The crown is strongly arched, sharp, terminating in a thickened, more or less acntely rounded point, and low down upon the flanks one or two faint serrations give to the lateral elges an obseure dentieulate charaeter; the convex crown face presents a subtriangular, vertieal area, sometimes moderately arched laterally, and margined below by a wellmarked horizontal coronal fold ; concave fase obtnsely curvilinear in ontline, broadly romded below, gentls eoneave vertically, its greater area occupied by a strong median ridge descending from the apex and
giving rise to the prominent lateral convexity in the coronal contour, and bordered by a rather wide coronal belt composed of at least two imbricating folds. The coronal surfaces are usually smooth, in worn surfaces coarsely striato-punctate, and sometimes enlarged in a dense, vertically undulated or corrugated enamel laser. Base strong, thick, rectangular in shape, in depth nearly equal to the hight of the crown, somewhat less in lateral diameter, slightly compressed in the middle and expanded below, inferior surface well-defined and bereled from the conrex to the concare border, slightly produced bejond the rertical plane of the convex crown-face, and sharply defined above by the projecting basal angles of the crown. A specimen of ordinary dimensions measures in lateral diametcr of crown . 12 inch, hight of courex crownface .06 , hight of concare face .10 , lateral diameter of base .08 , eutire eleration of tooth .14 incli.

Although we hare secn but fer examples of this exceedingly small and handsome form in the collection of Mr. Van Horne, their state of preservation, fortunately, is such as to render their distinctive features casily discernible. It is most intimately related to L. serratus of the Upper Burlington limestone; but, besides being scarcely half the size of that form, it is further distinguished by the relatively larger root, the vertical position of the convex erown-face and its nearly horizontal basal line, while that of the opposite face is more strongly and regularly archerl downward, also the inequal elevation of the coronal fices; the denticulations of the crest are more remote from the apex.

Position and locality: Upper beds of the St. Lonis limestone; Alton, Illinois ; St. Louis, Missouri.

Genus TANAODUS, St. J. and W.

In recognizing the generic distinctness of the group of teeth embraced under the abore designation, we have not been led to such disposition by the assumption, if Autliodus differs generically from Petalodus, so Chomatodus in like manmer differs from the prescnt group; but it has rather been with the hope of eliminating from the heterogencous assemblage of forms usually refered to Chomatodus such well-characterized groups which have an equal value as distinctive expressions with the various groups already recognized, which constitnte the family of Petalodonts. In the present instance we have a peenliar expression of characteristies which pertain to certain individuals or forms which extend throngh a considerable time space in the Carboniferons period-indeed, appearing early in the period and contiming to the close of the Upper Coal Mcasure epoch. And these peculiarities, as compared with what may be regarded as typical of Chomatodus in the restrictive sense here
recognized in the elongater, vertical teeth to which Prof. Agassiz gave the name Chomatodus linearis, (Poiss. Foss. tom. III, Tial). 12, tig. 9; not fig. $5,7,12$, the group under consideration, will be found to present a marked contrast in the relative position of the base, which closely adheres to the margin bencath the basal border of the concave crownface, the basal area beucath the opposite coronal face more nearly corresponding to that of Antliodus. In the laterally extended linear outline of the crown there is strong resemblance to typical Chomatodus; but in the disproportionate depth of the coronal surfaces and the marginal position of the root, it presents affinities with Antliodus. From the latter, however, it is distinguished by the linear or rectangular outline of the crown, and perhaps also the distinct definition of the inferior surface of the root, which in Antliodus appears to be rounded as in Petalodus and Ctenopetalus.

We have, however, observed in certain forms from the St. Louis and Chester formations, an association of indiriduals the specifie affinities of which we strongly suspect, and which exhibit a combination of outline and contour which might be regarded as evidence positive of their relationship with Antliodus. But if we restrict Antliodlus to those forms which possess a crown essentially like Petalodus, with a shallow ront, it may be admissible to recognize in the above mentioned form a type intermediate between the true Chomatodus and Antliodns. Yet, if we adhere to the strict interpretation of the facts at present represented, it seems highly probable that the forms referred to under the above head may prose to represent the extremely varied dentition of one and the same genus.

Of the present type of teeth the following representatives have already been described: Chomatodus gracillimus, N. and W., C. multiplicatus, N. and W., of the Upper Burliugton ; C.obscurus, Leidy, of the Keokuk ; C. angulatus, N. and W., of the Coal Measures. In the study of the collection of Mr. Springer, we have been led to suspect the possible specific identity of such forms as represented by C. gracillimus and a form closely resembling Autliodus politus, N. and W., which it represents in the Upper Burlington deposits. Should these inferences prove correct, then all the forms liereinalter noticed will probably fall under the gentus Antliodus, as amended and extended.

Tanaodus sulblunatus, St. J. and W.
P1. XI, Fig. 27.
We have provisionally recognized the specific distinctness of a form, represented by a single specimen in the collection of Mr. Van Honne from the St. Louis, which bears certain resemblances to the teeth
referred to under the above genus with which it is here associated. The tooth is very small and delicate, and so imbedded as to reveal ouly the basal and convex coronal aspect. Viewed from below, the basal area presents an irregular trapezoidal outline, a little broader at one extremity than the other and rounded or obliquely truncated, gently arehed outward along the concave border, beneath which is situated the low, eomparatively short root. The basal margin of the convex faee is slightly arebed inward, and defined by a simple coronal fold, which forms the well-marked angulation betweell the basal area and the courex crownface, which latter is low, nearly plane, gently arehed along the crest, which is produced beyoud the basal lime, and graduatly declines in elevation from the broader extremity, and interrupted by delieate certical sulci which produce a faint denticulate appearanee. Lateral diameter of crown about . 23 inch, anteroposterior diameter . 10 .

The sublunate outline shorter, relatively wide, and more strongly arched concave border, also the more central position of the root, constitute the more prominent features which distinguish the present form from its congenus. In its short lateral extent it bears resemblance to Antliodus; but the straight convex margin and vertical inequality in the crest line present eharacters more or less strongly in contrast with the symmetrieal outlines of the typical examples of the latter group.

Position and locality: Upper beds of the St. Lonis limestone; Alton, Illinois.

Tanodus pumilus, St. J. and W.

Pl. XI, Fig. 1, 2, 3, 4, 5
Teeth small, moderately strong though variable in proportions, crown moderately compressed or mapidly thiekening towards the base, broadly arched along the crest, sometimes obseurely dentieulated near the extremities, and usually projecting at a considerable angle beyond the basal margiu of the conrex crown-face; the concave face is irregularly elliptical in outline, in some examples the longer sides converge towards one or other extremity giviug rise to a more or less subtriangular outliue, very gently arched laterally aud slightly depressed vertically, basal margiu slightly undulating in its downward and outwardecourse, and defined by a rery wide basal band composed of five or six imbricated folds, from the upper margiu of which the plain coronal surface ascends at a slight angle, lateral extremities inequally and more or less acutely and obliguely rombled or truncated ; the eonvex face is about lialf the higlit of the opposite side, irregularly lumate in ontline, gently arched laterally, or sometimes strougly so in laterally abbreviated, acuminate examples, nearly plane vertically, basal inargin generally very gently arehed
upward, sometimes curved downward or irregularly sinuose, and limited by a narrow, though well marked coronal belt consisting of as many as five imbrications; coronal surfaces smooth or faintly striated, striatopunctate along the worn crest. Basal area broad, gently depressed and more or less distinctly defined from the root, which latter varies considerably in depth in different individuals, antero-posteriorly compressed or wedge-shaped, sharply defined from the projecting margin of the concave crown-face, descending more or less obliquely backward or outward, laterally conserging, inferior surface slightly oblique to the horizontal plaue of the crown, but generally obscurely defined and often terminated in a sharp edge; both faces more or less coarsely roughened. A small symmetrical and unusually well preserved tooth measures in lateral diameter . 32 inch, hight of concave crown face .15 , hight of convex face .07 , greatest diameter of root .23 , depth of inner face about .05 inch.

This form presents considerable individual variability, which probably, in consequence of the larger number of specimens which exist in the collections, is eren more striking than in the case of T. bcllicinctus, with which it is intimately allied. Regarding the specific identity of these raried forms, the only eridence is their association in the same stratum and certain well-defined peculiarities of coronal or basal conformation common to all, however variable and dissimilar in outline are the extreme examples. Compared with T. bcllicinctus, besides its smaller size, it is distinguishable by the more strongly developed coronal bands encircling the basal margins of the crown, and the relatively deeper and more oblique root; all the specimens thus far known are less elongated laterally, aud of less symmetrical proportions, upon which latter feature, however, little stress should be placed in the present state of onr knowledge of the Chester forms.

The particular horizons and localities which lave afforded indubitable examples of the present form, also afford teeth having the same general outline, but which present unmistakable evidence of extreme abrasion in the roughened coronal portion and the sulcation of the basal area immediately beneath the convex coronal border. In these teeth the convex crownface is worn down to an obtuse ridge, the coronal folds beifg obsolete in either face, though along the inner margin a strong ridge defines the basal limits, while the intermediate space presents a more or less deep, broad excaration, which occupies the concave crown-face; in all these teeth the root is wedge-shaped and terminated inferiorly in a sharp edge. Notwithstanding the absence of specimens showing a gradation into the more perfect teeth of the above description, as in the instance of T. bellicinctus, their relationship seems to be ummistakable, since they exhibit the same eviden-
ces of attrition, possibly of immaturity, which claracterize the worn teeth of the former species: indeed so intimate is the resemblance between the worn examples of these two species, that, were they known only from the imperfect teeth, they might be mistaken for one and the same species.

Associated with the present form there is a group of teeth equally well represcnted, and which holds precisely the same relationships to that above described, as do the teeth noticed under the head of T. depressus to T. bellicinctus ; and which, for the same reasons as assigned in that instance, are provisionally referred to a distinct group, which is noticed at length in the description under T.prenuntius.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois, Pella, Iowa.

Tanadud Prenuntius, St. J. and W.

Pl. XI, Fig. 6, 7. 8, 9, 10.

Teeth small, laterally elongated, longelliptical or gently areuate, outer and inner margins more or less nearls parallel, extremities rounded or obliquely truncated. The concare crown-face is gently depressed vertically, very slighty so or nearly straight in. the long diameter, aud sometimes gently arched, basal margiu slightly raised and forming a right-angle with the abrupt face of the root, destitute of distinct imbricating folds, straight or slightly arched inward and upward, and more or less abruptly curved round the lateral extremities, gently arched in both directions along the crest, which forms a low, obtuse ridge, sometimes obscurely and irregularly denticulate, and closely bordering the convex side of the crown, which latter is correspondingly low, nearly plane or faintly channeled vertically, broadly arched laterally, very gently and sometimes irregularly curved downward along the lower margin, which is sharply defined from the inferior region, and sometimes, though rarely, marked by obscure, irregularly disposed, thread-like lincs; the coronal surfaces present a coarsc, ircgular vermiculose appearance, and aloug the erest a coarse punctate or striato-punctate structure, the vertical tubes being often gathered into irregularly spaced bnudles, which give rise to the obtuse denticulations frequently observed in the erest. The root forms a strong, laterally narrowed, wedge-shaped process, faintly chameled latcrally and abruptly defined from the margin of the concave crown-face, upon the opposite side scarcely definable from the wide basal area, the contom of which is more or less irregnlarly convex, and defined above by it faint sulcation extending along and just beheath the basal angle of the convex crown-face; the basal area is faintly roughened or smooth, and faint vertical sule sometimes appear in the root. Greatest diameter of
a large size speeimen about 53 ineh, antero-posterior diameter .20 , or but a trifle more than the hight of the concave crown-face, elevation of eonvex face .05, depth of root beneath the coneare faee .14 inch.

The individuals of the present form are somewhat variable in outline, and in many of the teeth some of the eharacters notieed above are obsolete; very few examples show any trace of coronal folds along the basal margin of the eonrex crown face, though all present the same rugose coronal strueture and absenee of coronal folds in the eoneave face; the crest also varies from a vertical position in relation to the horizontal plane of the crown, being sometimes slightly inclined from withiu, which, however, is probably due to the wearing away of the convex surface; the erest rarely shows distinct dentienlations, and in some teeth the inferior region exhibits evidence of greater or less abrasion along its outer margin, as though by the impingement of the contiguous tooth, to whieh may be attributed eertain irregularities in the basal eontour. Butiu all these teeth there prevails a marked uniformity in general appearance, requiring but slight experience to be able to recognize their identity.

This form is elosely allied to that deseribed from the Chester division under the name T. depressus; jet, notwithstanding in both may be traeed the same kind of individual variability, a eritieal comparison of a fine suite of teeth from the two horizons diseloses eertain slight but persistent differences, which together strongly impress one with the conviction of their specific distinctness. In all the St. Louis teeth the erest is less elerated and less erect or produeed outward over the basal line of the eonvex crown-face; the superficial markings of the crown also difter, in the present form being coarser and rougher than in the Chester teetb. But in these teeth one eannot fail to observe those appearanees whieh seem to indicate the aetion of abrading influenees to a more considerable extent than is presented in the latter form ; aud in this feature, too, the same uniformity prevails as observed in other respects.

Regarding the affinities of these teeth with apparently allied forms from the same horizons, the same suggestions are presented and the same diffienties encountered in determining the nature of their resenblances, and the character of their relationship, as has been observed in eomnection witl T. depressus. However remote their resemblanee may be to T. sculptus, it is of the same nature as that of T. depressus to T. polymorphus. In the present instance the resemblance is most strikingly portrayed in the general contour of the basal region, the same as in the Chester forms ; but the most thorough comparison of the materials in hand fails to prove their identity, while their relationship to T. pumilus seems to be even more remote than in the case of T. depressus
and T. bellicinctus. The wedge-slaped condition of root is more or less prevalent in all these forms-in T. prenuntius and T. depressus as a permauent feature apparently, while in the other mamed forms it is evidently, in part at least, the result of accidental canses. These peculiarities are strongly suggestive of generic importanee, but in view of the uncertainty (which may indeed exist ouly in the mind) of their permanence, it is deemed more consistent with the uature of the faets possessed to retain them provisionally in the same generie association. Indeed were it possible to study the complete dention of the forms enumerated, even a more intimate specific relationship might be proved than ean be derived from the study of the isolated material now aceessible.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois: Pella, Iowa; St. Louis, Missouri.

Tanaodus sculptus, St. J. and W.
Pl. XI, Fig. 20, 21, 22, 23.
Teeth small, presenting as viewed from above a somewhat variable oval or broad elliptieal outline. Concave crown-faee broad elliptical or irregularly circular in outline, but subjeet to eonsiderable variation in this respect-in some examples more or less hexagonal, in others triangular or eurvilinear-lateral extremities aentely or obtusely rounded, in some of the more eireular teeth less distinctly defined, nearly plane or more or less depressed in the middle, and rising into a low, regularly or eccentrically arched, obtuse erest, which slightly projects beyond the basal line of the opposite face, the lower margin is generally less regularly and more angularly arehed downward, more or less produeed and in some examples sharply inbereled to the base, and bordered by five to six well-defined, narrow imbricating folds, which pass round the lateral angles in a broad abruptly curved belt, which merges into the narrower though equally well-marked basal band of the convex face; the convex crown-face presents a low, lenticular outline, nearly plane vertically and broadly arclied laterally, the crest and inferior margin nearly the same in currature, the basal margin being gently areled downward in the middle, sometimes angularly so, and againgently eurred towards the extremities, forming an obtuse angle with the basal area from which it is well-delined by the imbricated coronal band, except in examples which have suffered from attrition, in which the folds as well as the peculiar sculpturing in the entire surface are obsolete. The lower portion of the concave face is elegantly sconptured, presenting a delicate tracery of mudulating and frequently interrupted lines, variously disposed,' but most frequently slightly deflected to oue or other side, or in
some instances divergiug from the median line in their upward curse until lost in the papillose surface ocenpying the upper space, as aloo the greater portion of the convex face, and the striato-punctate belt inmediately along the crest; also, in well-preserved specimens, the coronal folds are more or less distinctly and finely striated vertically. The basal area nearly corresponds in outline to the concave crown-face, in contour moderately convex, rarely plane, defined from the basal line of the convex erown-face by a faint suleation, gradnally curved downward and merging into the short, wedge-shaped, laterally constricted and rertieally sulcated root, the imer face of which forms an abmpt declivity projecting slightly outward, laterally ehanmeled, and nearly parallel with the concave coronal margin from which it is more or less sharply defined by the prodnced border of the coronal folds; the inferior surface in the majority of the speemens is rednced to an execelingly narrow area, giving to the root the appearance of terminating in a sharp edge; but in well-preserved examples it forms a well-marked thongh very shallow and relatively narrow appendage, the flattened inferior surface of which agrees with the horizontal phane of the crown, and at the same time it is more abruptly defined on the one side from the broad basal region. A tooth of large size measures 48 inch in greatest diancter of erown, hight of concave face nearly . 30 , elevation of convex face .08 , greatest diameter of root 30 , depth beneath the eoncave coronal border .10 ; a minnte, oval-shaped tooth is . 20 inch in lateral and .11 in transverse diameter, hight of convex crown face .05, or abont equal to the depth of the root.

Althongh hardly any two individuals of this elegant little form present precisely the same ontline, in which respeet it is very variable, yet all are easily recognizable by the peeuliar eoronal scmlpturing as well as by the general contour features common to all. The form is apparently restricted to the St. Louis division, and the examples at present known, which were derived from localities more or less distant from one another, present a persisteney of characters which afford the best evidence of their specific identity. Its most intimate ally is found in the upper (?) ichthyle horizon of the next succeeding or Chester formation, and so close is their relationship, that it is only by comparing a suite of each form that they may be satisfactorily distingnished one from the other. However slight these distinctive features may appear in the comparison of solitary examples from either horizon, collectively, each presents a combination of features which at onee arrests the attention and leads to the consiction of their specitic distinctness. These differences are noticed more at length in the description of T. polymorphus.

In regarl to the generic relations of the present form, it would appear that, in the ontline of the erown, it approximates Antliodus; but by
following out its affinities with the preceding forms, it seems to present equally intimate relationship with the latter. The features in common with Tanaodus consist in the wedge-shaped outline of the root, the conrexity of the basal area, and the peculiar coronal contour, characters which present a strong contrast to the typical forms of Autliodus.

Position and locality: Upper beds of the St. Lonis limestone; Pella, Iowa, Alton, Illinois, St. Lonis, Missouri.

Tanaodus grossiplicatus, St. J. and W.

PI. XI, Fig. 26.

Teeth small or medium in size, viewed from above elougate-trapezoidal in outline. Crown culminating aloug the straight convex face in a low, evellerested ridge slightly produced outwarl, the basal augle defined by a narrow coronal fold, nearly straight throughout the greater extent, but gently curved upward and downward at the extremities; concave face descending in a wide, gradual and gently depressed inclination to the basal margin, which is defined by a rather promineut coronal belt composed of two or three strong imbricating folds, in the median lalf straight and parallel with the opposite face, more or less suddeuly and obliquely trucated in the lateral portious, the coronal belt contiunous with that in the conrex face; the coronal surfaces are invested with a delicately wrought enamel layer, and in the worn triturating surface along the crest a striato-punctate structure appears. The basal area presents in outline rery nearly the figure of the concave crownface, nearly plame or laterally traversed by a faint ridge; the root is placed close beneath the coneare margin, produced downward and outward in mearly the same plane as the convex crown-face, which it nearly equals in depth, moderately strong, in transverse diameter considerably less than the erown, inferior surface more or less well defined and beveled in the horizontal plane of the erown.

The single representative of the form above deseribed, unfortumately, preserves only about half the entire lateral diameter of the tooth, which is otherwise in an unsually perfect state of preservation. In general form it bears closest resemblance to the Coal-measure form T. angulatus (N. and W. spr.,) from which it differs not only in its smaller size, but in the less mmerons imbrications in the coronal belt of the concave face. Its rescmblance to some of the Keokuk and Upper Burlington congeneric forms is also quite striking, yet it is distinguishable by its straight concave border, even crest, and stronger proportions.

Position and locality: Probably from the lower fish-bed of the Chester formation ; Chester, Illinois.

Tonaodus bellicinctus, St. J. and W.

Pl. XI, Fig. 14-16, 25.

Teeth of medium or small size, strong, in outline long.elliptical and acutely rounded at the extremitics. Concave crown-face but slightly depressed, sometimes gently arched in the long direction of the tooth, culminating along the convex margin in a sharp more or less regularly arched erest, and bordered below by a wide, strongly marked basal band, which is composed of three to six narrow and more or less regular, vertically striated imbricating folds, gently arched upward in the middle aud usually sharply curved round the extremities, inferiorly inbereled and prominently defined from the root; concase face less than half the hight of the opmosite face, in outline arcuate and broadly or gently arched laterally, generally very faintly channeled laterally, the crest projecting beyond the basal line, and limited below by a more or less well-defined basal band, which presents along the greater extent of the median portion only one or two distinct inbricating folds, but which on nearing the extremities branch into several delicate secondary folds, which apparently terminate in the crest, or, in part, from a contimuous belt with that of the concave face. The coronal surfaees are ornamented with vermiculose markings, immediately above the basal band faint vertical plice, and in the triturating surface along the crest, where the exceedingly thin enamol-like layer has been ex-foliated, a fine striato-punctation appears. The basal region forms a long, narrow area, which, together with the face of the root, presents a broad, shallow depression extending in the long diameter of the tooth; the root proper is very short, antero posteriorly compressed and laterally constricted, in depth beneath the concave face nearly equal to or slightly exceeding the hight of the convex crown-face, projecting outward and downward in nearly the same plane as the conrex crown-face, and inferiorly flattencd. Lateral diameter of tooth . 84 inch, transserse diameter of concave crown face $.2 t$, hight of convex face .12 , greatest length of root .63 , depth of immer face .09 inch.

In the collection from the Chester limestonc sercral varieties of teeth oceur, which are apparently intimately allied, thongh in some instances it is exceedingly difticult to decide the nature of the differences by which they are distinguished from one another. It is not difficult to separate these teeth into three or four forms, all of which present a greater or less individual variability; but in the extremes of some of these forms may be observerl such intimate resemblances with the teeth, referable to other forms, as to cause one to hesitate in the determination of their identity. Yet, however strongly we may suspect the validity of these groups, our
resources are inadequate to a satisfactory conclusion, and the attempt to limit them within definite specific bounds has resulted in the conviction that it were more advisable, at this time, to notice not only the seemingly distinctive characters by which each form may be recoguized, but also to carefully note those features of gradation whieh may seem to indicate a probable specific identity. The same observations are equally applicable to certain forms found in the subjacent division, or St. Louis limestone, and which are consecutively noticed in the preceding pages.

The above described form is represented by only a single perfeet specimen, that upon which the description is maimls based. This tooth is most intimately allied to the laterally elongated tecth of the type of Tanaodus obscurus of Leids, differing in a marked degree from the typical examples of Antliodus, which latter may be defiued as a Petalorlus having a very horizontal basal area and short root. It also bears intimate resemblance to the St. Louis form mentioned under the name T. pumilus, from which it chiefly differs in its relatively narrower coronal folds and more shallow root. In specimens which have undergone much attrition, the basal bands are more or less obscurely pre-served-that along the convex crown-fice is often quite obsolete, while that which limits the opposite basal margin forms a more or less prominent ridge, the imbrications of which may be entirely obliterated. Also, individuals in the latter state of preservation have the concare coronal region deeply excapated, while the inferior region presents evidence of greater or less wear, and the root assumes a wedge-shapod condition, strongly coutrasting with its augular ontline in perfect teeth; indeed, but for the fortunate possession of specimens showing intermediate stages of abrasion, the relationship of the extremely worn examples of this form might be entirely overlooked. Moreover, the latter bear evidence of wear in the roughened appearance of the coronal surfaces, and the greater the extent of the abrasion, the more apparent are its cffects noticeable in the region along the basal angle of the convex face, which is reduced in light by the wearing away of the coronal folds, in which process a more or less distinct sulcation is produced in the basal area just bencath the coronal angle, and after extending the entire length of the tooth, and which may have been caused by the wearing action along the line of impingement of the contiguons tooth. The latter character, together with the attenuation of the root, is sometimes observed in conncetion with teeth in which the concave coronal region remains nearly perfect, and which foreibly recall very similar features obsersed in the worn teeth of T. polymorphes; but in the latter case this is most probably a resemblance the result of similar causes, since the differences (as the coronal ornamentation) which (histinguish the perfect teeth of these forms one from the other are well-
marked and apparently persistent. The root, in specimens whieh have been subjected to extreme abraiding action, often shows a tendeney to divide into radicles whieh, however, differ from those characteristie of Polyrhizodus in their extremely irregular disposition, plainly indieating their accidental origin-the result of the attenuation of the originally thick root and the deepening or exposing of the irregularly spaced rertieal sulei which appear in nearly all Petalodont forms.

Geological position and locality: From the lower fish bed in the Chester division ; Chester, Illinois.

Tanaodus depressus, St. J. and W.

Pl. XI, Fig. 11-13.

Teeth small, of strong proportions, eurvilinear-elliptieal as seen from above, though variable in outline, the longer sides nearly parallel or sometimes gradually eonverging towards one or other extremity, whieh latter are oblique, rounded or obtusely pointed. Crown depressed, coneave face faintly exeavated vertically and more or less eonsiderably arched laterally, rarely plane, inferior margin direet, or usually gently arched inward along the greater median extent and obliquely truncated or rapidly rounded to the lateral angles, gently or broadlyarched along the erest, whieh generally projects beyond the inferior line of the convex face, forming a more or less well-defined obtuse angle along the middle portion, but gradnally diminishing in elevation to wards the extremities where it is sometimes rednced to a simple convexity but slightly raised above the general plane of the erown, often obseurely denticulated in the prominent part; convex face very low, laterally arehed, slightly channeled, inferior margin irregularly and very gently curved upward in the median region, gently or aentely ronnded at the extremities, in perfect teeth sharply defined from the basal region; in a few examples the convex eoronal margin presents traces of exceedingly delieate imbricating folds, of which there are three or four, but in the opposite basal margin the coronal folds are almost always obsolete-the fine vermiculose markings oecupying the entire surface, except a uarrow space immediately along the crest which is eoarsely striato-punctate. The outline and contour of the basal area varies considerably and in the same manner as does that of the erown, irregularly convex or eoneare, forming a plane nearly at right angles to that of the convex crownface, and nearly eontinuous or uniform with the root, which latter, how. ever, makes an abrupt descent from the concave coronal margin, faintly channeled, laterally converging below, forming a strong wedge-shaped proeess terminating in an aentely rounded edge, in depth equal to or
exeeeding the hight of the eonrex eromn-face, with which it is nearly vertieal. A specimen of ordiuary size aud proportions measures in lateral diameter . 58 ineh, antero-posterior dianeter . 16 , hight of courex erown-face about .06 , depth of abrupt face of root .09 iuch.

Of the present form there are several representatives in the eolleetions, and taken together they constitute a well-marked group, the iudividual rariations of which do not depart in an unusual degree from the normal condition. Notwithstanding its marked peculiarities, ummistakable as they appear in the examples before us, we have hesitated in separating these teeth specifieally from the last preceling form, T. bellicinctus, on the one Land, and T. polymorphus on the other, from either of which forms the chief distinguishing difference in the present one is the absence of coronal folds. Fet, it is impossible to overlook certain other characters apparently of a permanent nature, which in either of the above forms are probably due to accidental eanses, as instanced by the wedge-shaped condition of the root. Again, in individuats which bear evident signs of attrition, the same effects are produced in the wearing away of the inferior basal augle of the convex crown-face, and sulcation of the basal area, as has been observed muder similar cireumstances in the teeth of the above mentioned forms. It would seem very improbable that these permanent distinctive features are attributable to the immaturity of the teeth, siuce it is well known that the tissues of the coronal portion of the teeth of sharks are the first to arrive at maturity; while in the present teeth, which seem to bear greatest resemblance to the forms with which they are above eompared, the resemblance is largely due to the abrasion of the muture basal portions. Its resemblanee to eertain forms of Polyrhizodus is remotely indicated by the general similatity of coronal contour, also the obseure vertical sulci often observed in the edge of the root. But it is impossible, with the data at present in hands, to prove a specificidentity with any of the above mentioned forms. Possibly the acquisition of more exteusive material may show these differences to be of varietal importance only, since we should expect to find considerable variableness in the teeth from different parts of the jaws, also those features originating in accidental calleses, as for example the the exfoliation by attition of the greater or entire portion of the superficial layer of the erown, thas exposing to masual abrasion the less dense tissues of dentine which compose the bulk of the crown and the entire basal region, producing under like circumstances similar results, and giving rise to these pecaliarities of individual terth the specific identity of which may ber exeredingly difficult, if not impossible, to ascertain. In the study of the fossil teet! of this class, such difficulties are of constant recurence, and in the present instances, the desire to comprehend the actual redationship, and not the recognition of a new form, has iuduecd us to
dwell more at length on the features whieh the individuals of the present form possess in common with those of other supposed eongeneric forms.

Position and locality: From the lower fish-bed of the Chester formation; Chester, Illinois.

Tanaodus polymorphus, St. J. and W.

Pl. XI, Fig. 17-19, 24

Teeth small, variable in outline from irregularly-circular to broadelliptieal, the trausverse sometimes exceediug the lateral diameter of the tooth. Crown but moderately elevated and arched along the crest, which is obtuse and faintly denticulated, one or other, sometimes both, of the lateral extremities broadly rounded or obtusely angular ; convex face low, generally projecting beyond the basal line, though sometimes inclined from within, often slightly chameled, more or less strongly areled laterally according to the outline of the crown, basal margin nearly horizontal or gently arched downward in the middle, and again very slightly eurred downward on nearing the lateral angles, and marked by a harrow band of two to four or five quite regular imbricating folds; the eoncave face is much more variable in outline and contour, subcircular or elliptical, very gently ascending to the crest, nearly plane or but gently depressed, in some instances presenting a slight convexity in the lower median region, basal margin elosely agreeing with the curvature of the erest, though perhaps never as strongly arehed, in the more oval individuals forming an obtuse angle in the median region, and bordered by a usually well-marked coronal band composed of from three to five regular, vertically striated imbrications, which are contimuous with those of the opposite face though relatively wider. In well preserved specimens the coroual surfaces present a delacate vermiculose ornamentation in the convex face, also in the median portion of the concave face, the lower portions of whieh are beatifully marked with more or less numerous, regular rugae which arise in the upper margin of the eoronal belt, defleeted laterally or converging in their upward course, becoming obsolete in the middle region, and which are quite distinct from the vertically elongated punctie which often appear in the worn surfaces along the erest. The root forms a narrow, sharp-edged, wedge-shaped process, in nearly the same vertieal planes as the crown and which is reduced almost to a reversed conical condition in short, oval teeth, inbereled and slightly ehameled laterally along the abrmpt face beneath the basal margin of the concave crown face, with which it forms an acnte or right angle, while its opposite face
forms a nearly uninterrupted plane witlo the basal area, which latter is slightly bulging in the middle, smooth, and meeting at an obtuse angle with the inferior border of the couvex crown-face; the proportionate depth of the root varies considerably, nor does this rariation seem to be dependent upon any particular form or size of tooth. A specimen of large size measures iu lateral diameter . 42 inch, antero posterior diameter .33 , or wearly that of the concave crown face, hight of convex face .09, depth of abrupt face of root about 11 ; while an exceedingly minute oval tooth has the transcerse and lateral diameters of the crown nearly equal, or about 08 inch, the aprupt face of the root slightly exceerling . 08 inch in depth, showing a remarkably produced wedgeshaped process.

The collection of Mr. Van Horne contains a beautiful suite of the above designated form, many of the iudividuals of which are so perfectly preserved as to afford a very satisfictory comparison with other and allied forms. It is very closely related to the teeth which we have described from the St. Louis formation under the name T. sculptus, presenting even a greater individual diversity than has been observed in the latter form. In order to appreciate the differences, howerer slight, which distinguish the individuals of these forms, it is not necessary to select some particular example, nor does the possession of a large variety of teeth render one's judgment and conclusions confused and unsatisfactory; on the contrary, in comection with the data which has been carefnlly noted bearing on the association of the teeth in the two horizons, the distinctive peculiarities pertaining to each, thongh slight, appear to be persistent and readily recognizable. Compared with T. sculptus, with which form alone it is likely to be confounded, in the present form the convex face is less uniformly depressed, the coronal folds generally less prominent, and the ruga and vertical stria coarser; also the root is stronger, generally deeper, and more nearly vertical or less obliquely deflected ontwards. The style of coronal ornamentation is essentially the same in all rarieties of the present form, and the gradation of the individuals is of a mature that furnishes the best evidence accessible of the specific identity.

As to their affinities with tho precerling forms, T. depressus and T. bellicinctus, of the same horizon, the present teeth hold precisely the same relationship as observed in the case of T. sculptus with T. preenumtius and T. pumilus of the St. Louis formation. But in the present state of our kinowledge of these forms, it wonld seem mere presmmption to reengnize their specific identity, thongh such may prove to be the actnal fact.

I'sition and locality: Lower fislo-bed of the Chester formation; Chester, lllinois.

Genus CTENOPTTCHIUS, Agassiz.

Ctenoptychius pertenuis, St. J. and W.

Il. X゙A, Fig. 27.
Teeth very small and fragile. Crown very eompressed, erest rather strongly arched, slightly aeuminate, the apex nearly central, subaeute, miuutely serrated, the denticulations more or less regularly inereasing in size from the lateral extremities where they are nearly obsolete, tumid, subaente or rounded and separated by very short, faint sulci, which appear in both faces in the perfect eondition of the erown ; concave face oval in outline, gently depressed vertieally, nearly straight laterally, basal margin broadly and more or less regularly arched downward, or slightly simuous in curvature, and a little more rapidly convergiug towatds one or other extremity, the opposite end less acute or more rounded, coronal belt moderately prominent, narrow, consisting of at least two imbrieations; eonvex face suberescentiform, very slightly arched in either direction, or nearly plane, basal angle slightly though irregularly arched upward in the middle, and limited by a single narrow coronal fold, which generally, perhaps always, terminates in the erest on one or other side before reaching the extreme lateral angle, giring to this aspeet of the tooth the eceentrie, unsymmetrical contour observed in all the representatives of the form ; both faees apparently smooth, highly polished. Base proportionally thick and strong, low, oblique, lateral diameter slightly less than that of the crown, from which it is strongly defined in both sides, inferior surface nearly in the same horizontal plane as the crown, broad and well-defined along both margins, gradually narrowed toward one extremity in the same direction as the crown, as also noticable in the moderately ehanneled region beneath the convex elown fuee, whieh oecupies abont one-third of the entire rertical diameter of that side of the tooth, surfaces more or less ronghened. Lateral diameter of a small perfect tooth 16 inch, hight. 13 , depth of eonvex face of base 03 , or near'y equal to the hight of the opposite erown-faee, elevation of concave erown-face .10 , or slightly greater than the hight of the deep side of the base, breadth of inferior surface of base . 0 a inch. A large specimen measures in lateral diameter . 24 inch, rertical diameter .20, showing a proportionately greater elevation than in the preceding example.

The form under consideration is represented in our colleetions by only three or four exannles, fortunately in a good state of preservation, painly exhibiting their distinctive characteristies. There seems to be the most intimate relationship between these teeth and C. apicalis,

Agassiz, exhibiting preeisely similar basal eharacters, while the crown differs chiefly from the trpieal species, as well as from C. Sterensomi, in the less acuminate and minute serration of the erest, and fewer indieations in the coronal belt; the base is relatively stronger than that of the latter species, while it nearly agrees in this particular with the typical Enropean form. It is also mnch smaller, the largest examples attaining scarcely half the size of either of the above mamed forms.

Position and locality: Chester limestone; Chester, Illinois; upper fish bed.

Ctenoftychius Stevensoni, St. J. and W.

Pl. X11, Fig. 15.

Teeth small, delicate, in ontline polygonal. Conrex erown-face semielliptical, plane or slightly arehed laterally, regularly and considerably arehed along the crest, which slightly projeets beyond the liise of the nearly straight basal augle, which latter is bordered by a narrow coronal belt eomposed of two or three folds, which are geutly deflected at the lateral angles, forming a band continuous with that of the opposite face; eoncare face irregnlarly and broadly oval, gently and somewhat angularly depressed in the middle, basal border strongly produced and sharply inbeveled below, composed of four or five wide inbricating folds, widening at one extremity, nearly straight in the median region and abruptly rounded into the lateral extremities; the crest line is strongly and somewhat irregularly arched, slightly acuminate, and aentely dentieulated, the denticulations more or less regnlarly diminishing in size from the strong median one towards the extremities, of which there are six or seveu in either side, faintly striated along the abraded edge; both coronal faces enveloped in a dense, polished enamel like laser. The base is proportionately slender, cousiderably less in lateral diameter than the crown, eceentric, as seen from below, the region bencath the eonrex crown-face narrowing towards one extremity, gently depressed and defined above and below by an obtuse angle, the opposite face relatively low, deeply chameled bencath the produced coronal border, inferior surface relatively wide, inregnlanly rectangnlar in outline, beveled to an acute edge in nearly the same horizontal plane as the crown.

The description of this elegant form is baser npon one of three specimens which were discovered by Prof. J. J. Stevenson in the Coul Measures of West Virginia. It differs so widely from any species thas far made known from the American Carboniferons series, that it sarecely requires al detailed comparison to distinguish it. When, however, comparison is made with the type of the genus C. apicalis, dog., (not C. apicalis referred to by MeCoy, Brit. I'alia. Hoss., p. 626,) one cannot fail to
be impressed with their intimate relationship. It differs from C. apicalis in its thinner crown, stmaght basal border, more slender and shorter base, and greater number of serrations in the crest, also the absence of pectinations in the coronal band.

The original specimen described by Prof. Agassiz, (Pois. Foss., tom. III. pp. 99, 173, tab. 19, f. 1, 1a, belongs to the collection of Sir Philip Egenton, which we were permitted to examine while it was in the possession of Prof. Agassiz, who at one time had in contemplation the revision of the fossil Selachians, in aid of which purpose both Lord Enniskillen and Sir Pililip had coutributed the use of their valuable collections, which were for a time at the Musemm of Comparative Zoölogy ; thus it was that we have cujoyed the rare privilege of studying material which has been rendered donbly valuable both on accomnt of its historical and scientific interest. The type specimen above referred to was derived from the earbonaceous shales of the Coal Measures, Staffordshire near Manchester, England. It prescuts very pecnliar and at the same time marked distinctive features whieh ean scarcely be mistaken. A careful examination of this specimen, and comparison with that abore described, leads to the recognition of afinities more nearly allied to Chomutodus or Autliodus than to Ctenopetalus and other thick, long-based Petalodonts. The eharacter of the basal region offers striking contrast to Ctenopetalus, and even the coronal region may be distinguished by its plane concare face-in the latter respect exhibitiug intimate relationship with the abbreviated forms of Chomatodus, and in the former resembling both Chomatodus and Antliodus.

Position and loenlity: In a calcareous bed holding a stratigraphic position about one hundred feet above the Mahoning sandstone, Coal Measnres; near Morgantown, West Virginia.

Genus POLTRHTZODUS, McCoy.

Polyrhizodus Williatisi, St. J. and W.

$$
\text { Pl. X A, Fig. 23 ; Pl. XIII, Fig. } 11 .
$$

The collection of Dr. Willianis afiords a single nearly perfeet example of a form of Polychizodus apparently specifically distinct from the several forms at present known from our Carboniferous deposits. It is distinguished by its strong, robnst erown, which presents a lenticnlar outline, lateral extremities acutcly ronnded, the lateral diameter about tro and a half times greater than the hight of the concare face; the convex crown-face is worn down, reducing the elevation at least onethird, the present crest line well-defincd, but forming an obtuse angle, the triturating surface oempying its entire area, to the broadly and
geutly arehed basal margin, which forms an acute angle with the broad basal area, but withont a trace of coronal folds. subcrescent-shaped in ontline; concave erown-face originally presenting a broad, regular lenticular outline, but in the present condition the erest is very gently arched, while the basal border is more strongly arched downward and moderately produced beyond the basal region to which it is sharply inbereled, the extremities somewhat more abruptly enrved npward to the lateral angles, and bordered by a strong coronal belt composed of three or more well-defined parallel imbrications, which gradually narrow on approaeling the extremities, the smperior region gently depressed or nearly plane, smooth and polished, or with vertical strie above the basal band. The base is relatively small, low, lateral extent consider. ably less than the crown, well-defined from the broad basal area beneath the convex crown-face, inferior surface more or less distinctly defined, or romnded, beveled in nearly the same horizontal plane as the crown, and irregularly divided into six, more or less, radicles, coarsely roughened. A tooth .70 inch in lateral diameter, measures in transverse diameter . 26 inch, depth of base beneath the coneare crown-face about .07 , lateral diameter about 45 inch across the lateral angles.

Mr. Springer has obtained another representative of the present form, in the same horizon at Keoknk, Iowa, represented in Pl. XI, fig. 23 , which shows a very worn tooth from the inferior side, the coronal region having been even more reduced from attrition than the former example, but exhibiting the same abbreriated or transversely widened ontline. These teeth are intimately allied to the Upper limrlington form deseribed by Messrs. Newberry and Worthen mider the name $P \cdot$ porosus, from which they may be distinguished by their shorter and more lenticular ontline, narrower and more strongly downward arched basal belt. In the latter respect they bear some resemblance to P. amplus of the St. Louis; the latter form, however, slionld it prove to be distinet from I^{\prime}. Littoni, N. and W., is less symmetrical in ontline, and the concavity of the concare cromn-face is mach greater than obtains in the teeth under consideration.

The form is dedicated to Dr. G. A. Whilhass, to whom we are indebted for the use of valnable material from the Keokuk and Warsaw beds at Boonville.

Position and locality: Upper fish-bed horizon of the Keokuk limestone; Boonville, Missouri, and Keokuk, Iowa.

Polyrhizodus nanus, St. J. and W.

Pl. XIII, Fig. 15.

Tecth minute, stont, subelliptieal in outline. Concare erown-face broadly elliptieal in outline, moderately excavated, basal margin moderately prominent, broadly rounded, crest sharp, gently and regularly arched; convex face about half the hight of the opposite face, irregularly lenticular in outline, basal margin forming an obtuse angle with the rather narrow basal area, somewhat irregularly arched downward and broadly curved to the aeute latcral angles, and occupied by a narrow coronal fold, surface broadly arched laterally, gently eonvex vertieally and nearly at right angles to the basal area. Base nearly equal to the lateral diameter of the crown, in depth beneath the eoncare face less than the elevation of the convex crown-face, thick, nearly vertical, well-defined from the basal area beneath theeonvex face, inferior surface rounded, irregnlarly lobed with five, more or less, strong radicles. Lateral diameter of tooth .12 ineh, greatest hight .07 , elevation of convex crown-face $0 t$ inch.

The above form is represented by a single example, which shows the convex erown-face and basal aspect. The fact that this is the only representative of the species, in a horizon abounding in ichthyic remains, is not so surprising when we take into consideration its minnte size, rendering its discovery at all mere chance. We have not met with any form with which the present is intimately allied. It is in every respect dissimilar from P. Williamsi of the same horizon, being proportionately more robust, and the base of greater lateral extent. In the comparative strength and vertical diametcr of the crown it seems to present affinities with Dactylodus, but the short base is essentially characteristic of Polyrhizodus.

Position and locality: Fish-bed horizon in the upper part of the Keokuk limestone; Bentonsport, Iowa.

Polyrhizodus piasaensis, St. J. and W. Pl. XIII, Fig. 12.

Teeth of medium size, extremely elongated laterally. Crown moderately strong, compressed and gently arched along the crest, which is somewhat abruptly rounded to the acute lateral angles, nearly parallel with the basal margin; the convex face is nearly vertical, presenting an irregular, flattened lenticular outlinc, slightly channeled, about half the elevation of the opposite face, bordered by a prominent coronal belt consisting of one or more narrow folds, forming an obtuse angle
with the basal area, nearly straight or but slightly arched downward in the median region, and rery gently curved towards the lateral extremities; concare facelong-elliptical, with sharply ronnded lateral angles, moderately excarated, basal border moderately produced and gently arched, imbrications not shown, but apparently forming a comparatively narrow belt. Basal area narrow, nearly linear, and at rightangles to the consex crown-face, base proper rery low, moderately thick, considerably less than the lateral extent of the crown, well-defined from the basal area, as also from the concave coronal margin, inferior surface ronnded, and deeply fissured, with nine or ten irregular radicles. The coronal surfaces are enveloped in a polished enamel-like layer, whieh is more or less abraded by attrition in the convex face, exposing a striato-punctate strncture usually met with in the triturating surfaee of these teeth: Greatest diameter of crown about .S5 inch, hight of tooth .16 , eleration of convex crown-face .12 , or about half that of the concare face, depth of base beneath concave basal margin . 07 inch.

A unique example of the present form was discovered by Mr. Van Horne in the Warsaw beds above the mouth of Piasa creek, which we believe is the only representative of the genns thas far known from that horizon. Its relatively great lateral elongation readily distinguishes it from other described forms, although in shape it bears a close general resemblance to P. Littoni, N. and W., of the St. Louis limestone. From the latter form it may be distinguished by its more sleuder proportions, less massive base, and more numerous radicles, and the outward or downward arched basal margin of the coneare crown-face, more acutely rounded lateral extremities, and probably narrower coronal folds of the same side.

Position and locality: In the escarpment exposure of brown, friable limestone of the Warsaw beds ; in the Mississippi blnffs one mile above the mouth of Piasa creck, Jersey eonnty, Illinois.

Polirhizodus amplus, St. J. and W. Pl. XIII, Fig. 13.

Teeth of medium or large size, strong, unsymmetrical in outline. Crown moderately thick below, compressed to a thin edge along the broadly and somewhat irregularly arched crest ; convex face irregularly long-elliptical in ontline, produced and attennated at one or other extremity, regularly converging and acutely rounded at the opposite extremity, gently arched laterally, triturating surface occupying nearly the entire area, and nearly plane vertically, basal margin obtusely rounded, forming a sub-acute angle with the basal area below, more or less broadly and irregularly arched downward from one extremity, and
more abruptly curved upward to the opposite angle, and bordered by a moderately wide and, in the present state of preservation, obseurely imbricated eoronal belt ; concave crown-face somewhat deeply excavated laterally and verticalls, broadly and irregularly elliptical in ontline, basal margin irregularly broadly arehed and prodnced beyond the basal surface, sharply inbeveled, basal band wide, consisting of as many as six inbricating folds, gently rounded at one extremity, more abruptly so at the other, invested with a delieate, polished enamel layer, throngh which is visible the minute punctate structure ; the opposite erown-face is deunded of its enamel eoating, presenting a fine gramular structure, and in the erest striatopunetation. Base following the strong currature of the basal margin of the concave erown-face, eonsiderably less in lateral diameter, moderately thick, and obliquely produced in the plane of the eoneare face, well-defined from the broad basal area, inferiorly romded, and irregularly divided into six or eight radicles of inequal size and shape. Lateral dimmeter of erown 1.37 inel, light of tooth .77 , elevation of eonvex crown-face.42, lateral diameter of base 1.05 inch, deptl bencath the basal border of concare erown-face . 26 .

The above form was originally described from specimens in the eollection of Mr. Van Horne, but subsequently it has been found at two or more other localities in the same horizon, and with the evidence addueed by this additional material, the variations presented by individuals of the form do not appear to be remarkable. In some respects it bears somewhat intimate resemblance to P. rarlicans, McCoy, with specimens of which, from the Carboniferous limestone of Armagh, in the Museum of Comparative Zoölogy, we have had opportunity to make direct comparison. Espeeially noticeable is this resemblance in the broadly arched, produced basal margin of the coneare crown-face; it differs, howerer, in the more eompressed erown, less robust and shorter radieles. The basal area is quite wide and plane, forming an aente angle with the convex crown-face, instead of an obtuse angle as in the European form. From P. dentutus, N. and W., of the Chester formation, it is distinguished by its broad elliptical outline, more compressed and higher erown, in which character it presents even greater eontrast with I. Littomi, N. and W., with which it is assoeiated. The latter form is remarkable for its long-elliptical outline, which, however, may be attributable, in greater or less degree, to the wearing down of the conrex aspect of the tooth by trituration; yet the basal border of the concave crown-face, which forms a nearly straight belt gently curred outward at the extremities and sharply rounded, eontrasts so widely with the teeth above described that we can hardly believe these distinctions represent merels individual variation. We have introduced illus. trations of a remarkably fine example of the latter form, belonging to
the eollection of Mr. Van Horne, for eomparison with that above described.

Position and locality: Not rare, upper beds of the St. Lonis limestone; Alton and Waterloo, Illinois ; St. Louis, Missouri.

Polyrhizodus carbonarius, St. J. and W.

Pl. X A, Fig. 24, 25. PI. XIII, Fig. 1

Among the many interesting amouncements made dnring the proseeution of the present inrestigations, that of a form of the geuns Poly. thizodus from the Coal Measures of Illinois may clain no inconsiderable share of interest, on accomnt of the cxtensive stratigraphie range it gives to the genus in the Carboniferons formations of the Mississippi valley, as contrasted with its more restricted range in the Lower Carboniferous strata of Europe.

The present form is represented by a very few and imperfeetly presersed individuals, but snfficient to exhibit not only their generic identity, but also their specific eharaeteristics. The teeth are moderately strong, symmetrical, and of medinm and large size. Coueare erownface regularly-elliptical in outline, more or less deeply exeavated, thick below and rapidly attennated in the upper portion to the broadly arched crest, lateral angles more or less acutely rounded, basal margin broadly and regnlarly arched downward, moderately produced, and traversed by a prominent coronal belt of tiro or three, or more, wide, regular imbrications, gradually narrowing towards the lateral extremities; eonvex face about half the elevation of the opposite side, gently arched laterally and vertically, snblenticular in outline, basal margin sharply defined, gently arched downward in the median region and broadly eurved to the acute lateral angles, basal folds obsolete from attrition, in which condition the entire surfaco and crest is more or less reduced, and granulo-punctate ; concaro face with a polished cmamel coating, where it las not been exfoliated by corroding agencies. Base moderately strong, as deep again as thiek, searcely more than half the lateral diameter of the crown, slightly obliqucly prodneed, inferior surface well-defined, rommed, deeply divided iuto seven, more or less, irregnlar radicles, well-defined from the broad, laterally arched basal area, which is nearly at right angles to the convex crown-face. Lateral diameter of a large tooth 1.35 ineh, hight of concave crown-face . 50 , lateral diameter of base abont . 90 , depth bencath the concave coronal border .16 .

The apparent symmetrical proportious and regularity of ontline of the present form readily distinguishes it from other described forms. It has some general likeness to P. rudicans, McCoy, though it is much less robust in build and the base shorter vertically. The relative pro-
portions of the convex face and outline of the crest are subject to considerable modification, according to the degree of attrition which has taken place while the teeth were in use. By this means, as is the case with all the species of the genus, the convex face rarely exhibits its perfect contour and outline, and in many examples the abrasion has been carried to such an extent as to reduce the vertical diameter of the concave face until it is even less than that of the triturating surface of the conrex face.

Position and locality: The trpical example of the abore species was obtained by Prof. Worthen from the limestone orerlying coal No. 5 ? at Belleville, Illinois. A single specimen discovered in the limestone horizot above coal No. 8, at Springfield, Illinois, may prove to be specifically identical with the above; it represents a smaller individual, and the convex face is less abraded, but the base is broken away, although in lateral diameter, as well as in the general ontline of the coronal region, it presents most iutimate resemblance to the tooth described.

Genus DACTYLODUS, N. and W.
 Dactylodus concavus, St. J. and W.

 Pl. EMII, Fig. 17, 18.

 Pl. EMII, Fig. 17, 18.}

We have, provisionally, recognized the specific distinctness of a form of teeth represented by a few individuals in the collection of Mr. Van Horne, which were obtained from the same beds which have afforded a magnificent series of Dactylodus princeps, N. and W., with which the present feeth are intimately allied. Indeed the chief distinctions by which they are characterized consist in the deep, angular excavation of the concave face of the crown, the basal border of which is more strongly produced horizontally, the convex face forming a greater angle with the basal area than is observed in the large number of typical examples of D. princeps, the teeth are narrower laterally, and relatively of greater vertical extent, the radicles of the base probably not exceeding four, and more strongly defined from the basal area. The basal band in the concave crown face is equally wide and prominent, consisting of three to four strong imbrications, strongly produced and inbereled to the base. The convex face is more or less abraded, and granulopunctate, the puncte becoming rertically elongated near the crest which is obtusely angular, culminating in an eccentric, rounded apex; concave face smooth, or roughened by the appearance of the minute tubular structure. The outline of the basal margin in the convex crown-face is not dissimilar to that of D. princeps, althougl it is principally more strongly arched downward in the middle, and forms a much less obtuse angle with the basal area. In size the teeth are smaller than the major-
ity of typical specimens of D. princeps, measuring in greatest hight 1 inch, lateral diameter of crown .77, elevation of concave face .57, elevation of convex face .45 , lateral diameter of base . 50 , deptli beneath base of concave crown-face 40 incl. We strongly suspect the form here indicated will be found to represent a part of the somewhat varied dentition of the above referred to species.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois.

Dactylodus minimus, St. J. and W.
Pl. XIII, Fig. 19.
Teeth minute, of robust proportions. Crown lozenge-shape as seen from above, rather depressed or tumid, crest gently arched laterally, strongly so from the coneare face, obtusely rounded; convex face elliptical in outline, lateral extremities sharply rounded, gently arched in both directions, basal margin gently arched downward in a less degree than the crest, slightly eccentric at one or other extremity, and bordered by a faintly defined, narrow coronal fold; concave face broadly oral in outline, strongly arched and obtusely acmminate along the crest line, but slightly depressed rerticalls and gently arched lateralls, giving the surface a full though not tumid appearance, basal margin gently and quite regularly arched downward and ontward, moderately prominent and produced beyond the basal region to which it is abruptly inbereled, eoronal folds rery obscure or obsolete. Base massive, thick, in width scarcels more than half the lateral diameter of the crown, obliquely produced in the direction of the concare face, in depth equaling if not exceeding the elevation of the crown, and divided into three or four radicles, well-defined from the narrow basal area, which forms an acute angle with the convex crown-face. Greatest diameter of crown . 08 inch, antero-posterior diameter .06 , elevation of conrex face .04 , greatest depth of base .10 inch.

The description is founded upona unifue and well preserved specim u belonging to the collection of Mr. VAN HORNE. In diminutiveness this little tooth almost rivals some of Polyrhizodi which we have described. The coronal portion bears a somewhat marked resemblance to some of the narrow, obtusely crested Chomatodi; but the very strong, lobed base seems to indicate generic identity with Doctylodus-its abbreviated lateral dimensions and depth of base offering well-marked distinctions from Polyrhizodus. In the present state of our knowledge, it is impossible to detect other than congeneric affinities with the other forms of Tactylorlus known from the same horizon.

P'osition and locality: Upper beds of the St. Lonis limestone; Alton, Illinois.

Dactylodus excavatus, St. J. and W.

Pl. NIII, Fig. 16.
Teeth of small size, moderately strong. Crown thick below, culmina. ting in a sharp, broadly arched crest ; concave face oral in outline, the crest and base inequally arched, rather deeply excavated towards the base, which is defined by a rather strong basal band composed of three or four folds, strongly arched downward in the middle and regularly and gently curved at the extremities, strongly produced along the exterior margin and inbeveled, superior coronal surface nearly plane laterally, smooth and polished ; convex crown-face irregularly lenticular in outline, sharply rounded at the extremities, very gently arched laterally, nearly plane vertically, crest line moderately and regularly arched, basal border gently and irregularly arched downward, and broadly curved to one or other extremity, defined by a narrow basal fold continnous with that of the concave face, but obscure from wear, the entire surface showing evidences of attrition. The basal area forms a narrow, plane surface nearly at right angles to the convex crown-face, merging into the thick, massive radicles below, of which there are indications of three, possibly four, which are produced in a direction corresponding to the plane of the coneave crown-face, probably equaling if not exceeding in depth the hight of the crown, and about half or two-thirds the lateral diameter of the crown. Lateral diameter of crown . 23 inch, hight of eoncave crown-face .15 , hight of convex face .09 inch.

We have seen but a single example of the present form, which presents the coronal region of the tooth nearly entire, but the fangs of the base are broken away. Its relation to Dactylodus is inferred from the general character of the crown and the apparently long, narrow base. It seems to have closer relationship with the teeth described under the name D. concavus of the St. Louis limestone, which is similarly excavated in the eoncare face, but sufficiently distinct to be readily recognized, the crown being relatively broader and not acuminate. From D. inflexus, N . and W., of the same horizon, it may be distinguished by its narrow base and fewer radicles. It may, however, prove to be a young or small tooth of the latter form. Our knowledge of the variableness of these forms is, as yet, insufficient to make it possible always to trace ont the specific ideutity of variable individuals.

Position and locality: Upper fish-bed of the Chester formation; Chester, Illinois.

Gencs ANTLiODUS, N. and W.

Antliodus perovalis, St. J. and Wr.

PI. XI, Fig. 83.

Teeth small, rery compressed, nearly circular in outline riewed from the concare aspect, broadly and strongly arched along the crest. Concave crown-face moderately depressed, basal line probably well-defined from the root, broadly arched downward, forming an obtnse angle at the lateral extremities ; the convex face is much lower than the opposite face, nearly plane rertically and gently arched laterally, slightly produced outward forming au obtuse angle along the basal margin with the basal area below, and bordered by a rather wide coronal fold which spans the crown in a nearly direct course. The surface is smooth, or striato-punctate along the erest especially in the convex face. Lateral diameter of tooth . 14 inch, hight of conrex crown-face .06 , hight of concave face about . 15 .

Of the present form only a single specimen is known to us, aud this is imperfect in the basal region. The root was probably very small, and the concare crown-face was bordered by a coronal belt, of which only a faint trace is visible in the specimen. The tooth is somewhat like A. sarcululus of the Upper Burlington limestone, but it is readily distinguished by its circular outline and laterally worn strongly arched conrex crown-face.

The original, which belonged to the collection of Prof. Worthen, was lost at the time of the fire in the bnilding occupied by the State Geological Musenm, in Spriugfield, February, 1871.

Position and locality: Warsaw beds; Warsaw, Illinois.

Antliodus gracilis, St. J. and W.

```
1'I. XI, Fig. 29.
```

Teeth small, oval in ontline. Crown moderately compressed, crest regnlarly arched and sharp, presenting a striato-panctate structure in worn surfaces; convex face irregnlarly elliptical in ontline, but slightly arched in either direction, basal line nearly horizontal in the median region, but towards the extremities suddenly and gracefully curved upwards forming obtnse angles abont one-fourth the distance from either extremity, coronal fold narrow and apparently simple; concare side broadly elliptical in ontline, moderately depressed in the longest diameter, and curved backward at the lateral borters, basal line probably nearly corresponding to the ontline of the rest, but in the specimen
before us this portion of the crown is not preserved. The root is probably short, and of considerable less extent laterally than the crown, with which it is nearly rertical. Lateral diameter of crown . 31 inch, clevation of concare face about .17 , eleration of convex face .14 , lateral diameter of base abont . 21 inch.

The sole representative of this elegant little form, unfortunately, does not preserve the entire outline-the basal margin of the concave crownface and the root haring been broken away; but enough remains for satisfactory description and comparison with other forms, and which exhibit its specific distinctness and also its probable generic ideutity with Antliodus. It is apparently allied to A. surcululus, N. and W., of the Upper Burlington limestone, the basal outline of the convex crownface being much as in that form ; bnt its mnch morc elerated crown and more abrupt declination of the concave face distinguish it from that as well as from other forms of the genus. The above features, together with its symmetrical figure, will readily facilitate the identification of other individuals, although we have to regret the imperfect condition of the unique example before us, and the lack of a mure com. plete series such as would afford a better knowledge of its specific relations.

Position and locality: The unique specimen was discorered by Mr. Van Morne, ill the Warsaw beds; mouth of Piasal creek, Illinois.

Genus PETALODUS, Owen.

Petalodus hybridus. St. J. and W.

Pl. XII, Fig. 10.
We have examined a form of Pctatodus represented by two specimens in the collection of Mr. Van Horne, one of which exhibits a nearly eutire individual, and the other shows the concave face of the crown in a very satisfactory mamer. A corsory examination at first indnced us to refer these teeth to P. linguifer, a species originally described by Messrs. Newberry and Worthen, from the Chester formation; but the acquisition of additional material illnstrative of that form, and a detailed comparison with the teeth herein mentioned, seem to prove conclusively their specific distinctness. Hence, in consequence of its apparent resemblance to P. curtus, N. and W., of the Warsaw beds, and the species above referred to, we have designated the present form by the abore specific appellation.

The teeth attain large size. Crown long-elliptical or narrow lozengeshaped in outline, compressed along the crest and moderately acnminate, gradnally thickening below; concave face moderately excavated,
bordered by a prominent basal band composed of tive to seven narrow, regular imbrications, strongly arched downward in the middle and making a slight sigmoidal enrvature towards the extremities, sharply inbereled to the base; the convex face is long-clliptical or sublenticular in ontline, in hight less than that of the opposite face, gently archen laterallf, basal linc broadly and regularly corved downward in the middle, and marked in the deeply beveled inferior margin by a rather wide imbricated belt which is made up of irregularly interrupted, delicatcly wrought folds, and which is distinctly defined from the base proper by a faint raised line; both coronal surfaces are inrested with a smooth, polished enamel-like layer, which lecomes delicately striated along the crest by the exposure of the reatically disposed medullary tubes in the trenchant triturating elge. The base is relatively thick, thickening below and more strongly beveled beneath the concave face, broadly romuded below, with obtusely defined lateral ingles, and slightly diverging to the base of the cromn, in width about two thirds that of the crown, and nearly equal to the hight of the crown, coarscly ronghened vertically. A large specimen measures in lateral diameter of crorn 1.65 inch, hight of tooth 1.14 inch, greatest elevation of convex crownface .55 , greatest elevation of concare face about . 65 inch.

This form bears a marked resemblance to P. linguifer, and in some partionlars it also recalls in a striking manner P. curtus. Indeed, so marked is this intermediate relationship both as to structure and occurrence in time, it might readily be assumed that they were derived by processes of evolntion one from the other. In the acuminate outline of the crown, it resembles the Chester form first mentioned; but the basal margin of the concare face is suddenly arched downward, producing a median angulation not observed in that form; also the basal belt of the opposite face is composed of much finer and more nmmerous imbrications, the crown is proportionately less massive; the base is less deep, wider and more angular in the lateral margins-in this latter particular intimately resembling the base of P. curtus of the Warsaw beds. The crown differs from the latter formin its long-elliptical outlinc, acmenate crest, more nearly equal elcvation of the coromal surfaces, as also in the character of the basal belts, and the crown is less deeply concave than is the case in either of the forms with which the present one is compared.

Position and locality: In the upper beds of the St. Lonis limestone; Alton, Illinois.

Petalodus proximus, St. J. and W.

1Pl. XII, Fig .11

Under the above name we have designated a peenliar form of teeth, of which we have seen no absolutely entire individuals, but of whi ch
the collection of Prof. Worthen contains several more or less frag. mentary examples, besides the nearly perfect tooth figured. These fragments exhibit a uniformity of characters which has led prorisionally to their recognition as a distinct form. From Petalodus Alleghaniensis, Leidy, with which they are associated, they are distinguished by the regnlarly arched crest, the comparatively horizontal direction of the basal border of the concave face, relatively low conrex face, and apparently short, broadly rounded base, which is produced downward in nearls the same rertical plane as the convex crown-face, comparatirely slight antero-posterior diameter, and abont two-thirds the lateral diameter of the crown. The concare crown-face presents an elliptical outline, broadly rounded at the extremities, and nearly as ligh again as the opposite face, which latter is irregularly lenticular in outline. The basal belt in the concave face is composed of three or four wide, regular imbrications, occupying more than a third of the entire eleratiou, about half their breadth produced beyond the plane of the base; in the consex face the coronal belt is composed of four or fice uarrower folds, about half the width of that in the opposite face, and strongly inbereled to the basal region; the crest is compressed, with the usual rertical striation produced by the abrasion of the enamel-like layer and exposure of the tubular structure. Lateral diameter of crown of a fullsized specimen .88 inch, hight of concare face .35 , hight of conrex face about . 20 inch.

It will be observed that the teeth described present striking features in contrast with the large teeth originally described by Dr. Leidy under the name Petalodus Alleghaniensis, the originals of which le kindly submitted to us for examination, and to which'we are satisfied belong the teeth subsequently described in the second volume of the present report under the name I^{\prime}. destructor, N. and W. The teeth under consideration possibly hold the same relation to the abore mentioned form as does P. Hastingsii, Owen, to P. acuminatus, Agass., of the British Carboniferous limestone. Prof. McCoy has suggested the probable specific identity of the latter forms; but we have never seen immature or small indiriduals of P. Alleghaniensis that might be confounded with the present teeth, although such may ret be discorered.

Position and locality: In the limestone above coal No. 8, Upper Coal Measmres; near Springfieh, Illinois.

Gients OTENOPETALUS, Agassiz.

> Ctenopetalus vinosus, St. J. and W. Pl. xit, Fig 13.

Uuder the designation Ctenopetalus, Prof. Agassiz recognized the generic distinctness of a Pctalodont form of tecth, which had previously
been transferred from Petnlotus to Ctenoptychius, and finally became to be regarded as the type of the present group, under the name Ctenopetalus servatus, which was published in the widely distributed list of type specimens in the well-known collection of Lord Evniskmllen.* The genus has certain strongly marked facies, as the serrated or denticulated crest, which serve to distinguish it from Petalodus, with which it otherwise bears a much morc intimate resemblance than to Ctenoptychius, indeed holding the same relationship to Petalorlus as the latter genus docs to Antliodus.

The present form attains medium size. Convex face of crown sublentienlar in outline, gently arched lateralls, and quite plane vertically, morlerately thick, strong, acutely ronnded at the produced lateral extremities, which are slightly curved downward at one or other, ov both extremities, crest very gently arched along its greater lengtl, suddenly curved downward on nearing the extrenities, somewhat obtusely and minutcly denticulated, the denticulations becoming strong and sub angular toward the lateral margins, where they are quite strongly developed; lower margin defined by a strong imbricated basal band, consisting of at least three faintly crenulated folds, broadly and regularly arched downward in the middle, gently deflected laterally, and relieved at a sharp angle from the coronal surface abore, more or less inbereled belors; the concave face apparently presents an elliptical outline, gently concave in both directions, basal margiu not shown; both coronal surfaces are enveloper in a dense, polished cnanel-like layer, towards the crest faintly marked with numerous slightly diverging strix, which mark the course of the medullary tubes which terminate above singly, or in pairs, or threes, forming the denticulations. Base unknown. Greatest lateral dianeter of crown . 95 inch, elevation of convex face . 36 .

This elegant form is represented by a unique specimen in the collcetion of Mr. Springer, which was obtained from the ielhthyic horizon in the upper part of the Kcokuk limestone. The generic reference is based upon the coronal characters alone, since the base and basal border of the concare crown face unfortmately are not preserved. But judging from the snperficial characters presented by the crown, we have little or no hesitation in regarding it generically identical with the forms recognized muder the above generie title, whether or not this group is snfticientls distinct from P'etalodus to be regarded as a well-defined genns. Specifically, however, the present form is rearlily distinguished by its laterally elongated ontline and slightly arehed crest. In shape it is nearest the form from the St. Louis limestone, P. (Ctenopetrlus) bellulus. which we have provisionally referred to this group; but its

[^27]great size, more minutely dentieulated erest, and regularly arehed basal margin, are sufficient to establish its distinctness from that form.

Position and locality: Keoknk limestone, Bentousport, Iowa.

Ctenopetalus (Petalodus) bellulus, St. J. and W.

Pl. NII, Fig. 9

Teeth rers small, oral or subelliptical in outline, rather strongly proportioned. Crown moderately thick at base, sharp and regularly arehed along the crest, with acute lateral extremities ; concare face elliptical in outhne, gently excarated, bisal margin regnlarly arched downsard in the middle, and bordered by three more or less imbricated folds, which expand in the median region to twice their breadth nearer the extremities, the upper fold spaming the crown in an irregular though nearly horizontal direction, and but slightly produced below beyond the plane of the basal region; convex face of irregnar outline, longe elliptieal or sublenticutar, gently arched laterally, nearly phane vertically, basal margin irregulaily curved downward, forming an obtuse angle, and limited by two narrow imbrications, which are sometimes slightly deflected at the extremities, but usually describe a slight sigmoidal curvature. Base short, broadly rounded below, aud obtuse, somewhat distended in the middle, well-defined at the lateral angles, in breadth considerably less than that of the crown, with which it is nearly in the same vertical plane. Greatest lateral diameter of crown of large-sized tooth .25 inch, hight of entire tooth . 15 , elevation of coneare crown-face .10, eleration of convex face .06 inch.

Only two specimens of this pretty little form hare come to our notice, and these are respectively frou widely separated localities, thongh evidently from nearly the same horizon. One of the speeimens, that from Iowa, presents a group of teeth of which the larger and more perfeet one is that upon which the above specifie deseription is based. The other teeth of the group are all of smaller size, though presenting a remarkable persistency in form, but they are not apparently in the relative order iu which they occurred, being irregularly disperser!, having the appearance of two contiguous rows of teeth crowded together, as shown in the figure illustrating the convex aspect of the gronp; otherwise, if their oceurrence in the above specimen does indicate their relative natural position, it indicates a degree of irregularity in the arrangement of the teeth such as has not been observed in other Petulodont genera, of which series of tecth have been found in their natural order. The erest of some of these teeth is interrupted by slight vertical sulci, giving to the crown a delicate denticulate appearance, which strongly recalls the appearance presentel by Ctenopetalus serratus,

Agass. But as this sermated character is not apparently constant-even portions of the erown in the same individual exhibitiug both the plain and serrated conditions of the crest, and in the larger tooth the entire crest is even-it may not be regarded as an important character. Nor does it appear that in the case of Ctenopetalus serratus of the European Carboniferous deposits the serrated crest should be considered as its most important generic character, since a series of that species, which we have examined in the collection of the Musenm of Comparative Koölogy, is sure to lead by almost impereeptible gradations from individuals in which the erest is strongly serrated to forms in which the coronal serrations are scareely more prominent than is the striation in Petalodus lovissimus, Agassiz, with which they are associated. The collection of Mr. Van Horne, from Alton, atfords a single imperfeet specimen apparently referable to the present form, in which the denticulated charaeter of the crown is well displayed.

Position and lacality: In the upper beds of the St. Louis limestone; Pella, Iowa, and Alton, Illinois.

Ctenopetalus limatulus, St. J. and W.

Pl. XII, Fjg. 18.
Teeth rery small, strong and symmetrically proportioned. Crown moderately thick below and gradually attenuated towards the crest, which is moderately arched, aeuminate, and somewhat deeply serrated, witl as many as seven strong, subtumid, subacute dentienlations, of which the median one is strongest, the lateral ones regularly decreasing in size towards the extremities, and defined from one another by rather deeply impressed sulei extending nearly to the basal line in the convex faee; convex faee slightly arched laterally, nearly plane vertieally, basal angle well-defined, broadly arched downward in the middle and again gently eurved downward at the extremities, and marked upon the inferior or beveled surface by a relatively broad eoronal belt apparently withont imbrications; concave faee apparently more regularly oval in outline, but slightly depressed, basal margin broadly arched downward, coronal folds muknown, both surfaces smooth and polished. Base strong, constricted above, slightly expanded and thickened below and broadly romided, in depth eqnal to the hight of the crown, bat considerably less in lateral diameter, more or less ronghened. Lateral dianeter of crown 24 inch, elevation of convex faee .10 , entire hight of tooth $2: 3$, lateral diameter of base 17 inch.

This elegant little form is intimately allied to C. dentatus (Agassiz *p.) of tho British Mountain limestone, with anthentic specimens of which, as also the type belonging to the collection of Lord Enniskillen,

We have had opportunities for making direet comparison at the Museum of Comparative Zoölogy. The apparent distinctive eliaracters by which the present form may be distinguished from the above mentioned species, consists in the less deep serration of the crest, shallower coneave face, and relatively narrower base as eompared with the lateral diameter of the erown.

Position and locality: Rare in the Chester limestone; Chester, Illinois.

Ctefopetalus medius; St. J. and W.

$$
\text { Pi. } \mathrm{XA}_{\text {A, Fig. }} 26 .
$$

The teeth herein referred to, and which we have, provisionally, recog. mzed as a distinet form, present the same general form and size as the preceding species, C. limutulus, but are recognized bs the proportionately greater lateral diameter of the crown as eompared with the entire hight of the tooth, which obtains in the majority of examples, the narrower and obtusely pointed inferior extremity of the base, the exceedingly minute and numerous serration of the somewhat acmuinate crest, each serrature being flanked, especially in the eonvex faee, by short, sharp erested carina, which regularly though slightly diverge, but whieh are scarcely discernible in the absolutely perfect condition, when the entire crown is invested with an exceedingly delicate, polished enamel-like mantle. In the latter eondition, as also in shape, these teeth bear a marked resemblanee to Petalodus linguifer, N . and W., a species deseribed from the same formation and loeality; but a eareful eomparison reveals other and appareutly permanent characteristics which seem to render its identity with that form extremely improbable. Thus, in the present teeth the basal belt along the eonvex crown-face forms a simple, broad fold in the inbeveled portion, sometimes showing quite distinetly along the upper edge an extremely delieate imbrication, which only extends through the broadly arched median region; while, in Petalodus linguifer, the inferior or inbeveled area occupied by the coronal belt is distinetly imbrieated, even in minute examples, with three or more folls. The inner crown-face is moderately excavated and defined below by a wellmarked broadly downward-arehed, imbricated coronal belt.

We are aware of the variableness of the serration in C. serratus Agassiz, but these variations are not apparently accompanied by other features, such as distinguish the present teeth from Pelalodus linguifer. On the other hand, the fine serration of the crest readily distinguish it from C. limutnlus.

The intimate relations which exist between Ctenopetalus and Petulodus find an additional exemplifieation in the present form. Indeed, it wonld appear that the non-serrate forms of the one pass by almost imperceptible gradation into the serrate condition of the other ; while in general form the speeies of botli groups are most intimately reiated.

Position and locality: Uneommon in the Chester limestone; Chester, Illinois.

Ctenopetalus occidentalis, St. J. and W.

Pl. XII, Fig. 14.

Teeth small, symmetrical. Crown moderatels tlick below, rapidly attenuated towards the crest, whieh is slightly aeuminate and broadly arehed, with ten to twelve obtusely rounded dentienlations, which more or less regularly diminish in size towards the lateral extremities, the median one forming the apex beng the most conspicuons; coneare crown-face long.oral in outline, more or less sharply ronuded at the extremities, rather deeply and uniformly depressed, and limited below by a relatively narrow, slightly produced basal band, which is apparentls eomposed of not more than three or four imbrications, gently and regularly arelied downward in the middle and sliglitly deflected laterally ; the opposite face is more elliptical or sublenticular in ontline, moderately convex in botlr directions, and acntely rounded at the extremities, in hight above the basal angle, about half that of the coneave face; the basal band in the convex face is remarkable for its great wilth, the uppermost fold being usinally narrow, but the lower fold, or folds, reaching far down and investing nearly half the vertical extent of the inferior basal area in a thin coating of enamel ; in the downward curvature somewhat more sharply arehed than the opposite border with which it nearly corresponds. The base is of moderate dimensions in proportion to the crown, slightly eecentrie, lateral angles and basal magin uniformly rommed, thickened, lateral margins diverging to the crown, gently beveled along the inferior convex border, more or less roughened. The coronal surfaces present a firm smooth enamel-like layer, which is msually more or less abrated along the crest and delicately marked with slightly diverging strize. Greatest lateral diameter of crown . 66 incl, hight of tooth .52 , elevation of concave crown face .3.), light of convex erown-fuce above basal angle .24 inch.

The above species is known from two examples, one of which exhibits a nearly entire specimen, which were discovered by Mr. W. I Monley in strata near the base of the Coal Measnres The species falls under the genns Cfonopetelus of A gassiz, and is intimately allied to the typical
form C. serratus, A gassiz. It differs, however, from that form by readily distinguishable peculiarities, as the less robust proportions of the crown, more obtusely acuminate apex, and the stronger and fewer serrations of the crest, narrower basal band in the concave face, and the less strongly though more broadly arched basal margin of the convex face.

Position and locality: From a stratum of limestove overlying a thin bed of coal near the base of the lower Coal Measures; Fort Dodge, Iowa.

Genus PRISTODUs, Agassiz.

Pristodus? acuminatus, St. J. and W.

PI. Xa , Fig. 6.

We have provisionally referred to the genus Pristodus, of Agassiz, a minute form represented by a nuique example in the collection of Mr. SPRINGER, which possess distinctive features which seem to indicate a more intimate relationship with that genus than with any other group of tceth known in the American Carboniferous deposits. The tooth is distinguished by its lateral clongation and comparatively thin or compressed crown, which is slightly curved backward, sharply rounded at the extremities, basal border sharply inbercled bohind and defined along the line of the superior coronal region by an obtuscly produced basal ridge, gently arched vertically, crest strongly denticulated and rising into a strong, laterally deflected, eccentric median prominence, the denticulations very similar throughont, though gradually and more or less regularly diminishing in size laterally, in shape lanccolate terminating in an acute apex, and defined by relatively well-marked vertical sulci, which descend nearly to the produced basal angle; posterior (?) face faintly convex rertically, though slightly expanded on nearing the basal border, the inbeveled portion being apparently occupied by a simple coronal fold, anterior face gently concave in both directions, slightly exceeding in hight the opposite face, sharply inbeveled along the base ; both faces smooth and polished. Lateral diameter of tooth .09 inch, greatest hight of crown .01. Base unknown.

The exccedingly delicate little tooth above noticed, mufortunately, reveals only one side of the crown in full, only a portion of the concave face can be seen, and the base has either crumbled away, else it forms so inconspicuous an object as to appear obsolete. The specimen presents peculiaritics in coronal confurmation which more closely resemble the Pristodus falcatus, Agass,, of the Yorkshire Carboniferons limestone, than any of the forms with which it is associated or those oceurring in superimposed strata. Its basal region in the posterior face,
however, recalls the simple coromal fold claracteristic of Desmiodus, bnt there is no indication of the strong anterior buttress and basal protuberance, while the very compressed crown and its sharp denticulations still further contrast with the latter geuns. The elaracter of the basal borders, also, bear some resemblance to Harpacodus, Agass. In view of its ininute size, could we detcet a horny structure in the place of the apparently true dentine of the tonth, it might be suspected to belong to those curious little fossils known under the general term Conodonts.

Position and locality: In the lower fish-bed of the Kinderhook; Burlington, Iowa.

Genus CALOPODUS, St. J. and W.

Teeth in gencral form like Petalodus. Crown massive concavo-convex, concare face deepest, and especially distinguished by its laterally arched or swollen contour, obtuse crest terminating in a strong, subconical, more or less cccentric apex; consex face broadly rounded laterally, and more or less arched rertically; coronal inargins more or less prominent, bercled to the base, and occupied by a broad basal band composed of more or less regular or interrupted imbrications, broadest in the concave face and continuous with that of the conrex face. Base rery similar to that of Petulodus, strong, more or less compressed and constricted above, inferiorly rounded and bereled to an obtuse cdge beneath the concare eoronal region.

A single species of the abore genus is known to us, which was derived from the Middle Coal Measures. Allied to Pctalodus, it may be distinguished by the turgid, subconical, unsymmetrical crown. The strata whence the following species was obtaincd, though carefully searched, afford no eximples of Petalodus, the non-occurrence of which further renders it improbable that thesc teeth formed a part of the dental apparatus of that genus.

Calofodus apicalis, St. J. and W.

PI. X1I, Fig. 16, 17.
Teetl very small, robust, misymmetrical, variable in form. Crown forming a stout, subconical or inequally compressed prominence, crest obtuse, apical extremity cceentric, subacute, directed over the coneave face and sometimes laterally deflected; concave face curvilinear or irregularly triangular in outline, lateral diameter nearly equal to the lioht, slightly eoneare vertically, gently arehed laterally, basal border moderately and more or less irregularly arched downward, with four or
fice imbricating folds, of whieh the uppermost ones are curved upward and lost in the smooth surface, basal border gently prodnced and gently beveled, sometimes abruptly, to the basal region; the eonvex face is usually slightly less elevated than the coneave face, moderately convex in both direetions, basal angle very obtnse, nearly horizontal, or viewed obliqnely from below appearing gently arehed upward in the middle, more or less sharply rounded at the lateral extremities, gently beveled to the base, the beveled area lather wide and oceupied by at least three imbrieating folds, contimous with the opposite coronal belt; eoronal region invested with a dense, polish enamel-like layer. Base proportionately strong, obliquely produeed, nsually as broad and deep as the crown, eceentrie, compressed beneath the basal margins of the crown, expanded and thickened below, lateral angles sharply rounded, beveled in the deeper faee to the broadly rounded, obtuse inferior margin, surfates more or less rongheued. A small and unusually symmetrical specimen meatsures in hight .18 inch, greatest lateral diameter at base of erown . 13 , hight of eoneave crown face .12, hight of eonvex face nearly .10 incl.

The ouly two representatives of this interesting species at present known to us, were obtained at the same locality-indeed so intimately assoeiated that the one was discovered in developing the other from the shaly matrix-in a stratum whieh has afforded no other Petalodont forms or other ichtlyyie remains, except Petrodus and seales of Pulconiscus. The smaller and more symmetrical specimen is that upon which the preceding deseription was based, but the other tooth exhibits such marked individnal variation from what may be regarded as the normal aspect of the species, that it is not merely a matter of interest but important earefully to note the variations so far as may be necessary for the satisfactory definition ot the species. The individual teeth are subject to considerable variableness in the symmetry of outline and relative proportion of parts. The large specimen presents a more distorted outline than the small tooth, the base being strongly deflected, without, however, losing its general shape; the crown is conieal, both surfaces very full or arched laterally, and nearly equal in hight, apex couieal, laterally deflecterl, and slightly curved over the coneare face, lateral edges of the the crest rery obtuse, scareely defined, basal margin slightly arched downward in the middle and beveled gently to the basal region, imbricated belt very wide and composed of three or four continuous, thongh irregularly disposed folds, with several seeondary thread like folds reaehing two-thinds the distance to the apex. This tooth is unquestionably speeifitally identical with that first noticed, differing chiefly in the less distinet definition of the coneare crown faee and lateral obliquity of the base. The species differs so widely from other I'etalodont forms as
searcely to require more minute eomparisons than those detailed above to distingnish it.

Position and locality: Black carbonaceous shales overlying the "Pan ora coal-bed" of the Middle Coal Measures; Guthrie county, Iowa.

Genus PETALORHYNCHUS, Agassiz.

Ietalorhynchus iseudosagittatus, St. J. and W.

Pl. XII, Fig 1-4.

Teeth small or of medium size. Crown irregularly pentagonal in outline, moderately thick, sharp-erested, aeuminate or broadly rounded between the prominent lateral angles of the convex face; the concave faee forms a spatulate area, gently depressed in the middle, lateral angles slightly produced, from which the basal border is profomdly arched downward, the lateral margins gradually converging in a slight eurvature to the obtusely rounded inferior border, where the coronal belt is rery wide and gently beveled to the base, and composed of several imbrications, of which the lower and narrower ones follow the curvature of the margin, the upper folds gradually inereasing in width aud more or less angularly arched upward in the middle, where they oceupy from one-fifth to one-third of the vertieal diameter of the erown, but as they diverge towards the lateral angles of the crown they suddenly narrow, and are seldom present, rarely being even faintly discernible in the preseut condition of the teeth; the convex crown-face is relatively low, probably in the majority of individuals not more than half the rertical diameter of the opposite face, gently arched laterally, nearly plane vertically, the basal marginforming a more or less prominent angle and gently beveled below, produced in the median region into a nearly horizontal sloulder, from the angles of which the beveled imbricated belt arches upward and again strongly eurved downward on nearing the aeute lateral angles of the crown. The coronal surfaces are invested with a thin enamel layer, which, however, is generally exfoliated to greater or less extent, especially in the collvex face, giving rise, by the exposure of the minute tubular structure, to the diverging striation observable in the majority of specimens. The base as seen from the eomex side, slightly expands laterally below the eoronal border into an obtuse lateral angle, below which the margins gradually converge to the romded inferior border, the surfice gently convex below and rising into a more or less angularly defined ridge above, corresponding to the angulation in the coronal margin, from which it is beveled to the lateral magins; the concave aspect presents a short lingulate pro-
cess, gently arched laterally and less than half the vertical extent of the opposite face, surfaces more or less roughened by irregular rertical striæ. A medium sized specimen measures in rertical diameter . 63 inch, lateral diameter of crown .37 , or but little greater than the diameter across the angles of the base, elevation of concave crown-face .45 , hight of convex face .30 inch.

The fine series of the present form which we have had for examination exhibits considerable individual variability, which is in part attributable to attrition, probably also to the position the teeth respectively occupied upon the jaws. Probably the majority of the specimens were worn down while in nse, since the crest and convex face bcar every evidence of abrasion in the exfoliation of the enamel layer, and the consequent exposure of the minute tubular structure, to which is due the striated appearance of spocimens in this state of preservation. In the ontline of the crest there is also considerable variation-many specimens being prominently acuminate, while others are broadly rounded between the coronal angles: indeed, the rounded outline would appear to be the actual condition of perfect individuals, as indicated by examples in which the enamel-like layer remains, although the same condition of surface obtains in acuminate specimens, and, vice vorsa, rounded examples present ummistakable evidence of attrition. A large specimen in the collection of Mr. Van Honne exhibits an anomalous fcature, the base being dceply cleft producing a pair of radicles.

In the present form we hare another example of the intimate specific relations existing between many of the American Carbonifcrous fishes and those of the same formations in Europe. In the present instance we observe the closest resemblance with a form in the Carbouifcrous limestone of Armagh, the P. sagittatus, Agassiz. Tine present form, however, is distinguished by its shorter base, less rapidly converging ontline of the crest, and the more numerous imbrications of the coronal belt-characters which equally serve to distinguish it from P. striatus, N: and W., of the Upper Burlington limestone.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois; Pella, Iowa; St. Louis, Missouri.

Petalorhyncieus distortus, St. J. and W.

Pl. XII, Fig. 7. 8.
In the collections from the St. Louis formations occur a form represented by very small teeth, which we have failed satisfactorily to identify with either of the two species known from the same horizon, although we have not overlooked analogous resemblances, but these are apparently irreconcilable with the characters which especially distinguish
those forms, from which we have provisionally recognized its specific distinctuess.
Teeth irregular or eccentric in ontline. Crown moderately thick, irregularly arched along the crest, sharp, acuminate, apex submedian; the concave crown-face is but slightly depressed, lateral angles strongly produced, subacute, inferior border strongly and eccentrically arched downward and rounded below, deflected to the lateral extremities abore, and margined by four or more imbricating folds, which are welldefined below, attenuated in the lateral borders on nearing the extremities, where they are usually obsolete or broken away; consex face semielliptical in outline, in elevation much less (one-third to two-thirds) than that of the opposite face, rather strongly arched laterally, sharply romuded at the lateral angles, inferior border moderately prominent, gently beveled to the base, gently arched downward from one or other extremity aud suddeuly curved upward near the opposite extremity, aud burdered by two or three narrow imbrications continuous with the basal belt of the concave face. The coronal surfaces in the specimens before us are delicately ornanented with Fermiculose strie, and along the crest diverging strise appear in the triturating surface. The base is too indifferently preserved to determine its entire form; it appears to have been thin, tapering to the broadly romuled extremity, which probably extended but little beyond the extreme basal margin in the concare face, forming a broad convexity in the opposite face. Greatest lateral diameter of crown 22 inch, elevation of couvex face .12 , elevation of concave face about 18 inch.

The basal band of the concave face is not shown in its lateral extension, where it was probably very attenuated before reaching the lateral angles. The eccentric ontline of the concave face is due to the irregularly arched basal borders, as also that of the opposite face. ln this particular these teeth bear a remarkable resemblance to some of the distorted tecth found associaterl with and referable to P.striutus, N. and W., in the Upper Burlington limestone. But in the case of the present form, we have been mable to trace such intimate specific features with either of the two forms described from the St. Lonis limestone, while the identity of the specimens from widely separated localities, would seem to furnish additional evidence of their specitic distinctness. In the direction of the basal fulds, and the rather prominent convexity of the median region of the convex crown-face, there is a less or more remote resembiance to $l^{?}$. spatulatus; but there exist no such intimate features in common with the latter form, such as enable the probable identification of the abmormal individuals of the Uprer Burlington form from those above referred to, and which the teeth under consideration more closely resemble than they do either of the forms with which they are associated.

Position and locality: Upper beds of the St. Louis limestone; Pella, Iowa; Alton, Illinois, and St. Louis, Missouri.

Petalorhynchus spatulatus, St. J. and W.

Pl. XlI, Fig. 5, 6.

Associated with the precerling species occurs a form of teeth which present peculiarities strikingly in contrast with the distinguishing fea• tures of P. pseudosagittatus, and loolding the same relation to that form in the St. Lonis limestone, as does P. psittacinus with P. sagittatus in the Carboniferous limestone of Armagh. The chief distinguishing peculiarity consists in the swollen condition of the basal portion of the teeth, which is particularly noticeable from the convex side, the base presenting a massive, laterally expanded surface, ellipitical in outline, very convex laterally and compressed in the gently rounded lateral margins, broadly rounded below, slightly converging above and compressed beneath the lateral portions of the coronal margin; opposite face less than half the rertical extent of that described, laterally flattened, perhaps faintly depressed, strongly rounded to the extremity, both faces more or less roughened, with irregularly disposed foramina. Crown proportionately strong, convex face broally arched laterally, lateral margins sharp, more or less rapidly converging towards the strongly acuminate apex, which is sometimes truncated or rounded, basal margin slightly prominent, broadly arched downward in the median region and more or less strongly curved laterally, the rather wide, gently beveled inferior belt occupied by three or more regular imbricating folds, which gradually narrow towards the extremities, and apparently continuous with the coronal belt of the opposite face; concave crown-face twice the hight of the convex face, suborate in outline, moderately excavated, basal margin well-defined from the base, strongly arched downward in the middle and lightly produced at the lateral extremities, coronal helt wide and composed of several imbricationsin the specimen before us the folds are very obscure as though from abrasion. Vertical dimensious of a tootlo of large size . 90 inch, greatest lateral diameter of base .45 , elevation of convex crown-face .38 inch.

The collection of Mr. Van Horne contains three examples of the present form, of large and medium size, none of which, howerer, show the concare aspect of the teeth. But a fragment of the basal portion of one of the specimens plainly reveals the outline of the concare crown-face, with the strongly downward arched basal belt, which is apmarently made up of several imbricating folds, the upper folds being slighty arched mpward in the middle, much in the same manner as observed in I^{\prime}. pseudosagittatus, though relatively narrower than in the
latter form. We have a few imperfect teeth from the same formation, at Pella, which are probably referable to this species. The latter specimens, however, are vers small and somewhat peculiar in the trumcation or broadly rounded condition of the apical extremity, although in other particulars they are not dissimilar from the Alton specimens.

At the localities mentioned, an anomalous form occurs, which we hare, prorisionally, referred to a distinct specios, under the name P. distortus, the affinities of which are noted in detail muder that bead. As there stated, their relation to the present form was suggested by their resemblance to abnormally developed individuats of the form common in the Upper Burlington limestone, Pr. striatus of Messrs. Newberry and Worthen, but it is exccedingly dificult to reconcile the rariations presented by these teeth with the marked distinctive characteristics of ${ }^{+}$ the form described above, though to a much less degree when they are compared with P. pscudosagittatus.

The present form is most nearly allied to that originally recognized by Prof. Agassiz under the name P.psittacimus, from the Carboniferons limestone of Armagh, Ireland. It differs, however, from the European form in the less tumid condition of the basal region, and also the less horizontal direction of the basal band of the consex crown-face. However, in the collection of the Museum of Comparatise Zoölogr, there is a single specimen of the European form, in which the basal band is gently curved npward and downward on approaching the lateral angles in the conrex crown-face, much in the same manner, though in a less degree than in the present form, instead of being perfectly horizontal as represented in the figures given by Prof. McCoy in the British Palæozoic Fossils, Pl. 3 I., tig. 14.

Position and loculity: Upper beds of the St. Lonis limestone; Alton, Illinois, and Pella, Iowa.

Genus I'ELTODUS, N. and W.

This genus was fombded upon a species from the Upper Coal Measures, which wats described in Vol. IV of this lieport (pp. $362,363, \mathrm{Ml}$. II, fig. 7,7 a,) under the specific designation P.unguiformis, N. and W. From the notes appended to the geueric diagnosis above cited, it would appear that the genus was regarled as intimately allied to the Cochliodonts, or "intermediatem character between Psommorlus and Cochliodus." The material now possessed, perhaps, more clearly illustrates the affinities of the genus, and which has suggested the following observations on the homologons features which it possesses in common with the Petelodonts, to which the genus belongs. The gencral figure of the teeth is that chanacteristic of the l'etalodonts, consisting of a llattened crown,
whose concare face occupies the greater extent of the tooth, while the opposite face, instead of the strong definition in the typical genera of the family, forms a more or less regular convexity with the basal area (not the "crown surface"), from which, however, it is defined by a distinct thongh very narrow fold or thickening of the coronal border, as shown in the figures above cited, and lunate in general ontline; the concave crown-face is gently depressed, broadly oval or sub-quadrate in ontline, the direction of the greater diameter varying in different species, but usually vertically elongated, crest broadly arched, subacute, lateral margins sometimes more or less parallel or slightly converging towards the base, as in the above trpical species, basal margin gently arched downward and generally forming an angle at the lateral margins, abruptly truncated or beveled, and bordered by an imbricated belt, as in Petalodus, etc. The inferior or basal area is similar in ontline, though less in superficial extent than the concave crown-face, moderately convex; the root arises in the lower border, projecting slightly downward and suddenly outward, gradually tapering to a rounded point, vertically flattened, narrow, excavated in the inner side of the shoulder, and trowel-shaped. Both crown faces are invested with an enamel-like layer, sometimes more or less rugose; the basal area is quite smooth, and the root proper more or less ronghened.

All the above mentioned characters are present in the original specimens of P. unguiformis, even the root is shown in the above cited figures, though its extremity is imperfect, having been broken away. By reference to the figures of the following described forms, it will at once be apparent that the genus is a true Pctalodont, the teeth holding the same position mpon the jaws as do those of Petalorhynchus, Antliodus, etc., etc., from which they chiefly differ in the less erect crest and the peculiar shape of the root.

According to our present knowledge, the genns has no representatives below the middle or St. Louis division of the Lower Carboniferous series, extending into the Upper Coal Measures.

Peltode's quadratus, St. J. and W.

$$
\text { PI. X1LI, Fig. 6, } 7 .
$$

Teeth of small size, quadrangular in outline. Convex crown-face low, broadly arched laterally, basal border forming an obtuse angle with the basal area, sonewhat strongly arched downward in the middle, broadly and regnlarly curved to the lateral borders, and defined by two or more delicate imbricating folds; general contour of the concare face moderately depressed, flattened or plane below, crest rather sharp and projecting outwarl beyond the basal margiu of the
convex face, broadly and usually regularly arehed between the angles of the straight lateral margins, inferior border gently arehed downward and abruptly defined or inbeveled, and marked by a relatively wide coronal band eomposed of three or more imbrieations, which abruptly terminate at the inferior angles of the lateral margins. The coronal surfaces present a fine granulo-puretate strueture. The inferior or basal area is nearly equal in extent to the coneave crownfaee, gently eonrex laterally, smootlı and well-defined from the eonvex crown-face; the root forms a trowel-shaped process projecting from the lower border of the basal area, the antero-posterior diameter of which it nearly equals in its outward prolongation, slightly contracted at the shoulder aud rather deeply exeavated, rapidly tapering to an obtusely ronnded point, and plane below. Length and lateral diameter of crown nearly equal, the largest tooth measuring .35 ineh, smaller teetli .16 ineh in length and breadth.

This elegant little speeies is known to us by several individuals, the first having been discovered by Mr. Van Horne, at Alton, and others subsequently obtained at St. Louis, all from the same horizon in the St. Louis limestone. In general form it bears a somewhat elose resemblanee to P. transversus from the Coal Measures. Its quadrangular outline as seen from the eoneave side, and prominent eoronal imbrieations, however, will readily distinguish the present form from that mentioned above, which it is even more strongly marked in contrast with Peltorlus unguiformis of the Upper Coal Measures.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois, and St. Louis, Missouri.

Peltodus? plicompifalus, St. J. and W.

$$
\text { Pl. XII, Fig. } 9 .
$$

Teetlı sinall, subovate in outline. Crown moderately thiek, erest subaente, rather strongly arched, acuminate, or truneated from wear; coneave erown-face broadly ovate, antero-posterior diameter equal to, if not exceeding the lateral diancter, lateral margins gently ronmded, median line oceupied by a somewhat prominent vertical fold, which is flanked on either side by nearly parallel though obscurely defined plica, intermediate lateral portions slightly depressed vertically, basal margin moknown-probably broadly arched downward, and bordered by a narrow, irregularly imbricated coronal bolt ; convex face sublunate in ontline, relatively low, gently arched laterally, slightly depressed in the middle towarls the base, where it is defined by a well-marked coronal fold, which is abruptly arched downward in the middle and strongly
deflected or curved laterally; both coronal surfaces are enveloped in a dclicate enamel-like coating, throngh which are discernible mimnte punctæ, and along the worn, triturating surface of the crest comparatively coarse punctie appear. Basal area smooth, subcordate in ontline, in contour very like the concave crown-face, the mesial line being raised into a slight vertical ridge, which is faintly depressed below, and forming a regular convexity with the convex crown-face abore; ront unkuown. Lateral diameter of crown .26 inch, rertical diameter of coneare crown-face about . 28 , elcration of conrex face about .08 , or when cutire .10 inch.

The fragment of tooth mpon which the above description is based, and which belongs to the collcetion of Mr. Van Horne, presents some anomalons features which we have not observed in any of the momerous forms of teeth from our Carboniferons deposits, the real nature of which, as well as its generic relations, in consequence of the imperfect condition of the base, we have not been able satisfactorily to determine. It presents, however, a marked resemblance to the typical forms of Peltodus, with which genus it is here provisionally associated., The basal region suggests a comparison with Chomatodus (Autliodus) truncutus, Agassiz, from the Carboniferons limestone of Ireland; but its thickened crest and general miform convexity of the convex crownfate and basal area widely distinguish it from that form. In the great deptli and mesial fold of the basal region, and the prodnced apex, it presents features recalling Petulorhynchus ; but all these resemblances are apparently subordinate to the characters which more strongly suggest Peltodus. Unfortmatels, the basal portion, together with the root, is not shown in the solitary example here noticed ; it is not improbable, howerer, the root formed a slight, narrow, tapering process, originating in the lower part of the depressed median ridge of the basal region, and produced outward in mealls the same plane, or presenting the general characters common to Peltodus.

Position and locality: In the lower fish-bed of the Chester formation; Chester, Illinois.

Peltodus transversus, St. J. and W.
PI. XIII, Fig. 8.
Teeth very small, broadly orate in outline, lateral diameter a little greater than the antero-posterior length. The concare crown-face forms a suboral area, appareutly but slightly depressed, basal border strongly arched downward and rounded. The convex face and basal region forms a continnous convexity, the crown being defined from the basal area by an indistinct coronal fuld which is slightly arehed downtrard in
the middle and greatly deflected to the lateral extremities, though in a much less degree than in P. unguiformis. Behind the eoronal border the basal area is graldually narrowed and produced into a proportionately strong root, which exhibits the rertically excarated inner shoulder and trowel-shaped inferior outline common to the genus. The coromal surfaces are ornamented with rermieulose lines and punetre, much in the same manner as in P. unguiformis.

This form is renresented by only one specimen, from the middle division of the Coal Measures and exhibits only the convex aspect of the tooth. It differs from that described from the Upper Coal Measures, I. unguiformis, N. and W., in its greater lateral extent as compared with the antero-posterior diameter, also in the character of the coronal fold in the convex face, which is not eontinued down the lateral margins as far as in the last mentioned form. Erom P. quadratus of the St. Louis limestone, it is distiuguished by its more oral outline and relatirely stronger root; otherwise all the forms are intimately allied.

Position and locality: In the limestone overlying coal No. 5 ; Belleville, Illinois.

Gexus FISSODUS, St. J. and IT.

Teeth small. Crown forming a comparativels thin coneavo concex plate together with the basal region, subeurrilinear or trapezoidal in general outline, as seen from the coneare side, the basal margin of which is produced or strongly arched and rounded from the ear-like lateral angles, and bordered by an imbricated coronal belt; convex face relatively low, more or less miformly concex with the basal region, from which it is defined by a slight coronal fold, which deseribes a broad arch outwards from the lateral angles and wore or less curred downwards in the middle ; crest more or less compressed, and deeply cleft, or divided into two or more strong, acuminate, uniform, trenchant cusps ; both coronal surfaces, in perfect state, enceloped in a dense, polished enamel-like layer. The root originates in the gently conrex basal area just beneath the lower crown-face, proportionately small, and produced in a thin, trowel-shaped process, which is somewhat deeply ehameled longitudinally in the region of its origin, narrowed and truneated below.

The teeth embracein moler the abore generic deseription couprise a group closely allied to Pcltodus, which it resembles in the form of the root and general contour, but from which it is distinguished by the cleft condition of the erest-differences akin to those which distinguish C'tenopetalus from P'etalorlus. It also presents, in the ontline of the basal
portion of the crown, resemblances with Petalorhynchus, although the relationship is more remote than in the casc of Peltodus; but in both the root is totally differcnt from that of Petalorhynchus. The genus has two representative specics in the Chester division of the Lower Carbonifcrous.

Fissodus bifidus, St. J. and W.

Pl. XIII, Fig. 1, 2.
Tecth small. Convcx crown-face very low, sublunate in general outline, gently arched laterally and more strongly so along the compressed crest, which is deeply cleft midway, forming two strong, acutely pointed lobes, basal fold indistinct, gently arched downward in the middle and strongly cursed downward terminatiug in the auriculate lateral angles; concave face gently depressed, faintly swollen above in the coronal cusps and again in the basal region, which is deeply and somewhat angularly arched downward, abruptly defined from the root below, and occupied by a relatively wide coronal belt composed of three to four or fire narrow imbrications, which become cxceedingly attenuated ascending the diverging lateral margins towards the acutcly produced lateral angles of the crown, where they are usually obsolete; coronal surfaces invested with a smooth polished enamcl layer, which on being worn away along the crest exposes to view a vertical striato-punctate structure. Inferior or basal surface of tooth irregularly oval or subcircular in ontlinc, moderately convex, and more or lcss miform with the convexity of the convex crown-face, from which it is faintly defined by a slight sulcation cxtending along and just beneath the very narrow coronal fold, lower surface slightly flattencd and suddenly produced into a long, narrow, tapering root, which is flattened in the same plane as the crown, somewhat dceply excavated in the inmer face and flanked by rathor prominent lateral bosses, which shade into slight lateral ridges along either margin of the root towards the lower extremity, which is slightly rounded or truncated ; basal region and root faintly roughened or quite smooth. Lateral diameter of tooth . 29 inch, rertical diameter . 38 , elevation of convex crown-face .08 inch, or abont half the hight of the concave facc.

The tecth comprised in the present specics are remarkable for their elegant and symmetrical proportions, and the persistency of the distinctive characteristics, as shown by the slight individual variation observed in a finc suite of specimens. The decply cleft, xqui-lobed crest readily distinguishes the form from others occurring in the same horizon.

Position and locality: Not nneommon in the upper and lower ichthyic horizons of the Chester formation; Chester, Illinois.

Fissodus tricuspidatus, St. J. and W.

PI. XIII, Fig. 3.
Teeth small, coneare in outline, lateral diameter somewhat less than the antero-posterior diameter, thick. Convex crown-face low, gently arched laterally, the convexity miform with that of the basal area, from which it is obscnrely defined by a faint coronal fold, or in worn specimens by a shallow suleus, gently arehed downward in the middle and again regularly curved to the obtuse lateral angles; the opposite face presents a broad ovate outline, faintly convex laterally, with a submedian depression in some instances, worn surfaces rather eoarsely puuctate on approaching the erest, which is divided into three obtusely aciminate lobes, of which the central one is a little the largest, the lateral lobes being apparently of equal size. Basal area moderately convex, inferior portion, as also the basal border of the concave crownface, unknown. The root probably resembles that of F. bifidus, and the concave coronal border was probably similarly bordered with imbricating folds.

We have examined only two specimens of the form above indieated, neither of which are entire, showing evidences of wear to which is probably attributable the obtuse condition of the coronal ensps and the absence of the imbricatiug folds, as also the obtuse, ill-flefined lateral angles of the crown. Yet these teeth present characters which unguestionably distinguish them from the previonsly described form. They are remarkable for their robust proportions and tricuspidate crest, in which respeets they differ markedly from F. bifidus, and equally so from the form of the allied genns, Cholodus incrquas, from the Upper Coal Measures.

Position and locality: Lower (?) fish-bed of the Chester limestone; Chester, Illinois.

Gexus CHOLODUS, St. J. and W.

Teeth presenting the general ontline and eoronal contonr of Peltodus, but specially characterized by the division of the crest into two or more eccentric, insequal cusps, of which the culminating cusp is lateral or eccentrie in position ; convex crown face more or less regularly archerk with the basal area, broadly arched laterally, base defined by a faint coronal fold, which is more or less ececntrically or oblifucly areherl downward in the middle, and strongly deflected to the lateral margins, terminating near the infero-lateral angles; concave face more or less
depressed, and probably broadly rounded below, and defined by imbricating folds. lhoot nuknown. Coronal surfaces smooth or punctate.

The present genms is recognized in a single species from the upper division of the Coal Measures. Unfortmately none of the specimens are cntire along the basal margin, affording no che to the form of the root and outline of the basal margin of the concave crown-face. The root is probably small, and from the general similarity in contonr of the other parts to Peltodus and Fissodus, it seems not improbable that it may prove to be similar in suape to the root in those genera. The superficial markings are also similar to those observed in the above numed genera, the distinctive generic characters being chicfly presented in the eccentrically lobed crest and the extreme downward prolongation of the lateral cxtremities of the coronal fold in the convex face.

The association of the individuals of the sole representative species known at the present time with the teeth of Petalodus unguiformis might raise a suspicion of the gencric, possibly specific, relations or identity of these forms. But the facts possessed do not sustain such a conjecture, unless it proves to be a species of most extraordinary variablencss, the matations of which in some instances wonld be even more remarkable than the characters by which many of the Petalodont genera are distinguished from one another.

Cholodus in equalis, St. J. and W.

Pl. XIII, Fig. $4,5$.
Teeth of medinm size, in general ontline suborate or rhomboidal. Basal area forming a gentle courexity uniform with the convex crownface, from which, in the worn specimens usually met with, it is defined by a low, distinct border, produced by the thickening of the upper rim of the basal area and thus raised slightly above the plane of the crown, but in well preserved teeth, in which the original external coating of the crown still exists, an exceedingly delicate raised line marks the basal limit of the cromn, correspoiding to the imbricated folds in allied genera; the basal line spans the tooth in an irregnlar direction, more or less oblique from oue or other side, slightly arched downward in the middle or quite direct, but on nearing the lateral margins it is snddenly cursed downward in the direction of the infero-lateral angles of the tooth. The concare face of the crown presents a gentle concaritf, gradnally risiug into the irregnlarly cuspidate crest, and slightly rounded into the thickened or compressed lateral margins, which are nearly parallel thongh slightly and irregularly curved, and slightly diverging from the basal angles; the crest presents an irregular outline, being divided into two prominent, unequal lobes, which culminate
in subacute, eccentric apices-in some individuals rudimentary lobes appear in either lateral margin below the principal ensps, but these are discernible only in exceptionally well preserved specimens, if indeed they are almays developed. Unfortunately none of the specimens before us preserve the basal portion of the tecth, hence we are lead to conjecture the broadly downward arched basal border of the concave crown-face, and its probable imbricated belt, as also the probable relative diminntiveness of the prodnced root portion, which latter probably more or less intimately resembles the root in Fissorus and Peltorlus, with which these teeth otherwise are intimately related. Lateral diameter of tooth . 45 inch, antero-posterior diameter above . 60 , thickest portion about .09 , greatest light of convex cromn-face .21 inch .

The distinctly lobed character of the crest of the present form definitely distingnishes it from Peltodus unguiformis, N. and W., which occurs in the same horizon, and with which it has one striking feature in common, viz: the general uniformity in the convexity of the convex crown-face and basal region, and the delicate demarkation defining the basal from the coronal region. But the singular bifid character of the crest strongly contrasts with the regular outline of the crest of Pcltorlus, and almost equally so with the symmetrical conspidations of Fissorlus, differences which would seem to remove them from the same generic category, muless, indeed, the opposite jaws bore teeth so very dissimilar. However, we have no evidence of a mature that more than vaguely suggests such specific relationship, and the non-occurrence of both forms in the Chester and St. Louis formations, both of which horizons have yielded peculiar examples of one or other type, seems finther to militate against such identity.

The present form is, so far at least as our information extends, restricted to the npper division of the Coal Measmres, examples of which have been found at distant localities in Iowa and Illinois. Some of the Iowa specimens are mot quite as strong, and the momentary or lateral lobes are more distinctly developed than in the ordinary examples, as shown in the illustrations introduced in Pl. xiv, fig. 4.

Fosition and loculity: Upper Coal Measmres, above the horizon of coal No. 8, near Springfield, Illinois, and in a similar horizon near Clariuda, Iowa.

Gexcs PSEPHODUS, Agassiz.

Psephodus ? reticulatus, St. J. and W.
I'l. VI, Fig. 19-24.
Teeth attain large size, ranging from .20 to 1.15 inches in lateral diameter, more or less imegnlar in outline, massise, depressed or strongly
acuminate. In large, mature teeth, the base presents a broad, thick, rhomboidal plate, with more or less parallel, curved sides and sharply marked angles, inferior surface in nearly the same horizontal plane as the crown, faintly concave, smooth or striated, abruptly beveled and coarsely roughened in the thickened face, the opposite face decply channeled and strongly defined from the anteriorly produced basal border of the crown, in lateral diameter equal to and in breadth exceeded by that of the crown. The crown forms a massive, rather low, broad, modcrately convex prominence, the greatest prominence of which extends in an anteroposterior direction, and produced into a low, obtuse, subcentral ridge, culminating abore the abruptly sloping outer facc, declining in a broad gentle convexity to the opposite margin, which is gently arched posteriorly and approximately parallel to the anterior margiu, both of which are more or less irregnlar or undulated in outlinc, constricted along the base, one extremity abruptly truncated, one of the angles obliquely so, the opposite end broadly rounded and slightly narrowed; the coronal surface is ornamented with numerous delicate, slightly undulating plice, which appear as flattened or sharp thread-like lines over the body of the crown, obsolcte in the region of the obscurely defined crest, but towards the basal margins in either face becoming more strongly marked and intricately interlaced, producing the delicate reticulated ormamentation encircling the basal border's of the crown.

Small teeth presenting essentially the same form and coronal fatures noted above; but the base is more obliquely prodnced and gradnally beveled to a sharp edge along the posterior margin, and the corresponding channcl of the opposite face is relatively broader. 'The crown is elliptical in outlinc, cxtremities broadly rounded, the median prominence less eccentric and comparatively more strongly developed, forming, as in the large teeth, an obtuse ridge traversing the crown at right angles to the obscurely defined, submedian crest; the coronal plice are wellmarked, forming an elegantly wrought belt along the inferior borders, precisely as in the large teeth, in both of which the crown is enveloped in a polishcd enamel-like layer, except along the crest and median prominence, where it has usually bcen abraded to greater or less extent, exposing in the triturating surface a delicate punctate structure.

By a remarkably miform gradation the latter teeth pass into smaller and more and more acmminate individnals, until we arrive at minute teeth in which the median prominence is excessively developed, forming a lofty, anteriorly lattened, posteriorly broadly arched, laterally deflected, obtusely pointed cone, around the basal borders of which are clustered a few relatively strong plica; the base presents essentially the same featmres previously observed, and the coronal ornmmentation, traced
through the intermediate gradations, presents no striking eontrast to that of the larger teetl. But regarded independently, the extreme examples bear strongest contrast to the teeth first noticed above; yet, in view of the evidence actually within reach, there seems to be no question as to their specific identity. The latter teeth are about .20 inch in lateral dianeter, and .30 in hight.

A tooth of large size measures in lateral diameter 1.15 inch, antero. posterior diameter of erown .70, elevation of erown 40.

The deseription of this remarkable form is based upon a fine suite of specimens, mainly belonging to the collections of Mr. Springer and Mr. Wacmsmuth, all of which were derived from the same loeality. Varyiug greatly in size and contour, we have seldom met with similar instances where specifie identity is so mequivocally demonstrable as in the present ease. The large teeth present features in outline and general contour, whieh suggest relationship with some of the peculiar Psephodi of the same horizon; but to what extent this resemblance should influence the determination of their generie relations, we have not beeu able to decide They, however, apparently hold the same relation to P'sephodus as Helodus plamus of the European Carboniferous limestone does. But such interpretation of their aftinities necessarily presumes a combination of Cochliodont and Cestruciont features of the most extraordinary latitude, snel, indeed, as obtains in no other family, ancient or modern, of the class to which these remains belong.

Messrs. Wachsulutir and Sprivger have placed in our hands a large collection of the abore form, and from the stndy of this material we hare encontered many diffienlties in the way of determining the limits of the individual speeinens in their relation to other and perhaps generically allied forms. Worn examules, and which, unfortunately, is the prevalent condition of these teeth, are seareely distinguishable from other forms allied to Helodus biformis, N. and W., regarding the affinities of which latter with Psephodus of the same deposits, we have scarcely a doubt. In a communication with which we have been favored from Lord Enniskillen, it appears that there is no longer reason to doubt the speeificidentity of the Irish Carboniferous teeth originally described under the names Helodus planus and Psephodus magmus, Agass. We have ourselves observed similar combinations in some of the American representatives of Psephodus, as for exanple, that irm the Chester limestone, to which Messrs. Newberry and Worthen gave the name Aspidodus crenulatus. Considering the apparent affinities of the teeth under consideration, however marked the contrast of individuals, we have been led, provisionally, to refer them to the same gelms.

Position and locality: Kinderhook formation; the same form, apparently, oceurriug in both fish-bed horizons; Burlington, Iowa.

Genus CTENACANTHUS, Agassiz.

Ctenacanthu's spectabilis, St. J. and W.

Pl. XV, Fig. 1a, b, c, d, o.

Fin-spine robust, attaining a length of seven or eight juches, rapidly tapering, the line of insertion indicating a posterior inclination at an angle of about 45°, transverse section sublenticular, truncated behind. Lateral faces of the exposed portion broadly expanded at base, flattened or rery slightly arched in the posterior half, more rapidly rounded in front to the obtusely angular and gently arched anterior margin, which bears a prominent, eccentric marginal ridge, from which frequent bifurcations are sent off on either side, and these again bifurcate descending, cach off-shoot being more attennated and curved posteriorly on approaching the posterior margin, forming throughont closely approximated, rounded ridges, of which there are about fifty, counting along the inferior margin, and less than half that number two-thirds the distance to the apex; the longitudinal costie are occupied by numerous obtuse, apparently smooth, brightly enameled tubercles, more or less regnlarly spaced by once or twice their own diameter ; along the anterior margin they present the appearance of closcly approximated decussations, apparently the result of abrasion, the entire crest of the ridges being reduced to a smooth polished surface, but towards the base where they are less worn, they present the usual condition of more or less transverse tubercles abruptly rising from the rounded costa, similar to those occurring in the posterion rows ; the intercostal furrows are very narrow, in diameter less than that of the ridges, and minutely punctate or striatopunctate. Posterior face slightly channeled either side of the low, obtusely angular median ridge ; postero-lateral margins forming right angles, and oceupied by apparently small, closely arranged denticles. Pulp cavity ovate or sublenticular in section, situated in the posterior two-thirds of the spine, less than one third the diameter of the spine a third the distance from the apex, but runuing out near the line of insertion, deeply channeting the postero-inferior nargin. Basal portion rapidly tapering to the proximal extremity, nearly straight in front and gradually romuded behind to the point, surface finely striato-punctate.

The unique example of the elegant form above described was discovcred by Dr. E. N. Whipple, of Legrande, Iowa, to whom we are indebted for its possession. It represents a nearly entire fin-spine, perhaps an inch and a lalf of the distal extremity and one inch of the opposite end are broken off, but otherwise the specimen is in a remarkably perfect state of preservation. Its great breadth along the oblique
line of insertion and the abrupt posterior deflection in the curvature of the costr, producing a frayed appearance in that portion of the posterior margin, bear close resemblance to the form which we have indicated under the name C. speciosus, from the same formation ; the peeuliar tuberculation of the costa and more robust proportions, however, serve to distinguish it from the last named form, while these and the abore mentioned characters offer marked contrast to other forms from the American Carboniferous deposits. In general outline it closely resembles C. breris, Ag., a form originally described by Professor Agassiz, from the British Carbouiferous limestone. Its differenees, however, are obrious at a glance-the costie in O. brevis being far less mmerous and not bifurcated, while the tubereles are distinctly marked with radiating carince.

Position and locality: In the uppermost beds of the Kinderhook formation ; vicinity of Legrande, Marshall counts, Iowa.

Ctenacanthus sculptus, St. J. and W.

Pl. XIV, Fig. 1.

Fin-ray of medinm size, anterior and posterior margins converging towards the apical extremity at the rate of one-fourth inch in three inches, slightly curred, line of insertion somewhat irregnlar and forming an angle of 35° to 40° with the posterior inclination of the spine. Lateral surfaces flattened and gradually converging to the rounded anterior margin, occupied by mmerous, irregularly disposed. rarely bifurcated costre, which more or less regularly diminish in size posteriorly; intercostal spaces equally irregular, varying from half to the full diameter of the ridges, and longitudinally traversed by one to three delicate thread-like carine. The costie are elegantly ornamented with stellate-senlptured tubercles of variable shape and size in different parts, generally spaced by once or twice their diameter, but sometimes closely approximated ; in the anterior portion of the spine, especially above, they generally occur as oblique or transverse protuberanees, abruptly truncated above and sloping inferiorly, and along the anterior margin a sliglitly eccentric row of relatively large transverse tubercles ocenr, the bifurcations of which carry longitudinally elongated tubercles, similar to those occurring throughout the lower portion and in the posterior costre. Posterior face rather deeply channeled either side of the prominent median ridge, lateral angles prominent, subacute, with indications of a row of small tubercles along the crest in the npper portion of the spine. Base apparently of moderate length, rounded at the extremity, and beautifully striated externally, the thread-like lines terminating above in the costa, the intermediate ones continuous with
those occupying the intercostal furrows; posterior face deeply excavated by the pulp carity, which latter occupies above half the transserse diameter of the spinc a third the distance from the apex, sublenticular in section.

The above description is based upon a beautiful specimen discorered by Mr. Wachsuutr, which presents a nearly entire and well-preserved spine, above six inches in length. In general outline, and number of costre, it strikingly resembles Cormosus, Newb., a form oceurring in a similar horizon, the Waverly formation of Ohio. But the costr in the present form bear distinctly sculptured tubercles, which do not appear as simple decussations, being quite isolated or separated by spaces destitute of chamel, and extremely direrse in shape; also, the posterior face instead of being "flattened and slightly coneave," is distinctly carinated lougitudinally. As represented in the unique specimen described, it constitutes a remarkably well-defined and readily distinguishable form.

Position and locality: In the lower fish-bed (No. 1) of the Upper Kinderhook beds; Burlington, Iowa.

Ctenacanthes varians, St. J. and W.
 Pl. XIT, Fig. 2.

Fin-spine of robust proportions, rapidly tapering from the broadly expanded basal line, elliptical in transverse section. Anterior margin rounded, nearly straight below, but gently arched above, lateral faces flattened posteriorly and gently rounded in front, and occupied by numerous longitudinal ridges, which more or less regularly diminish in size towards the posterior borders, where they are less than one-fourth the bulk of the anterior costa, that along the anterior margin being perceptibly stronger and frequently bifurcated descending towards the basal linc; intercostal spaces forming narrow and usnally angular channels traversed by a line of minute pmetr, in front rery crowded, but more irregular in width behind, where they sometimes equal the diameter of the coste. The costie are ornamented by beautifully seulptured tubercles of diverse shape and variously disposed in different parts of the spine; in the front ridges they frequently form double, rarely triple, rows, which are separated by a faint depression, but still very irregular, the pairs of nearly circular tubercles often coalesce forming a single transerse tubercle, which latter is the prevailing, if not persistent, form in the posterior coste; in appearance they generally present a broad, gently conrex, sometimes concave, inferior slope, seulptured by delicate ridges converging toward the apex, with a more or less well-defined transterse crest and abrupt descent above, spaced
by once or twice their diameter; in the front ridges they are apparently smooth, possibly the result of wear, and in other parts both the transrerse and round forms are associated on the same rib. It is exceedingly difficult to portray the minutiæ of details of the tubereulose ornamentation here observed, except through the medium of illustrations, of which we hare made such use as seems to meet the requirements of their identifieation. The base appears massive in front, of moderate depth, rapidly eonverging to the inferior extremity, deenly channeled posteriorly by the pulp cavity which oceupies more than half the diameter of the middle portion of the spine, where it presents an elliptical transverse section. The posterior face is oecupied by a strong median ridge slightly ehanneled on either side, and which becomes exceedingly prominent on reaching the middle of the spine ; the postero-lateral angles are sharply defined for a short distance below the apex, where they are armed with a row of prominent, obtusely hooked denticles, slightly eompressed lat. erally and elosely approximated, or separated by spaces less than their greatest diameter; lower, the posterior angles appear rounded and destitute of denticles.

The solitary example which we have examined of the present form, represents a spine probably seven inches in length, and, though broken and parts missing, sufficient remains, together with the perfeet condition of the superfieial characters, to show its distinetive characters as contrasted with other forms. Oue feature not alluded to in the above description and which may be merely individual in its appearance, is the regular bifurcation of the costre aloug lines of growth eorrespondiog to the line of insertion, and which is partially shown in the illustration, Pl. XIV, fig. 2 A . This feature is apparent in both fimes, and in regard to the relative obliquity of these lines of growth and the present line of ${ }^{\text {' }}$ insertion, the observations on the growth of spines mado in connection with C. speciosus, are equally applicable to the present form. In the specimen before us the anterior margin for two thirds or more of its extent from the apex is quite smooth, apparently from wear, and for a short distance from the apex the lateral costre are equally smoothed from the same cause, the surface of the ridges, denuded of their tubereles, being delicately striated longitudinally.

Compared with C. speciosus, with which it has in common the same general ontline and similar style of tuberenlose ornamentation, its distingrishing peenliarities consist in its more robust proportions and greater lateral thickness, the double row of tubercles along the anterior ridges and the more prominent denticles arming the postero-lateral angles.

Position and locality: The specimen desoribed was discovered by Mr. Giles in the mpper fish-bed of the Kinderlook formation; Flint river, near Burlington, lowa.

Ctenacanthus speciosus, St. J. and W.

Pl. XIF, Fig. 3, 4.
The present form, as indieated by a large and nearly perfeet fin-ray discovered by Mr. Wacusauthm, bears, in its rapidly tapering ontline as seen from the side, much resemblance to C. spectabitis, perhaps even a stronger likeness to C. varians, in the above and other respects. The anterior margin is gently arched and romuled, from which the lateral faces rery gradually diverge in a slight eurvature to the posterior margin in the upper portion, but apparently very slightly eonverging in the lower part, as shown in the transverse section, which above is wedgeshaped and below longelliptieal, truncated behind. Posterior face nearly plane near the apex, the median ridge gradually increasing in streugth and quite prominent below, gently chanmeled either side and limited by the well-defined postero-lateral angles, which bear a row of low, broad, obtusely pointed denticles, spaced by once or twice their own diameter, and which are probably eonfined to the upper third of the spine. Line of insertion presenting a slight sigmoidal eurvatme, very oblique, the posterior limb bemg almost parallel with, or diverging at an angle of 5° to 10° from the interior margin. Suecessive lines of growth, so to speak, of less and less obliquity the further removed from the present dorsal line, seem to show that in the development of the spine accessious to its substance were more abundantly supplied to the dense anterior portion; lence the line of insertion, as exhibited in individuals of different stages of growth, would indicate various degrees of inclination, a young spine occupying a relatively more erect position than is the ease in the mature condition-a fact which is probably equally applicable to all ichthyodorulites of this elass. The basal portion extends half way to the apex in the posterior margin, broadly rounded to the inferior extremity, exterior surface delicately punctate or striatopunctate, deeply excavated behind by the pulp cavity, which latter occupies the posterior two-thirds of the diameter of the spine above. The exposed portion of the spine is ornamented by the most exquisite and varied sempturing; the anterior edge is oecupied by a more or less eccentric ridge, slightly more bulky than the others, which rarely bifureates until nearing the basal line, and this is true of all longitudinal ridges occupying the body of the spine, which send off most frequent branches toward their bases in the expanded portion of the spine, where, in at mature individual, they number above eighty; rery irregular in size and arrangement, closely erowled, separated by interspaces ranely half their diameter, the ridges present the appearance of minute deens-
sated costæ, the narrow, transverse, vertically ridged tubereles resting in rarious direetions and degrees of obliquity, generally abruptly descending and sometimes inberelcd above, more gently sloping in the lower side, usually sculptured with a few delicate vertical ridges, or often quite smooth, scalloped along the crest or deeply cleft, sometimes widely spaced, again separatcd by vertical spaces of scarcely more than their own diameter. Under an ordinary lens they present the most beautiful appearancc, the varied details appearing in all parts and always associated with the transverse style of tuberculation.

The collections contain several fragmentary specimens of the form described, indicating spines of various dimensions, of which the fine example, figured Pl. XIV, fig. 3a, was probably above eight inches in length. As above remarked, in general outline these spines resemble C. spectabilis and C. varians; from the former, however, it distinctly differs in ornamentation, and its laterally compressed and less robust figure equally distinguishes it from both the abore named forms. In the details of ornamentation, as the form and sculpturing of the individual tubercles, it more closely resembles the latter form; but the donble arrangement of tubercles, as well as the frequent tendency to become longitudinally elongated in the latter, afford ample distinctive features by which the form under consideration may be recognized.

Position and locality: All anthentic cxamples of the form at present known pertain to the lower icthyic bed of the Kinderhook formation; Burlington, Iowa.

Ctenacanthus Gradocostus, St. J. and W.
Pl. XV. Fig. 2, 3.
Fin-ray moderately strong, long, gradually tapering towards the apex, gently curved, lenticular or long-clliptical in transrersc section. Lateral faces flattened for half or two-thirds their posterior diameter, thence somewhat rapidly converging to the antcrior margin, along which extcnds a narrow, compressed, or sometimes rounded ridge, usually smooth along the crest, but in some specimens posscssing well-market lateral prominences, and which are really connceted forming singular transverse tubercles, the lateral wings of which are nore or less cres-cent-shaped, with the convexity directed upward; the coste are prominent, more or less decreasing in size posteriorly, and beautifully wrought in apparently plain transverse tubercles throughout, though they are less distinct in the postcrior than in the middle and anterior ridges, and separated by a space half to twice their diameter; the tubercles vary in slape from more or less obtuse prominences to narrow bands clasp ing the ridge in variable degrecs and dircctions of obliquity, and in all
the specimens examined presenting evidences of wear; intercostal spaces generllay less than the diameter of the costre, forming deep, narrow groores. Posterior face forming an obtuse angle along the median ridge, cither side of which is faintly channeled and coarsely striated longitudinally; posterolateral angles angularly rounded but welldefined, and apparently destitute of denticles throughout the greater length of the spine. Pulp cavity relatively large. Base unknown.

A fragment of a spine from Quincy, indicating a specimen at least ten inches in length, Pl. XV, fig. 2, and a few rery imperfect individuals from Louisa county, constitute the meagre material from which the above deseription is derived. The Quincy specimen, however, shows abont two inches of the middle or lower portion of a finely presersed spine, which plainly exhibits the specific peculiarities of the form as compared with others from the same and other horizons. In the style of its tuberculose ornamentation it recalls C. Mayi, N. and W., from the same position, its long aud gradually tapering outline and prominent posterior keel, as also the narrower coste, present characters which readily distinguish it from that species. In form and general proportions it also intimately resembles C. Burlingtonensis; but the prominently kecled posterior face and the general tuberculcation of the costre, offer marked contrast with that form.

Position and locality: In the fish bed of the Cpper Burlington limestone ; Quincy, Ill., Louisa Co., Ia.

Ctenacanthus Burlingtonensis, St. J. and W.

```
11. \V, Fig. 6,7.
```

Fin-spines long, slender, slightly curved aud rery gradually tapering, laterally compressed, lenticular in transverse section, truncated posteriorly, where the thickncss is about one-fifth the greatest diameter. Latcral faces gently convex and converging to the acute anterior edge, which is occupied by a single well-defined ridge bearing in places laterally compressch closely arranged stellate tubercles, but which in other parts have the appearance of lateral decussations, possibly due to the wearing down of the crest of the tuberculose ridge; lateral faces of a medium-sized specimen occupied by about fifteen prominent, rounded or flattened, rarely bifurcated costie, which very gradually diminish in size posteriorly until nearing the beveled border, in which the posterior ridges become obsolete descending and equal the anterior ones in size; the anterior costre also bear oblique, closely approximated tubcrcles, sculptured by radiating ridges, occurring on the third or fourth costre from the margin, the postcrior ridges being destitute of ornamentation, except ofeasional traces of minute tubereles and the deliente longitudinal stria-
tion; intercostal spaces rarying from balf to nearly the full diameter of the costæ and striated similarly. Posterior faces gently depressed and rather coarsely striato-punc̣tate, median carina forming a low, obtusely angular ridge, and laterally defined by the somewhat prominent, compressed posterolateral angles, which are armed by moderately prominent, slightly hooked, laterally compressed denticles, which are regularly spaced in the same individual, but rarying in the different specimens in the ratio of one to three, apparently more crowded below than near the extremity. Internal cavity of moderate size, transverse section as represented in the illustrations. Base unknown.

The form here referred to occurs quite common, but mifortunately, the specimens are generally in an unsatisfactory state of preservation; they indicate spines of six to eight inches or more in length, but it is seldom a specimen is fourd which exhibits the tuberculose ornamentation, thongh the costie are well shown in nearly all. Compared with C. Feokuk, its nearest ally and representative species in the next succeeding formation, it is distinguishable by the perecptibly less curvature, more numerous or closely approximated denticles, and more compressed postero-lateral angles, the tubercles of the anterior ridge more compressed laterally, often thereby giring rise to a sharp selrated crest, and the relatively larger size of the tubercles of the first two or three costa on either side, the direction of their obliquity being apparently the opposite or from left to right. The specimens figured (Pl. XV, fig. 6,7,) belong to the fine collection of Mr. Springer.

Position and locality: A common fine-spine in the fish-bed of the Upper Burlington limestone, at the various localities of its exposure in Louisa, Des Moines and Lee counties, Iowa; Quincy, and Henderson county, Illinois.

Ctenacanthus Keokuk, St. J. and W.

$$
\text { PI. XV, Fig. } 8 \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} .
$$

Fin-spines eight to ten inches, more or less, in length, gently arched and very gradually tapering, lateral faces flattened behind and beveled to the postero-lateral borders, very gradually converging towards the front and somewhat rapidly rounded on approaching the anterior edge, in transverse section long.elliptical, truncated posteriorly. Anterior rib moderately prominent and marked by somewhat tumid, radiatesculptured tubercles, spaced by about their own diameter; lateral costæ trelve to sixtcen in either facc, equally prominent, rarely bifurcating descending and still more seldom implanted, very gradually and more or less irregularly diminishing in size posteriorly, in some examples the middle ridges most prominent, the posterior ridges terminating descend-
ing in the narrow, slightly beveled space along the posterior borders; intercostal spaces usually equaling or slightly exceeding the diameter of the eostre, faintly striato-punetate. The first pair of costre on either side the anterior ridge bear delicate, obliquely transverse tubercles, spaced by about twice their diameter, but sometimes eonneeted by the thread-like lines descending from the long inferior slope of the tubereles; the sueceeding ridges are smooth or faintly striated longitudinally, with the exeeption of the first and seeond whieh are spareely occupied by minute, irregularly spaced tubercles. Posterior face slightly ehanneled, median keel inconspicnons, postero-lateral margins forming prominent ronnded angles above, less obtuse below, and bearing relatisely strong, slightly hooked, sculptured dentieles, separated by about twice their diameter, perhaps more widely spaeed above. Pulp cavity nearly half the diameter of the spine in the middle, longelliptieal in section. Base unknown.

The spines here referred to bear striking resemblance to the Upper Burlington form which we have described under the name C. Burlingtonensis, so strong is the likeness, indeed, that the majority of the imperfeet speeimens of the two forms are seareely distinguishable one from the other. The eollection of Dr. Willlians contains several more or less perfect speeimens of the present form, and the eareful examination of this material seems to justify the disposition we have here made, in accordance with the apparent peeuliarities enumerated in the observations under C. Burlingtonensis. It is not improbable more complete material would show eren more intimate relations between these spines, or differenees such as the better to serve their eharacterization.

Position and locality: Not uncoumon, but generally in fragmentary eondition, in the Keoknk fish-beds; vieinity of Warsaw, Illinois; Keokuk and Bentonsport, Iowa ; Boonville and Le Grande, Missouri.

Ctenacanthus excavatus, St. J. and W.

Pl. XV , Fig. 4-5.

Fin-spine of moderate length, rery strong, rapidly tapering, moderately eurved, transverse seetion ovate, truncated posteriorly. Lateral faces gently arehed behind and slightly converging to the posterior borders, rapidly rounded in front to the anterior margin, whieh is oceupied by a strong broadly rounded ridge, apparently smooth along the crest with indieations of transverse decussations or tubereles in the latral margins. The lateral surfaces are covered by a few rery prominent, deenssated costie, spaced about their own dianeter by deep intercostal groores. Posterior face broad, more or less coneare or deeply channeled, keel apparently inconspicuous, postero-lateral angles
relatively promincut with indications of strong, closcly arranged denticles near the upper extremity. Pulp cavity, above, occupying about one-third the diameter of the spine, broadly orate in section. Base unknown.

We have had opportunity to examine only two imperfect specimens of the present species, but these exhibit such strongly marked peculiarities as to proclude any hesitation in recognizing their specific distinctuess. The specimens show respectively one and two inches of the upper extremity, in the one instance of a fairly preserved individual, the other or larger fragment being considerably abraded aloug the auterior ridge, which presents the appearance of a broadly rounded, perfectly smooth surface-the costie in the lateral faces also bear evidence of wear, which has nearly obliterated their decussated or tuberculose oruamentation. The smaller spine exhibits the superficial characters in a very satisfactory manuer, thongh here some allowance must be made on account of wear, but to a much less extent than in the former case. The coste are very prominent, slightly inbereled laterally and broadly rounded aloug the polished crest, which is crossed by delicate thread-like ridges or decussations which terminate laterally in more prominent projections, and which cross the costre in varying degrees of obliquity or arched upward, three or four occurring in the space of one-tenth inch.

In outline and general proportions, it resembles C. Mayi of the Upper Burlington limestone ; it is, however, proportionately thicker, the costre narrower and more widely spaced.

Position and locality: In the upper fish-beds of the Keokuk limestone ; Bentonsport, Iowa; La Grange, Missouri.

Ctenacanthus Gemmatus, St. J. and W.

$$
\text { PI. XV, Fig. } 9,10 .
$$

Fin-ray long, gradually tapering, gently curved, lenticular in transrerse section, abruptly truncated posteriorly, the posterior face nearly plane either side of the narrow median keel, mceting at the postcrolateral borders in a right angle. The lateral faccs gradually converge in a slight convexity to the anterior margin, which presents a narrow, promincut, sharply rounded ridge, regularly crossed by bcautifully sculptured tuborcles, which meet in an obtuse angle along the crest, the swollcn lateral extromities being gently directed downwards. Lateral costic sixtcen, morc or lcss, in either facc, prominent, more or less regularly spaced by about their own diameter, rery gradually, though somewhat irregularly, diminishing in size posteriorly, and ornamented with elegantly wrought stellate tubercles, which form in the anterior costic transversc or slightly oblique prominences, but less prominent
and more circumscribed in the posterior ridges, where they are more widely spaced. Pulp carity elliptical in, section, about onc-third the lateral diameter of the body of the spine, and apparently extending to the line of insertion before appearing in the postcrior face. Base of moderate length, strong," moderately excarated posteriorly, line of insertion forming an angle of about 45° with the posterior inclination of the spine.

The present form is recognized from a couple of fragments of spines in the collcction of Mr. VAN Horne, one of which shows about three inches of the inferior extremity of a mutilated specimen, the smaller fragments exhibiting a scction from the middle region of the spine in a bcautifully perfect state of preservation. Neither of these fragmentary examples prescrves any trace of denticles along the posterolateral angles, though such probably existed, possibly confined to the upper extremity of the spine.

In ontline it bears intimate resemblance to C. gracillimus, N. and W., of the same horizon, its peculiar and gencrally distributed tuberculation constituting its chief distinguishing features. The latter, however, show a striking likeness to the Upper Burlington spines which we have notiecd under the name C. gradocostus, from which the present form differs in the relatively greater size and more elaborately sculptured tubereles of the anterior costr, and the flattened, faintly leeled posterior face.

Position and locality: In the upper beds of the St. Louis limestone; Alton, llinois.

Ctenacanthus pugiunculus, St. J. and W.

Pl. XXI, Fig. 9

Fin-spine long, nearly straight or but gently curved posteriorly, gradually tapering to the acute apex, subosal in transrerse scction. Latcral faccs regularly and broadly rounded into the anterior margin, the longitudinal costr, of which there are nine or ten in either side, of miform size and spaced by about their own diameter in front, but diminishing in size posteriorly and more closely approximated, decussated, or those in front bearing more prominent, oblique tubercles, separated by vertical spaces equal to two or threc times their diameter, the posterior ones less widely separated or more numerous, forming sharp, oblique ridges abruptly terminated abore; the-tubereles are apparently smooth and polished, and there appears to be much regularity in the direction of their obliquity, or ascending from the anterior to the posterior side, though probably subject to variation in the latter respects. Posterior face equal to the greatest lateral diameter, or ncarly so, of the
spine, with a prominent sharp.crested median keel, moderately channeled either side, with obscure secondary longitudinal ridges, and faintly striated, bearing along the inner side of the postero-lateral angles, which latter are sharply defined, a row of irregularly developed, strag. ling, obtuse tubereles, whose apices enlminate in a romuded rim which is in some instances obliquely directed downward and inward, perhaps more frequently in the opposite direction, and extending from the apex to a point at least below the middlc. Base mnknown. Pulp cavity, in the middle of the spine, less than half the greater diameter of the spinc, in transcerse scction subcircular, or lateral diameter exceeding the antero-posterior diameter, posterior walls about half the thickness of that in front. Length of spine at least three inches, lateral diameter between the postero-lateral angles near the middle of the spine. 13 ineh, or but slightly less than the antero-postcrior diamcter.

The present form is described from a unique example of a ncarly entire and trell-preserved spine, but which is so imbedded in its matrix as to exhibit ouls the posterior face and the posterior portion of the lateral surfaces, except a section from the middle of the spine which shows the cntire lateral surface and anterior margin. Towards the apex, the costre are more or less smoothly worn, and the tubercles in the posterior face are relativcly larger than in the middle region below. The great lateral breadth of the spinc, as compared with its anteroposterior diameter, the absence of a distinct angulation in the broadly rounded anterior margin, and the irregnlar development of posterior denticles, constitute the chief distinguishing features by which the present spine may be recognized from other forms of the gemus to which it is here referred.

Position and locality: Upper beds of the St. Louis limestone; St. Louis, Missouri.

Ctenacantaus similis, St. J. and W.

We here refer to a form apparently not uncommon in the Chester formation, but whicl is represcuted by imperfect specimens in the material accessible to us. In general ontline it is exceedingly like C. angulatus, N. and W., a fin-spine described from the same horizon, being rigid or very slightly curved in outline. It is, however, apparently distinguishable from the above, with the original of which we have compared the present examples, by the more uniform and relatively stronger costil, of which there are also fewer, and the peculiar olecussation of the same, which latter recalls C. gradocostus, or perbaps even more strikingly C. c.rcucutus of the Keoknk formation. It is possible
these spines may prove to be speeifieally identieal with C. anguluris, representing certain eonditions of preservation not apparent in the solitary example examined by Messrs. Newberry and Worthen.

Position and locality: In the lower fish-bed of the Chester limestone ; Chester, Illinois.

Genus ACOND YLACANTHUS, St. J. and W.

Fin-rays long, gradually tapering, laterally eompressed, and moderately curved posteriorls. Lateral faees longitudinally fluted, the costre being smooth and enameled, increasing by oecasional bifureation, perhaps more rarely by implantation. Posterior face uniformly excarated longitudinally, apparently without median keel ; posterolateral angles bearing a row of downward hooked denticles, which extend in the majority of speeies well towards the base. Pulp eavity oecupying the posterior half or more of the spine. Base unknown.

Regarding the generic identity of the Carboniferons iehthyodorulites heretofore referred to Leptacanthus, Agassiz, expressions of doubt have from time to time been made by inrestigators who hare had to deal with these remains. The genus Leptacanthus was based upon spines oceurring in the Jurassic formations of Europe, the oldest representative, as originally determined by Professr AgAssiz, belonging to the Lias. Subsequently Professor Agassiz identified certain Carboniferous fin-spines with the genus, and other authors, at a later date, have extcuded the list of species of the same period, howerer, in every ease pointing out the diffieulties in the way of determining the real affinities of these earlier forms, and the nceessity of their prosisional reference to the Mesozoic gemus. There is one exeeption, that of Col. Romanowsky, who, in an interesting paper on the fossil-fishes of the Lower Carboniferous deposits of Russia, describes a fin-spine whieh is apparently generically identieal witli the Carboniferous so-ealled Leptacanthi, and which he has named Cladodus temuistriatus, inferring their generie identity with Cladorlus from the eircumstanee that the spines are associated with the remains of the dentition of that genus. The ielithyodorulites for which Professor Agassiz proposed the generic term Cladacruthus in the lists of new forms appended to the Poissons Fossiles, III, are cited from the British mountain limestone, but of whieh we have failed to gain any definite knowledge. I an aware, however, that Professor Agassiz was strongly inclined to regard the spines to which he gave the mame Ctcnacanthus as probably belonging to the fishes which bore the teeth called Cladodus. The latter inferenee was probably based upon as extensive data as was the ease in that of the Russian
fossils, and of the same kind; it is apparent, therefore, in the present state of our knowledge of the facts, that it is matter of individual opinion merely, and that we must seek a fuller acquaintance with facts to be derised only in the field where we may carefully note the occurrence and association of these fragmentary reinains, before we can hope to satisfy ourselves in regard to their generic and specific identity. Although in sereral instances our American collections hare becn made with the utmost care, in the hope of securing crery fact that might throw the least light on the affinities of the remains associated in the same beds, our data do not furnish unequivocal evidence by which the generic identity of fin-spines and teeth may be determined. Many suggestions may be derived from the study of this splendid material ; but where suggestions are so conflicting their reliability is questionable.

In relation to the identity of the Carboniferous spines nuder consideration with the Mcsozoic Leptacanthi, judging from the descriptions of Professor Agassiz and the illustrations accompanyiug the Poissons Fossiles, there is apparent in the distinctive features of the more ancient spines the uniform deep groove of the posterior face, the Liassic Leptacanthus being nearly plane across the posterior facc; the costation is apparently very similar in the spines from the widcly removed geological positions, and the denticulation of the posterior borders is equally similar.

The genns embraces the following described species, all of which pertain to the Carboniferous period: Leptactenthus junccus, McCoy, L. Jenliinsoni, McCoy, Cladodus tenuistriatus, Romanowsky, Leptecanthus occidentalis, N. and W.

Acondylacanthus gracilis, St. J. and W.

Pl. XVI, Fig. 8-11.
Fin-spines of small or medium size, probably attaining the length of four or five inches, laterally compressed or sublenticular in transverse section, gradually tapering in the lower and middle portions, but rapidly converging near the apex, which forms an acute point. Lateral faces gently arched, flattened posterior to the middle, and regularly converging in front to the more or less sharply rounded anterior margin, and occupicd by a few, about ten, relatively strong, irregular costæ, which increase by infrequent bifurcation descending, the anterior ridge sending off more frequent branches near the apical extremity, and quite regularly spaced by narrow, shallow intercostal furrows; the costa are low and flattened or gently romided along the crest, and generally more delicate along the posterior border, though their development varies
considerably in different parts of the spine. Posterior face apparently uniformly though modcrately channeled, irregularly striated or punctate, and bordered by relatively strong, prominent, obtusely rounded postero-lateral augles, which bear prominent, acutely pointed, hooked denticles, separated by about their own diameter in the upper portion of the spinc, but becoming smaller and more widely spaced below, and probably extending well towards the base. Pulp cavity ovate in transverse section, about one-third the lateral diameter of the body of the spine. Base unknown.

The collcetions of Messis. Springer, Wachsmuth and Giles contain sereral imperfect specimens of the form above described, all of which show the upper cxtremity, and one large specimen, belonging to the collection of Mr. Springer, inclicating a spine probably four or five inches in lengtli when entire, exhibits the smooth, enancled costro in a perfect state of preservation. It is appareutly referable to the same generic gromp as the spines which we have described from the Keokuk formation uuder the name A. cequicostatus. It differs from the Keoknk form in the more irregularly developed costæ, proportionately stronger, and more numerons denticles along the postero-lateral angles, less deeply excavated posterior face, and more strongly curved outlinc.

Position and locality: Not uncommon in the lower fish-bed, and apparently the same form occurs in the upper fish-bed, of the Kinderhook formation; Burlington, Iowa.

Acondylacanthus equicostatus, St. J. and W.

Pl. XVI, Fig. 12, 13.

Fin-spiwe long, gradually tapering to the apex, and gently curved, transverse section lenticular, truncated behind. Lateral faces flattened or faintly convex in the posterior half, more rapidly converging to the anterior margin, which is occupied by a prominent, sharply rombled ridge, similar to the costie covering the body of the spinc, of which latter there are ten to sixtcen, more or less, in either face, quite uniform in size, rarely bifnrcating desconding, and closely arranged, the inter-

- costal spaces narrow, or generally less than half the diameter of the ridges, except sometimes along the anterior border the occurrence of a broader groove above the bifurcation of the anterior ridge. Posterior face deeply excavated, postero-lateral angles prominent and sharply rounded, bearing along their inner edges a row of depressed, hooked denticles, spaced by abont or little more than their own diameter, and apparently extending at least half the distance from the apex towards the base. Internal cavity subelliptical in section, abont half the lateral
diameter of the body of the spine. Spines attain the length of eight to ten inches. Base muknown.

Intimately related to A. occidentalis, (N. and W. sp.) of the St. Louis limestone, the present form is distinguished from that species by its laterally more compressed figure, the perceptibly narruwer and nore numerous eostr, less erect and more widely spaced denticles along the postero-lateral angles. Comparatively few specimens hare been identified from collections made by Prof. Worthen, and these are imperfect from aecident, though sufficient to show their distinetive features. Much worn examples of Ctenacanthus Keokuk, from the same horizon, bear some resemblance to this form; but thes are readily recognizable by the wider intercostal spaces, and the median keel of the posterior face.

Position and locality: Not common in the Keokuk limestone; Warsaw, Illinois.

Genus ASTEROPTYCHIUS, Agassiz.

As'feroptychius vetustus, St. J. and W.

```
Pl. XVI, Fig. 1.
```

A fragment of a sinall spine, showing less than an ineh of the upper extremity, appears to be the earliest representative of the genus Asteroptychius found in our Carboniferous formations. Though iuperfect from wear, it differs so mmistakably from its assoeiates in the same horizon, that, taking into consideration its general features, we have little doubt as to its identity with the above genus.

The spine is long, narrow, or very gradually tapering and moderately eurved, thick, and probably subtriangular in transverse section. Lateral faces gently arehed and rapidly converging to the obtusely rounded anterior margin, occupied by at least three narrow, prominent, widely spaced costie, the posterior one abruptly beveled to the postero-latcral angles, the costr apparently more crowded posteriorly than in front; intereostal spaces varying from the same to twice the diameter of the ridges, and longitudinally marked by one or two thread like strix, but without any trace of intereostal tubereles. Posterior face faintly depressed, the ehanneled area relatively narrower, median keel appareutly olsolete ; postero-lateral angles moderately prominent, obtusely rouded, armed with relatively large, laterally coupressed denticles, spaced by little more than their greatest diameter. Pulp eavity comparatively large, equaling half the lateral diancter of the spine, posterior wall very thin. Base unknown.

We hare thus far examined ouly the unique example deseribed, so that we have no means of determining the character and extent of indi-
ridual rariation ; but it presents distinetive characteristies by whieh it may be easily distinguished from other forms of the genus oceurring in our Carboniferous deposits. It is perhaps most intimately allied to the form which we have described under the name A. Keokuk, with which it corresponds in the number of eostre and the more or less nearly obsolete condition of the posterior keel; but the lateral angles are more prominent, the posterior face more deeply channeled, and the general outline less rapidly tapering.

Position and locality: In the lower fish-bed of the Kiuderhook formation; Burlington, Iowa.

Asteroptychius Keokuk, St. J. and W.
PI. XVI, Fig. 2.

A fragment of fin-spine, showing the upper extremity of a worn specimen apparently referable to Asteroptychius, presents the following charaeters: Spine strong, slightly eurved in outline aud gradually tapering, subtriangular in transverse seetiou; lateral faces moderately arched and rapidly converging to the more or less sharply ronnded anterior edge, and oceupied by relatively narrow, widely spaced costre, of which there are three or fonr in the specimen before us, the lateral surfaces bereled to the ineonspicuous postero-lateral angles, posterior face faintly channeled on either side of the low, or nearly obsolete, median keel. In the imperfect condition of the spine the intereostal spaces preserve no trace of tubercles, appearing roughened and coarsely striated longitudinalls, and from the same eause the character of the denticles of the posterolateral angles eamot be determined. The pulp eavity is large, oecupying loalf the lateral diameter of the spine. The specimen was probably at least three inches in length, and perhaps .15 inch in breadth one inch from the apex.

The speeinen deseribed above, lowever imperfect its state of preservation, is ummistakably distinct from the associated forms in the same deposit, while it differs fiom A. St. Ludovici in the rarer costation of the lateral faces, and from the Chester form, A. tenuis, by its apparent shorter, more robust and rapidly tapering outline. The intercostal spaces are relatively broader and deeper than in A.triunguluris, N. and W., of the Upper Burliugton limestone, with which it is elosely allied in form.

Iosition and locality: Rave in the Keokuk fish-bed; Warsaw, Illinois.

Asteroptycuius St. Ludovici, St. J. and W.

Pl. XVI, Fig. 3, 4.

Spines of medinm size, moderately strong, slightly eurved baekward, rery gradually tapering to the distal extremity, near which the opposite margins more rapidly converge, transverse section sublenticular, forming an aente angle in front, lateral faces gently arehed and slightly eonverging to the abruptly truueated posterior margin. The anterior marginal earina rounded, prominent, and similar to the longitudinal carinæ which oceupy the body of the spine, from which it is separated for the greater length of the spine by a plane space of variable width, but towards the extremits the eostie are more erowded and uniformly spaced by about their own diameter; in the middle and lower part the intereostal spaces are of variable width, generally narrower and more uniform in the posterior half, and often equal to more than twice the diameter of the costre in the anterior half, and delieately striated longitudinally; the broad space on either side of the anterior margin is generally occupied bs irregularly disposed minute tubereles, which also oceur sparsely in the second and third furrows from the margiu, but these do not appear incariably, being absent in some speeimens. The lateral eostre rarely bifureate deseending, generally near the apex, enlarging below. Posterior margin traversed by a well-defined median ridge throughout its greater length, but less prominent above, gently depressed on either side and finely striated longitudinally. Postero-lateral angles marked by more or less elosely arranged and hooked, laterally eompressed denticles, those near the distal extremity being perceptibly stronger, more elosely approximated and more strongly hooked downward, while the eentral and lower denticles are more ereet with their apices directed upward ; the transition in the reversed direction of the apices of the denticles appears quite suddenly, the intermediate denticle of the upper series being more obtnsely pointer, the same as is the case with that of the lower series, where they are perhaps generally less uniform in shape. Pulp eavity oval in transverse section, occupying half or more the diameter of the spine in the central portion, but relatively greatly redueed in the upper part, restricted to the posterior half. Base unknown.

The collections afforl several examples of this elegant ichthyodorulite, but they are generally quite fragmentary, the individuals figured being the most perfeet we have met with. From the examination of this material, it would appear that these spines present eonsidcrable individual variability, such as the variable spacing of the longitudinal costie as also the denticles along the postero-lateral angles, and the
absence of the tubercles in the anterior channels, which latter may be due to accident. But, on the whole, it is a well-marked form, any fragment showing a complete transverse section and the superficial ornamentation being sufficient for its identification.

Compared with A. tricunglaris, N. and W., of the Upper Burlington limestone, its more slender proportions are sufficient to distinguish it from that form. It bears a somewhat intimate general likeness to A. ornatus, Ag., and A. semiornatus, MeCoy, of the Irish Carboniferous limestone, but may be recognized by its more slender proportions and the downwarl direction of the denticles in the upper portion of the spiue.

The plainer examples of the present form present also marked resemblance to the form from the Chester limestone which we have designated uuder the name Asteroptychius? temuis; the more closely approximated costa and the reversed direction of the posterior denticles are sufficient to enable its recognition.

It seems not improbable that the reversion in the direction of the two series of denticles in the postero-lateral angles, as shown in the present species, may constitute a generic feature; but as the majority of specimens only show the upper portion of the spine, it is very rare that this peculiarity is observable.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois, and St. Lonis, Missouri.

Asteroptychius? tenuis, St. J. and W.

Pl. XFI, Fig. 5, 6.

Spine of mediun size, nearly straight or very slightly curved backward, and very gradually tapering from base to apex, transverse sectiou subovate. Anterior angle formed by a simple rounded ridge, posterolateral angles less acnte, with traces of numerous minute denticles separated by a space above twice their vertical diameter in the middle portion of the spine; lateral faces slightly arched and beantifully fluted, with seren, more or less, smooth low rounded, parallel, enameled costa, separated ly a shallow depression of somewhat irregular breadth, about twice the diameter of the ridges in the middle, but more crowded towards either margin, the interspaces delicately striated or striatopunctate vertically. Posterior face abruptly truncated, transverse diameter about two thirds that of the lateral faces, median keel somewhat prominent, forming a subacute angle, bordered by wide, gently excavated spaces, which are striated in the same manner as the interspaces between the lateral costr. Pulp cavity orate in transverse section,
oceupying abont half the antero-posterior diameter of the spine midway between the extremities, but proportionately much smaller towards the apex, lateral and posterior walls about the same thickness. Base or inserted portion unknown.

The form indieated above is known by a somewhat imperfect specimen, both extremities being broken away and distorted along the one side of the posterior faee, but which elearly exhibits the superficial characters and thereby its distinguishing features as eompared with other forms. From previously described ichthgodorulites from American formations, which have been referred to this group, it obviously differs widely. Apparently intimately allied to the Coal Measure form, A. bellulus, the erowded condition of the eosta along the anterior margin on either side at onee affords a distinguishing feature in contrast with that form. The apparent absenee of intercostal tubercles renders its identity with the present group open to a doubt, but the arrangement of the costre and the interrening spaces indicate its intimate relationship with the forms referred to this genus.

Position and locality: In the npper division of the Chester limestone; Carroll's place, Pope eounty, Illinois.

Asteroptychius bellulus, St. J. and W.

 P1. XVI, Fig. 7.A fraginent of a small spine from the horizon of coal No. 5 , referable to the above genus, is characterized by its somewhat stout proportions, gradually tapering from base to apex, and very slightly curved ontline viewed from the side, transverse section subtriangular with enrsilinear lateral faees. Anterior margin forming an aeute angle traversed by a relatively strong, rounded enameled kecl, similar to the longitndinal ridges whieh occupy the body of the spine, from which it is separated by a broarl, shallow space about equal to that oecupied by two of the lateral ridges; of the latter there are seven or eight in either face, gradnally becoming smaller towards the posterior angles, in diameter about equal to the intervening grooses, and rarely interrupted by faint nodes; intercostal spaces delicately striato punctate, which extends into the base as also in the posteriur face, with rarely occuring, mime tubereles. The posterior face is mutilated by pressure, but it is apparently gently eoncave or laterally grooved, with obtusely angular posterolatemal edges, forming a thin posterior wall to the pulp carity, whieh ocenpies about half the bulk of the spine at the middle, and subovate in thansrerse section. The line of insertion, as shown in this imperfect speeimen, was apparently very oblique, indicating the posterior inclination of the spine at an angle of about 30°. The specimen was probably at
least one and threc-fourths inches in length, near . 20 inch in greatest diameter, and about .14 at the thickest part near the base.

This pretty little ichthyodorulite bears a striking likencss to Astcroptychius? tcmuis, of the Chester limestone, but is distinguished by its apparent shorter and stouter proportions and more closely approximated costre, and the broad planc space either side the anterior margin. The intercostal tubercles occur very sparsely; in the fragment described there are traces of only two or threc nodes in the first and second spaces from the anterior border.

Position and locality: Discorcred by Alex. Butters, in the roof shates of coal No. 5, Coal Measures; Carlinville, Illinois. Also in the Lower Coal Measmres near Fort Dodge, Iowa.

Genus Geisacanthus, St. J. and W.

Ichthyodorulite more or less curved posteriorly ; anterior angle occupied by a simple raised border or kecl ; lateral faces ornamented with tubercles arranged in parallel longitudinal rows ; anterior kcel and tubercles enveloped in a polished enamel-like layer. Posterior face longitudinally kecled.

The spincs under consideration bear striking resemblance to pcculiar ichthyodorulites found in the Triassic of Europe, to which Professor Agassiz applied the name Nemucunthus, indicating two species from the "bonc-bed" vicinity of Bristol, Eugland. But the American forms may be distinguished by the apparent absence of hooked denticles along the postero lateral angles. Besides, when we recall the faunal association of the Triassic Ncmacanthi, as compared with that of the present form, it seems hardly probable they appertain to one and the same genus, since the ichthyic assemblage in the two respective geological formations bears in no instance generic identity among the class to which these spincs belong. Our data is too meagre to warrant even a conjecture as to the probable specific identity of these spines with other imperishable remains of the class described from the same geological position. The typical examples belong to the Chester and St. Louis formations, or upper members of the Lower Carboniferous.

> Geisacanthus stellatus, St. J. and W.

Pl. XXII, Fig. 10.
Fin-spinc of small size, very slightly curved, gradually tapering to the apex. Anterior ridge relatively small, sharply rounded along the edge, laterally compressed, and marked by delicate, impressed, oblique striee.

Lateral faces moderately eonvex, gently eompressed posteriorls, more rapidly eonverging in front, and ornamented with rather coarsely seulptured stellate tubercles, whieh are arranged in elosely approximated longitudiual rows and irregular oblique order aseending from the anterior to the posterior border, with faint intervening sulei, and rertieally spaeed by two to four times their diameter; tho tubereles present considerable variation in sculpturing, their apices are obtusely aeuninate and directed toward the base, perceptably dimiuishing in size posteriorly, though not regularly, small tubercies being interspersed with the larger ones in the anterior portion of the spine. Intercostal spaces marked with delicate impressed strix. Posterior face about two-thirds the brealth of the spine in its thiekest part, prominently keeled, faintly depressed laterally and distinctly defined in the obtuse postero-lateral augles. Internal cavity about half the diameter of the body, similar in seetion, posterior walls very thin, and probably opening below the dorsal line, deeply exeavating the posterior face of the base. Base strong, deeply inserterl, tapering to the obtusely pointed inferior extremity, dorsal line indicating a posterior inclination of about 45°.

The only specimen of the above species which we have examined, represents a nearly entire spine about two and a half inehes in length. The thin walls of the posterior face have been crushed in along the lower portion of the spine, showing the extent of the internal eavity; otherwise the state of preservation of the specimen clearly exhibits its generie identity and speeific peculiarities. In general outline and size it is very like Cr. bullatus of the Chester formation; but the anterior keel is less broadly rounded in front, and the tubereles are far less crowded vertically, while their coarse radiating ridges offer marked eontrast to the smooth or faintly sculptured tubereles of the Chester form.

Position and locality: Upper beds of the St. Louis limestone; St. Louis, Missouri.

Geisacanthus bullatus, St. J. and W.

Pl. XVII, Fig. 3, 4.

An imperfect specimen, indicating a spine probably at least two inches in length, but broken array at either extremity and otherwise mutilated, so that only a small part of the specimen preserves the euperficial eharacters by which its generie peculiarities have been recognized, affords the following specifie features: Spine strong, somewhat rapidly tapering towards the apex, transrerse section snbtriangular or conical, thickness about half the antero-posterior diancter. Auterior elge gently arehed and traversed by a prominent, rounded and laterally
inbereled keel; lateral surfaces moderately arched transrersely, occupried by fice or more longitudinal rows of rather strong, closely approximated tubereles, which are arranged in such order as to form diagonal rows in either direction, those along the postero-lateral angles being slightly smaller and apparently more conical. Posterior face abruptly truncated and longitndinally channeled by a rather deep, angular depression. Pulp carity confined to the posterior half of the spiue in the middle, compressed, oral in transverse section. Base deeply imbedded, pointed, dorsal line indicating posterior inclination of spine equal to 20°.

The characters above noticed are clearly shown, notwithstanding the imperfect coudition of the unique example. The surface ornamentation has been obliterated with the exception of a small area, in which the bases of the tubercles are distinctly shown, besides a few apparently worn tubercles, which present faint traces of vertical or radiating sulci. The tubercles forming the row adjacent to the postero-lateral angles are slightly compressed laterally, but not hooked. A section obtained by breaking the specimen across the middle indicates a rather deep, angular depression in the posterior face, with slightly convex sides romding into postero lateral angles. Whether the channeled condition of the posterior face is due to the imperfect or matilated state of the specimen, we have not been able to determine; but the strongly keeled condition of the St . Louis species, G. stellutus, would seem to indicate that such is probably the case, and that the thin posterior walls have been forced in mpon the pulp cavity by pressure.

Position and locality: Lower division of the Chester limestone; Fonntain Bluff, Jackson comnty, Hlinois.

Genus ANACLITACANTHUS, St. J. and W.

A fragment of a large dorsal spine, obtained by Mr. Wachsnume from the Upper Burlington fish-bed, presents anomalons characters which seem to indicate generic relationship with none of the several ichthyodorulites with which it is associated. Unfortnmately the specimen is imperfect, bearing evidence of distortion from pressure by which parts of the spine are so thrown ont of place as to render the determination of the section and entire outline exceedingly difficult, if not wholly unsatisfactory. Apparently, so far as it is possible to ascertain, both sides present quite the same appearance, from which fact it is inferred that the fragment before us may be relied non for snch characteristic featmres as have not been destroyed by mechanical attrition and pressnre. Towards the lower extremity the spine has been fractured across, and the anterior edge so folded nnder and broken as to
appear displaced, as shown in the figure, Pl. XVI, fig. 14 a; the upper half, however, apparently shows nearly a perfect transverse section, as determined by breaking the specimen in several places, by which means we have been enabled to make out the following general characteristics:

Fin-spine recumbent if not imbedded along its entire inferior extent, laterally compressed, snbovate in transrerse section; basal or imbedded portion of greater or less depth, anteriorly produced beyond the limit of the antero-inferior shoulder of the exposed body, thick, and coarsely osseous in structure; exposed body of the spinc constricted along the line of union with the base, lateral faces converging to the more or less obtusely rounded anterior margin, and longitudinally costate. Internal cavity?

Anaclitacanthus semicostatus, St. J. and W.

Pl. XVI, Fig. 14.

The base of the spine nearly equals the greatest transverse diameter of the cxposed portion, nearly as thick as it is deep and broadly rounded along the lower edge, the striated appearance of the surface being produced by the coarse, fibrons structure, the strix diverging inferiorly from the basal or insertion line; the crown or exposed body gradually rises from the antero-inferior point into a long, elerated, obtusely rounded lidge from whicli the sides gradually diverge, probably gently conrex, to the sharply constricted or inbereled margin along the line of insertion, presenting in connection with the base a subelliptic or long-ovate transverse section; the lateral faces are covered with numerous bifurcating costa, which are larger and more or less irregnlanly disposed in the middle and anterior portion, gradually diminishing in size posteriorly and apparently more regular and parallel with the basal line, generally smooth, but with occasional traces of minute pectination; intercostal spaces moderately deep, of variable width, probably averaging half the diameter of the costie.

The specimen described exhibits about two thirds of the entire length, indicating a spine of at least six inches in length. The peculiar and anomalous feature is the great extent of the inserted base, which probably extended nearly if not quite to the tip, and the semi-costation. The costre are very irregnlar in the middle and front portion of the spine, often extremely ronghened, but in the imperfect state of preservation it is difficult to assign the cause of this appearance, thongh it is apparently indicative of tuberenlation; indeed the obsenre traces of pectination would seem to corroborate this last inference. There is no
trace of an internal eavity, nor of segmentation, but the basal portion is exceedingly coarsely fibrous in structure.

Position and locality: In the fish-bed of the Upper Burlington limestone; Burlington, Iowa.

Genus BYTHLACANTHUS, St. J. and W.

Fin-spines deeply imbedded, laterally more or less eompressed, exposed portion relatively limited and but moderately produced vertieally, but extending along the baek in a reeumbent position; line of insertion very oblique and more or less coextensixe with the auterior margin, whieh latter is arehed posteriorly, terminating in an obtuse, beak-like apex; lateral surfaces marked by more or. less prominent, eonieal, vertically striated tubereles, arranged in more or less regular rows which obliquely deseend from the anterior margin to the inferior border, increasing below by implanation. Posterior faee relatively low and vertically keeled. Pulp cavity forming a deep ehamel in the posterior side of the base and extending to the angle formed by the junction of the posterior face with the shaft or base, possibly penetrating the body of the spine towards the apex.

The recumbent position of the exposed part of the iehthyodorulite forms a striking feature of the forms for which we have proposed the above generic designation, and which in comeetion with the associate elaracters as described above present an ensemble of characteristies which readily serve to distinguish it from allied genera. The speeies thus far determined pertain to the Lower Carboniferous, probabiy both belonging to the St. Lonis limestone, that deseribed in the present work under the name By. Van Hornei, and a similar form mentioned by Dr. Lendy from the Lower Carboniferous of Temessee under the term Astracenthus siderius.

The affinities of these ielthyodorulites with the Mesozoic Astracenthi are made to appear more remote by the examination of the fine example representing the species first referred to above than was the ease with the imperfect specimen possessed by Dr. Lembr, from whieh the real form of the spine eould not be determined. There are points of resemblance between these spines and the form deseribed by Prof. Agassiz under the name Ctenacanthus brevis, from the Carboniferous limestone of England, a very recmmbent form with vertieally striated tubereles; but the latter are apparently disposed in rows parallel with the auterior nargin instead of descending obliquely to the inferior border as in the present examples.

Bythiacanthus Van Hornei，St．J．and W．

Pl．XVII，Fig． 1.

Fin－spines large，exposed portion massive，subelliptieal in seetion， basal line nearly corresponding to the anterior margin，presenting as seen from the side a long elliptical figure，obliquely truncated behind by the low，prominently keeled posterior face，whieh scarcely equals in higit the greatest transverse diameter of the exposed portion of the spine．Lateral faces very slightly convex and gradually eouverging to the rounded anterior margin，whieh is smooth from wear above，and terminated in an obtuse beak；tubereles arranged in more or less regu－ lar rows obliquely deseending from the anterior edge in a slight forward curvature to the basal line，probably multiplying by implatation，the interspaces narrow，filintly depressed and irregnlarly striato－punctate， in a mature specimen there being about fifteen such rows rliverging from the anterior border and twenty to twentr five along the inferior border；the tubercles are large，conical，slightly eompressed laterally， or eecentric，with more or less distiuct trenchant edges，rising from a broad base，and beautifully sculptured by fine radiating ridges whieh abruptly terminate below in a faint constriction below which the broad base expands to the body of the spine．The posterior face，as pre－ viously remarked，is rery low and strongly keeled，the tateral surfaces gently concalve and coarsely striato－punctate in the same manner as the interspaces in the lateral faces；along the crest of the median keel near the apex ocenr obscure traces of what appear to have been denticles， but this denticmlate appearance may be the result of aceident．Base constituting more than two－thirds the bulk of the spine，line of inser－ tion distinctly marked by the termination of the tuberculose surface， below which it is gently compressed，longe elliptical in transverse section， anterior margin rounded and broadly curved inferiorly to the obtusely rounded extremity，posterior face deeply excavated by the pulp cavity， which latter apparently terminates at the jumetion of the posterior face with the line of insertion，exterior surface of the base eoarsely and irregularly striato－punctate．

The remarkable form above moticed is represented by a unique and quite perfeet example，which was discovered by Mr．Van Honnm，to whou we have dedicated the species．We are aware of but atsole other allied species，that deseribed by Dr．Lempy moder the name Asto－ raconthus siderius，（Dr．Joseph Leily，1sis，1ixt．Vert．Fanna，p．313， Il．ズX゙XII，f： 59, purporting to have been derived from the Lower Car－ boniferous deposits noar Clasgow，Temessee，and possibly belonging to the St．Louis division of the gronp．There seems to be no question as
to the generic identity of these two individuals, and their specific rela. tionship is doubtless most intimate. Howerer, the form under cousideration appears to be especially distinguished, as compared with that cited above, by its relatively broader base, the striation of which is posteriorly deftected instead of being nearly parallel with the anterior edge as represented in the Teunessee specimen, the tubercles are relatively smaller and more mumerous, with distinct cutting edges, and more fincly striated vertically, their apices being directed upward, though truncated from wear, as mentioned in the description of B. siderius.

Position and locality: In the upper beds of the St. Louis formation; Alton, Illinois.

Genus GLYMLMATACANTHUS, St. J. and W.

Fin-ray apparently vertically elongated and posteriorly arched, laterally compressed, the lateral faces converging to the more or less sharply rounded anterior margin, and occupied by stellate or vertically striated tubercles, arranged in longitudinal rows more or less nearly parallel with the anterior edge, but increasing by implantation below, and often disposed in irregular transserse or oblique rows. Posterior face and base unknown. Pulp carity posterior occupying half, more or less, of the transverse diameter of the spine.
The solitary fragment of ichthyodorulite affording the above diagnosis, would doubtless be regarded as probably referable to the Mesozoic genus recognized by Prof. Agassiz under the name Asteracanthus, but we believe we are justified in recognizing the distinction between them as based upon cren so indifferently preserved specimen as the example before us. The tubercles are much more closely arranged laterally, the interspaces between the longitudinal rows being exceedingly narrow and scarcely at all depressed; the tubercles are also much more delicately sculptured and their stellate character far less conspicuous than is the case with the Asteracauthi.

In the disposition and form of the tubercles there exists marked resemblance to the Drepanatouthi ; but the fragment here noticed presents in the apparent, howerer slight, posterior deflection in the descent of the rows of tubercles evidence of the postcrior curvature of the spine, which fact precludes its reference to the latter genus.

The tendency of the tubercles to assume more or less irregular transverse or oblique disposition, also recalls a similar arrangement of the tuberculation in the Oracanthi ; the massive structure and symmetrical proportions, however, together with the probable truneation of the posterior border, serve to define it from the typical eximples of that genus.

Glyminatacanthus Irishif, St. J. and W.

PI. X \subset II, Fig. 2.

Fin-spine attaining large size, modcrately curred, transverse section lenticular, (truncated posteriorly?) Lateral faces very gradually conrerging in a regular though slight convexity from the posterior to the anterior margin, which latter is sharply rounded, sides covered with numerous (above twenty) closcly approximated rows of strong, subconical, enameled and rertically striated tubercles, the impingement of which gives rise to irregular transerse or oblique arrangenent, which, but for its irregularity, is more conspicuons, though not so uniform as the longitudiual disposition, the tubcrcles being spaced by once to twice their diancter, the interspaces delicately striato-punctate verticalls, but with scarcely a trace or very faint intercostal sulcation, the vertical rows increasing by implantation below; individually the tubercles present much miformity in shape and size, being more or less circular or vertically oval, rarcly transcersely clongated though often two or more tnbercles coalcsce by lateral impingement, constricted at the base, aud rising into a low, obtusely conical prominence, whose more or less eccentric apex is generally abore the middle, and delicately sculptured by sharp radiating ridges. Postcrior face and base unknown. Pulp cavity large, probably limited to the posterior half of the spine and similar in transverse section.

The above described form, upon which the preceding geueric description is hascd, is represented by a fragment of a large spine which was probably at least ten inches in length when entire, but of which the part before us exhibits a section of about two inches along the anterior border; the posterior borders, unfortmately, are broken away, so that it is impossible to determine the character of the posterior face. As noticed under the preceding generic description, the affinities of the spine in question are somewhat doubtfully compared, on the one hand with the Asteracanthi, and on the other with Drepanacanthus. But in the absence of more complete material, its nature and relationship cannot be satisfactorily determined.

The species is derlicated to Mr. Cilarles Irish, the discoverer of the nuique specimen described.

Position and locality: In the upper beds of the Kinderhook formation; near Le Grande, Iowa.

Genus PHYSONEMUS, Agassiz.

The first authentic notice of the gems Physonemus, though first recognized by Prof. Agassiz, (Poiss. Foss., III, appended list of new and undescribed forms, we owe to the inrestigations of Prof. McCoy, who introduced a diagnosis of its generic characteristics in his work on the British Palæozoic Fossils, p. 638, wherein he notices the supposed original form referred to by Prof. Agassiz, Ph. subteres, together with the description of a species new to science, Ph. arcuatus, p. 63s, Pl. 3 I, fig. 29.

From the description above referred to, the spines were apparently regarded as having a posterior currature, reversing the relative position of parts, by which the conrex posterior border was supposed to constitute the anterior margin. Later, Messrs. Newberry and Worthen, in a notice of a remarkable species belonging to the Upper Burlington limestone, which they described in a preceding report of the Illinois Geological Survey, (Vol. IV, p. 373, Pl. II, f. 1,) under the name Ph. gigus, correctly interpret the position or forward curvature of the apex of the spine; and though comparison is made with Ph. areuatus, McCoy, of the Irish Carboniferous limestone, no reference is made to the generic diagnosis preceding the description of the latter form.

The material accessible to us, through the labors of Messrs. Springrir, Warnsinuti, Van Horne and ourselves, though not extensive, embraces more or less satisfactory representation of the several forms afforded by the various formations of our Lower Carboniferous gromp, first appearing in the Kinderhook or lowest member, and extending up into the Chester or upper division, from which latter a single sinall specimen lias come to our notice. With this material we have been enabled to arrive at a pretty thorough understanding of the generic peculiarities as represented in the several species now determined, and from which the following amended description is presented :

Dorsal spine generally strong, laterally compressed, deeply inbedded, curved with the apex directed towards the fiont. Exposed portion of the spine more or less flattened laterally, truncated posteriorly, rounded in front along the concave anterior margin which arises from a more or less prominent or laterally expanded shonlder ; lateral faces occupied by parallel longitudinal costre which bear sculptured tubercles whose apices are directed downward, and form a pair of perhaps less prominent costa, on either side of the anterior edge arise a row of similar but much larger, alternately disposed tubercles, which extend at least to the antero-inferior shoulder. Posterior face depressed (?) or convex and traversed by a more or less prominent median keel. Pulp carity relatively large, extending well towards the tip, and opening ont into a
more or less profound exeavation along the postero-inferior borders of the spine. Basal portion eompressed beneath the antero-inferior shoulder, often deeply notehed in front, and more or less produced anteriorly, terminating in an aeute or rounded extremity ; line of insertion marked by the termination of the costation of the exposed lateral faees. Attain large size.

A striking feature observed in a large eolleetion of these iehthyodorulites, is the denuded coudition of the external surface by which the tubereulation has been removed, and in most instanees every vestige of the eostation has also disappeared, learing a perfeetly smooth surface, in which latter condition they would be most puzzling objects but for the fortunate possession of specimens exhibiting rarious conditions of preservation. As often oecurs in spines whose surfaces are studded with prominent, isolated tubereles, the superfieial eharaeteristics are seldom preserved in other than mutilated eondition ; but it is notable amongst these Physonemi that very few examples show all the distinetise features of the genus, or more than the general outline, and under these circumstances a perfectly trustworthy definition of their speeifie charaeteristics cannot, in many cases, be given, or at least carried beyoud the particulars of form and proportion.

There are also other eharacters which pertain to the development of the individual, as indicated in apparently old and young specimens of the same species, by which the outline of extreme examples offers considerable contrast, as noticed in connection with the deseription of the Kiuderhook form, Ph. proclirus. But probably the origin of most of these eecentrieities in shape is directly traceable to the effects of abrasion, by whieh the eomparatively thin posterior walls of the spine have been destroyed, opening to view the entire extent of the internal eavity, whieh in the majority of specimens before us forms a more or less deep eliannel in the posterior faee, gradually beeoming obsolete on approaching either attenuated extremity. So gleat are the modifications in outline produeed by the aecidental removal of a greater or less extent of the posterior portion, that it is often difficult to appreeiate the specific identity of individuals exhibiting different degrees of abrasion, as instanced in the examples of $P h$. Altonensis of the St. Louis formation.

From the figures of Ph. arcuatus, McCoy, it is apparent Prof. McCoy possessed a nearly perfect specimen. The original of Ph.gigas, N. and W., of the Dpper Burlington limestone, though quite perfeet as to the eompleteness of the borly, the exposed surface does not exhibit the tubcrculose ornamentation of the longitudinal costie which formed a beautiful feature of its ornamentation, and which is shown in specimens subsequently obtained by Mr. Springer and one of the writers. The entire surface was beautifully tuberculated, the tubercles being closely
arranged along the costre or separated by a space equal to or exceeding their own diameter, very gradually diminishing in size posteriorly, but presenting a marked contrast in size to the large, widely spaced tubercles along the auterior margin, which, however, they intimately resemble in form and radiate-senpturing; the intercostal spaces abont equal the diameter of the ribs except along the auterior edge where they form a rather wide, gently depressed area ou either side. The lateral faces slightly converge posteriorly, giviug to the transserse section a longovate figure, the narrow extremity of which is truncated by the posterior face, which latter is but gently raised along the median keel aud faintly channeled either side, the postero-lateral edges forming an obtuse angle withont any sign of denticles, though such may have existed. The basal portion, as usual, is deeply excarated by the pulp cavity, which latter has a clavate section in the upper part of the spine; autero-inferior shoulder prominent, rounded above and moderately expanded laterally, beneath which in front the base is deeply notched and laterally compressed, and continued anteriorly into an obtuse point. Most of the examples of this form, of which we have liad for examination those of less than an inch in length to the fine original of the species which probably attained the length of ten inches, are in a perfectly nude coulition and much modified in outline by attrition. As compared with Ph.archutus, McCoy, these spines are proportionately longer aud narrower, and probably less strongly arched forward, and, as remarked by Messrs. Newherry and Worthen, the tubercles are less symmetrical or more eccentrically apiculate; more finely sculptured, and the large anterior ones apparently isolated by wide rertical spaces.

The chief distinction of the geuns as here defined, compared with Xystrucanthus, Leidy, of the Coal Measures, and Drepunacunthus, N. and W., consists in the relatively greater prominence of the antero-inferior shoulder, and the prevalence of a plain space of greater or less breadth either side of the anterior margin which is occupied by the comparatively extravagantly developed tubercles, distinctions which are probably of generic value. The first authentic examples of the latter genus appear in the Keoknk formation, and which are very closely related to, if indeed not identical with Jystracanthus, Leidy.

Professor Agassiz deseribed in the Poissons Fossiles (III, Pl. 1, fig. 7 and 8,) a species of dorsal spine from the Carboniferous limestone of Bristol, England, under the name Onchus hamatus, which presents a striking resemblance to deunded specimens of the present genms. Snb. sequently Professot Agassiz recognized the above species as the type of a distinct gemes, to whith he gave the name Cledaconthes, l'ois. Foss, III, appended list of new forms. In a list of the species of Carboniferous fishes contained in his collection, lindly communicated by Lord

Enniskillen, it appears that Cladacanthus paradoxus, Ag., is identical with, and, as I understand it, founded upon the Onchus hamatus. Since it appears very uncertain what relation Physonemus subteres, Ag., holds to the spines represented by Ph. arcuatus, McCoy, it may result in the transfer of all the species heretofore described under Physonemus, except Ph. subteres, the original form recognized by Professor AGAssiz, to Cladacanthus, Ag.

PHYSONEMI OF THE KINDERHOOK.

Ph. proclivus, Ph. depressus, Ph. carinatus.

Pl. XVIII, Fig. 1, 2, 3, 4, 5.
The following forms are determined from worn specimens, none of which retain a complete transverse section of the exposed portion of the spine, the posterior walls, which were donbtless very thin, having been destroyed, thus exposing to riew the internal carity which forms in the present condition of the spines a more or less deep channel in the posterior face in front of which the solid anterior body extends to the anterior edge. In shape and size the specimens exhibit much individual variation, and which may possibly be attributable to the greater or less abrasion to which the individnal specimens have been exposed, and by which their outline has becn more or less modified. Under these circumstances it is exceedingly difficult to determine the relative importance of certain characters, as the extreme erect and depressed position of the exposed body, the relative promincnce of the antero-inferior shoulder, and the anteriorly produced basal portion, though they may prove to be dependent upou age, or indicative of developmental origin.

Taking into consideration the apparent characters, in the absence of those which would afford a knowledge of the superficial ornamentation, but of which latter none of our specimens reveal the faintest trace, two, perhaps three, more or less distinctly marked forms occur, to which we have applied the distinctive terms Ph. proclivus, Ph. depressus and Ph. carinatus, in allusion to the predominant feature by which they are respectively distinguished in the imperfect state of prescrvation of the spines before us.

Pilysonemus proclivus. 1’l. XVIII, Fig 1,2.

Anthentic examples of the present form have thus far becn obtained only from the lower fish-bed of the Kinderhook, and of which there are
several in the collections of Messrs. Springer and Wachsmuth. It is especially distinguished by the erect or strong forward currature of the external body, the sharp anterior margin terminating below in the broadly expanded and slightly convex though laterally sharply defined antcro-inferior shoulder, which, instead of being notched in front, gradually narrows and slopes into the superior basal edge, terminating in a blunt point; the lateral surfaces are traversed longitudinally and nearly centrally by a distinct groove, transverse section near the middle sublenticular, the posterior face moderately chameled by the exposed pulp cavity. The largest specimen was probably above an inch in length.

Physonemus depressus.

Pl. XVIII, Fig. 3.

Is represented by a few imperfect specimens, also from the lower fishbed, which are particularly recognizable by their larger size, depressed position or comparatively gentle curvature, the antero-inferior shoulder broadly rounded from side to side, notched in front and produced anteriorly into a long, slender point; transverse section similar to the preceding form, perhaps less sharply rounded in front, and moderately excarated by the open pulp cavity behind. Length of the largest example above two inches.

Physonemus carinatus.

Pl XVIII, Fig 4, 5.
Two fragments of spines from the upper fish-bed of the Kinderhook, preserving the inferior portion, are the sole representatices of the present form in the collections. The spines were probably near the last above mentioned in form and position, and especially characterized by the more or less laterally compressed and keeled antero-inferior shoulder; more or less deeply notclied in front and prodnced anteriorly, and in transverse section laterally more compressed than is the case in either of the abore named forms. In size the specimens here referred to probably attained the length of two inches.

With the material in hands, however apparently well-defined the forms mentioned above, we are not prepared to express an estimate of the value of the characters upon which they are fonnded, nor can this be asccrtained withont the aid of larger collections and specimens showing the external ornamentation. But the study of the collections under consideration seems to anticipate at least two distinct species-the two
first mentioned may prove to be identical, their differences attributable to difference in age.

Compared with forms from other horizons, the first named, Ph. proclicus, bears perhaps closest resemblance to the Keokuk form which we have indicated under the name Ph. porvulus, but is apparently less robust and relatively shorter. That above referred to under the name $P h$. depressus equally resembles the medium size individuals in the Upper Burlington fish-bed, which we belicve to be identical with $P h$. gigas, N. and W., the only appreciable difference consisting in the relatively less strong and laterally more compressed figure of the present spines. The sharply carinated autero=inferior shoulder of the last described form, Ph.carinatus, distinguishes it from any form with which we have had the means of instituting a comparison.

Physonemus parvulus, St. J. and W.

Pl. XVIII, Fig. 11, 12.
This little spine is distinguished by the strong curvature aud proportionately stont build, the transverse section showing gently courex lateral faces which rapidly converge towards the anterior edge, the posterior face relatively broad, antero-posterior shoulder moderately prominent, gently conrex above, and reaching probably half way across the base postcriorly, below which the inserted portion is compressed, slightly notched in front, and terminated in an obtuse point. The largest specimen is a little less than one inch in length, about. 35 inch in breadth at the basal line, and about . 15 inch across the posterior face in the lower part of the exposed portion.

We have seen only a conple of specimens of this form, both of which are denuded of every trace of external ornamentation, and the posterior walls are worn awas, the posterior aspect being deeply channcled by the pulp cavity. One of these specimens, belonging to the collection of Dr. Willians, of Boonville, exhibits nearly the cntire outline and the basal region; the other, obtained by Mr. Worthen, though less perfect, shows the transverse scetion of an individual of abont the same size. Its stont proportions, strong curvature, and thick transverse section, distinguish it from Ph.proclicus, the young of Ph. gigas, N. and W., as also I'h. Chestcrensis.

Position and locality: Rare in the fish-bed horizon of the Keokuk limestone; Boonville, Missouri, and near Warsaw, Illinois.

Physonemus Altonensis, St. J. and W.

PI. XIX, Fig. 13
Fin-spiue attains large size. External portion erect, sublentieular in transverse section, rapidly tapering to the apex which is posterior to a vertieal median line, hight less than the horizontal dimension of the base, anterior margin regularly curved and forming one-fourth of a eircle, merging below into the laterally expanded, gently convex, elliptic anteroinferior shoulder, beneath whiel the base forms a sharp constriction; lateral surfaces tlattened above, very slightly eonvex below, gradually eonverging to the obtusely angular or ronnded anterior margin, more or less compressed inferiorly along the posterior borders, broadly expanded along the basal line, the denuded surface finely striatopunctate. Posterior face very gently and somewhat irregularly arched, occupied by a prominent median kcel and gently ehameled either side, postero-lateral angles well-defined above, inferiorly obsolete or merging into the body of the spine. Base sharply compressed beneath the antero inferior shoulder and deeply notehed in front, produced anteriorly into a long, slender point, posteriorly merging into the exposed body of the spine, and similarly striato ponctate, the channel of the internal eavity reaching to the cxtremity. Internal eavity large, extending mearly to the apex, lenticular or long.ovate in transverse section, the obtuse extremity anterior and encroaehing on the anterior wall towards the apex whieh is even slighter than the dense body along the posterior borders, and deeply excavating the postero-inferior margin. A large speeimen about seven inches in length, measures two inches in greatest diameter, . 60 inch in thickness, basal line about 4.25 inch, elevation of the external portion over the horizontal line eontinned from the shoulder above three inches.

All the speeimens of this speeies examined by us are imperfeet in the nonpreservation of the extcrnal ornamentation, of the speeial charaeter of which we have no intimation. The eolleetion of Mr. Van Horne affords a fine, large individual exhibiting the entire ontline of the spine, and perfect with the exeeption of the tubercnlose ornamentation; and from the same locality (Alton), Mr. Van Morne has obtained a smaller specinen, which latter is in the eondition of the majority of the speeimens of the genns, that is, the denuled external surfaces and the broken posterior face. Together, these specimens contribnte important data to our knowledge of the actual outline of the ichthyodorulite and the modifications produced by abrasion, and which is very similar in all forms. Thns the imperfect spine above referred to scarcely affords a suggestion of the cutire outline as it is exhibited in the large specimen,
and yet in every other respeet their resemblance is so intimate as to leave no doubt as to their specific identity. The breaking away and erosion of the posterior borders results in reducing the entire posterior aspect to a curred line corresponding more or less nearly with the anterior limit of the internal earits, the lateral walls becoming the boundaries of the more or less deep channel which it forms in the posterior side. In the spines under consideration, by this means the diameter of the body is reduced to less than one-third its entire breadth, besides greatly reducing its vertical elevation, so as to give the basal portion disproportionately large dimensions, though the anteriorly produced portion suffers equally from abrasion, being diminished horizontally and vertically to the extent of the thin lateral walls protecting the inferior prolongation of the pulp eavity; hence, it will be observed, the process of abrasion is chiefly confined to the posterior aud inferior borders, and in the successive stages of its progress, the region in the vicinity of the antero-inferior shoulder assumes suceessively a relatirely more and more exaggerated predominance.

Amongst some small spines obtained from the same formation at Pella, Iowa, there are several fragments of Physonemi, of which the only appreciable distinction, aside from their relatively diminutise size, eonsists in the truneation and broadly rounded extremity of the anteroinferior shoulder and the consequent rednetion of the noteh in front, the sharp superior edge of the base terminating at the edge of the shoulder. The condition of these latter spines recalls that of the Kinderhook form to which we have referred under the name Ph. proclivus, and which holds about the same relation in this particular to Ph. depressus of the same deposits, as do the present examples to the large" speeimens deseribed above, the origin of which may be partly due to abrasion and partly to the development of the spine.

Position and locality: In the upper beds of the St. Louis limestone; Alton, Illinois, and Pella, Iowa.

Physonemus Chesterensis, St. J. and W.

PI. XIX, Fig. 4.

Dorsal spine represented by a small and imperfeet specimen, in whieh the extemal ormamentation is entirely obliterated and the posterior portion worn away so as to expose the external eavity, which forms a moderate depression in the present aspect of the posterior face. The basal portion is also broken away, and the antero-inferior shoulder worn down so as to appear as a moderately laterally expanded, depressed prominenee. Ontline strongly eurved, transverse section long-elliptical,
truncated posteriorly, lateral faces flattened and nearly parallel in the posterior half, sharply rounded in front to the anterior margin, and marked in the worn condition by a comparatively deep longitudinal sulcns, slightly anterion to the anterior wall of the internal carity. Length along the strongly arched outline .40 ineh, lateral breadth near the basal line about . 16 , greatest thickness in same region .05 inch.

The specimen above deseribed may be recognized by its general symmetrical ontline and proportions, probably approaching the foung spines which we have referred to Ph. gigus, more closely than other determined forms; but the more strongly arched outline and flattened transverse seetion offer distinguishing features. It is also less lenticular in transverse section, and probably more gradually tapering than Ph. proclivus of the Kinderhook, with which, in the eondition of the sole representation liere noticed, it bears intimate resemblance.

Position and locality: Rare in the Chester formation; Chester, Ill.
In dealing with most of the forms of this genus of ichthyodorulites, we have been compelled, in most instances, to rely upon forms and proportions for discriminating features, and these have been given as they appear in the specimens examined, and which it is believed will require little modification, though the discovery of specimens which shall display those other superficial features most essential in the definition of intimately allied forms will largely add to our knowledge of the affinities of the foregoing forms.

Drepanacanthus reversus, St. J. anll W.

Pl. XIX, Fig. 5, 6.

A fragment of a dorsal spine, discovered by Mr. VanHorne, showing little more than an inch of the inferior portion above the line of insertion, appears to be referable to the genus Drepanacanthus. The spine is moderately curved and rather rapidly tapering, in which respect it approaches the Coal Measure form Xystracanthus acinaciformis nore closely than D. gcmmatus, N. and W., of the Keokuk limestone. Transverse section sublenticular, truneated posteriorly, lateral surfaces flattened or very slightly convex, gradually converging and rounded along the anterior margin, and occupied by numerous, probably not less than twents, tuberculose costa, spaced by less than their own diameter. The tubereles are quite variable in shape and degree of radiate sculpturing, varying from vertically to transversly elongated, culminating in a transverse apical crest over the inferior border, and more or less reg. ularly diminishing in size posteriorly, those of the posterior coste phain or relatively meagerly sculptured and more widely spaced vertically; but a marked peculiarity presented by the specimen is the apparent
reversed position of the apical crest in the large transserse tubereles along the anterior margin, the inferior declivity gently desceuding and the superior slope abrupt, as shown in fig. 5 b , enlargment showing the slightly eccentric middle row and the two large lateral rows immediately occupsing the auterior margin. The line of insertion is very oblique, indicating a correspondingly depressed or moderate inclination of the spine.

A specimen from the same horizon at St. Lonis, representing an apparently young spine, fig. 6 a, may prove to be specifically identical with the abore, haring the same general outline and showing the basal characteristics of the genus, or the inconspicnous antero inferior shonlder and general slender, elougated outline, but in a nude condition without trace of tuberculose ornamentation.

Position and locality: Rare, upper beds of the St. Louis limestone; Alton, Illinois, and St. Louis, Missouri.

Genus XISTRACANTHUS, Leidy.

Tystracenthes arcuatus, Lieny, Proc. Acad. Nat Sci. Phla., 1859 3; Extinct Vert. Fanua, Dr. Hayden's U. S. Geol. Survey of the Territories, 1873, p. 312, P.. XVII, fig. 85.
The above referred to genus and species was recognized by Dr. Leidy from a unique and nearly entire spine, discovered by Messrs. Hayden and Meek in the Upper Coal Measures at Leavenworth, Kansas. From the solitary example, which does not preserve the inserted extremity, it would be difficult to clearly define the characteristics of the spine, but which are quite apparent in the light of other and geuericalls identical specimens which have since been discovered in the Coal Measure strata of Illinois. On application, Dr. Lemy kindly loaned us the original specimen noticed by lim, a comparison of which with the Illinois spines conclusively establishes the generic identity of the latter with the Kansas specimen.

Allied to Physonemus, Agassiz, from which it is mainly distinguished by the more slender, straighter outline, and the less preponderance of the antero-inferior shoulder, it remains to be ascertained in what essential feature the spines of this genus differ from Drepanacanthus, N. and W., oceuring in the Lower Carboniferous formations. Presenting nearly the same proportionate characters, perhaps slightly more rapidly tapering, it would appear that we must look for distinguishing features, if such exist, in the style and arrangement of the external ornamentation. But as far as our observations extend, there would appear to be quite as great variableness in this respect amongst the Coal Measure forms as there is between them and the Lower Carboniferons forms. In view
of this marked similarity, it would seem highly improbable that the spines from the two periods are of more remote relationship than subgenerie, if, indeed, they prove not to be eongenerie.

The spine deseribed by Messrs. Newberizy and Worthen under the name Drepanacanthus anceps (Ill. Rep., Vol. II, p. 122, Pl. 12, fig.8), from the Upper Coal Measures near Springfield, Illinois, is generically identieal with the form above alluded to ; making with the two additional forms noticed below, in all four speeies at present known from the Coal Measures.

Xystracanthus mirabilis, St. J. and W.

P1. 20, Fig. 1.

Spine large, moderately eurved, anterior and posterior margins rather rapidly converging towards the apex, compressed laterally; sides flat, obtusely rounded in front, abruptly defined along the obtuse posterolateral angles of the gently arched posterior faee, which is rather strongly keeled with slightly ehameled spaces on either side, which slope at an angle of about 35°; pulp-eavity posterior to the median line, probably oblong or obtusely elliptieal in transverse section, lateral diameter less than half the greater diameter, lateral and posterior walls comparatively thin. Base unknown. Superfieial tubercles variable in form and size in different parts of the spine, arranged in elose longitudiual rows, which inerease by implantation towards the base, where they are relatively much smaller than nearer the apex; in general appearance they are slightly eonstrieted at base, abruptly rising along the inferior border into an obtusely angular and acuminate transverse crest, above whieh the surface gradually descends in a broad, smooth convexity to the low-rounded, inbeveled superior border, and ornamented by more or less distinct, irregularly disposed sharp carine; in front towards the base, the median line is oceupied by a row of medium-sized, narrow tubercles which extend probably two inches above the dorsal line of insertion, flanked on either side in the lower half by one, two or three rows of similar denticles, the exterior row continuing above in larger eceentric transverse prominenees which gradually change into vertically elongated, high crested tubercles towards the apex, furming. a prominent row on either margin of the median line throughont nearly the entire length of the exposed spine; behind the latter one or two rows of similar but much smaller tubercles oceur on either side. followed by mumerous rows which successirely diminish in size to the postero-lateral angles; the last row being composed of slightly larger denticles than the preceding; near the base there are forty five to filty of these rows, which diminish to halt that number two-thirds the
distance to the apex, in which region the tubercles are also relatively larger. The trausverse crest of the larger tubercles, especially those in front, often presents an exceedingly sharp carina, and though generally sinooth, sometimes the basal portion is marked by short carina; througiout the tubercles present a polished enameled surface, and are delicately ornamented with sharp ridges arranged in irregular radiating manner, sometimes reaching the summit, but generally confined to the borders, the upper slope being quite smooth. Where the tubercles lare been broken off, leaving only the cicatrices of their bases, the surface presents a longitudinally fluted appearance, the shallow channels or interspaces being fine striato-punctate similar to the smooth posterior face.

The remarkable ichthyodorulite herein described was discovered by Mr. JoHn Wolf, to whom we are indebted for the use of the specimen. It represents a spine the exposed part of which was probably ten to eleven inches in hight, two or three inches of the upper extremity having been lost, while the entire base, or that portion which was imbedded in the body of the fish, is broken away, ouly a faint trace of the smooth area which marked the junction of the dorsal line being visible in the middle angle of the broken spine. The body of the spine in the region of the pulp-carity is crushed so as to bring the opposite walls of the cavity in close contact, causing the distortion shown in the illustration, and which is the condition of nearly all the Xystraconthi. The anterior half retains its form, enabling the accurate restoration of the posterior portion. It is evident also that the opening of the cavity was situated rery low, if at all abore the dorsal line.

From the forms described from the Lower Carboniferous formations, under the term Drepanacanthus, the present species differ so markedly as scarcely to require detailed comparison; while its relation to other forms is noticed in the following description under X. acinaciformis.

Position and locality : In the carbonaceons shales overlaying coal No. 4 or 5 , Coal Measures; near Canton, Fulton county, Illinois.

Xistracanthus acinaciformis, St. J. and W.

Pl. 20, Fig. 2.

Spine gently arched forward, gradually tapering to the extremity, laterally compressed to a nearly uniform thickness which is about onefifth the greatest width, obtusely rounded in front, posterior face carinate with a slight channel on either side of the keel, postero-lateral angles sharply defined and forming a thin edge below the opening of the medullary cavity. Base more compressed, terminating in a sharp angle
in the auterior shoulder, extremity thin and rounded, gently and regularly arched with the posterior margin of the body, line of insertion distinctly maked by slight compression, and indicating a posterior inclination of the spine equal to 45° to 50 . Pulp-cavity olplong in transverse section, thickness about half the width, occupying the postelior half of the borly, and concealed for two thirds or more its length from the apex, below the opening of which it forms a deep groove gradually becoming shallower as it approaches the extremity of the broadly rounded base. The surface ornamentation above the basal portion consists of nearly round or oblong, obtuse and apparently smooth tubereles, slightly eonstrieted at base, arranged in longitudinal rows, also with obscure or irregular oblique rows ansending from the anterior to the posterior margin; the rounded anterior margin is oecupied by a single row of large transverse tubercles, flanked on either side loy rows of gradually diminishing tubercles, of which rows there are about fifteen in the middle of the spine on either side, flanked by a row along the posterolateral angles, which latter have their apices silghtly turned downard though not hooked; the vertical spaces between the tubereles are relatively greater in the posterior rows than in the anterior ones, white the rows themselves are closely crowded; the anterior tubercles are five times more bulliy than those of the posterior rows. The basal portion is faintly and irregularly striated vertiealls. Length of spine about fonr inches, breadth half an inch, thickness abont .16 inch.

The above description is based upon a nearly entire iehthyodorulite, which presents chanacters by which we are led to infer its specitic distinctness from allied forms described in the present and preceding Reports. Towards the base the tuberculose ornamentation has been worn off, as also patches in the body of the spiue; but their bases are still quite distinctly shown, exhibiting their arrangement in elose longitudinal rows. It is closely allied to N . anceps (N . and W. sp.) from the horizon of coal No. S, from which it differs in being proportionately thicker, less compressed along the anterior edge, and the monstellate or smooth tubercles, of whieh the larger ones forming the anterior row are more transerse than is the case in the above form. From J. mirabilis, with whieh it agrees in general proportions, it may be distinguished by the character of the tubercles, which neither possess the transverso earina or erest nor the stellate ornamentation characteristic of the latter form, besides the absence of the double row of large tubercles which ocenpy the anterior border in that form ; it is also apparently less erect, the dorsal line indicating a greater back ward inclination of the spine. In the present form the tubercles are apparently destitute of any seupptn"ing, low ind ronnded, with the highest point or obscure apex eecentric or shightly below the middle, which feature is perhaps more apparent
in the tubercles along the posterior angles than in those occupying the borly of the spine. It is possible these differences are merely characteristic of age, but as yet our materials are insufficient for the successful investigation of the development of these defensive spines. The relatively narrower and more strongly curced outlinc, and laterally elongated, sharp-crested tubercles distinguish I. arcuatus, Leidy, from the present form.

Geological position and locality: Discorered by Mr. Alex. Butters, in the carbonaceous roof-shales of coal No. 5, associated with Edestus Heinrichsii, N. and W., Petrodus occidentalis, N. and W., etc., Carlinville, Illinois.

Genus ERISMACANTHUS, McCoy.

Erismacanthus McCoyanus, St. J. and W.

PI. XXII, Fig. 1-5.

Fin-spine of medium size. Basal shaft nearly vertical or at right angles to the anterior and posterior arms, with a slight forward direction, very compressed, apparently in part at least due to pressure, the walls of the inserted portion being rery thin and readily yielding to external compression, bluntly rounded inferiorly, gently concare posteriorly, and correspondingly convex along the thickened anterior edge, which was exposed far down its extent, and terminated in a projecting shoulder, beneath which the true hase is slightly notched and obliquely truncated something after the fashion of Physoncmus; line of insertion gently and regularly arched from the antero-inferior shoulder to the angle of the posterior basal margin and posterior arm. Anterior spine long, very gradually diminishing towards the apparently obtuse extremits, more or less circular or oral in transverse section in the anterior aud middle region, compressed wear its origin, and marked by numerous relatisely large, depressed or subcouical tubercles, disposed in somewhat obscure oblique, crowded rows, orerspreading the lateral surfaces of the inferior portion or shaft, where they are relatively small and cren less regularly arranged, and extending along perhaps a third of the posterior margin of the posterior spine, those along the anterior (inferior) side of the anterior spine being somewhat proluced tubercles, whose eccentric apices are directed forward, and which constitute a row extending to the antero-inferior shoulder, but along the inferior edge they are much less prominent. The posterior arm consists of a relatively short spine, about one-third the lengtl of the anterior arm, rapidly tapering, moderately curverl, laterally compressed, low-inclineil, anterior margin thickest, and forming an obtuse angle at the point of
mion with the opposite spinc; posterior margin regularly curved with the postcrior basal wargin, lateral surfaces ridged with three or four low, rounded, cnameled longitudinal costa, rarely bifurcated, and spaced by about their own diameter, except in front, where a broad intereostal space intervencs betwcen the first lateral rilge and the broad, rounded ridge of the anterior margin. The posterior face is very iudistinctly shown in oar specimens, but appears io be of moderate breadth and ronuded or keeled; in one specimen from St. Louis, the tubercles, described above as ascending the lower third of the posterior facc, appear as high up as the middle, or even higher, where they form a single row of rather widely spaced, laterally compressed, hooked denticles, apparcutly confined to the keel or median line, as shown in figure 1a. The pulp carity is relatively small, sliglitly posterior to the centre, but it apparently expands inferiorly, occupying the greater diameter of the basal portion in the condition of a deep chamel opening along the posterior borders of the inserted slaft. A specimen of small size affords the following comparative measurements : greatest diameter of base .20 inch, hight to the angle of the anterior and posterior arms . 35 , greatest diameter of antcrior arm .12, diameter ncar extremity about .05 , length in a dircet line .95 ; greatest diameter of posterior spine .12 inch, leugth .31 ; the largest specimens attaincd at least twice the dimensions of that givell above.

The above species is represented by several fragmentary and more or less perfectly preserved specimens in the collection of Mr. Van Horne aud those of the authors, which afford sufficient details for the definition of their distiuctive characteristics, but which mufortumately do not exhibit certain features necessary for a perfect understanding of the generic characters, so far as they depend upon exterual features, and which are not apparent in the original described by McCoy. These consist in the imperfect condition of the extremity of the singular anterior appendage, which recalls in shape and position the bony appendage which arises from the cranial region of the existing Chimera, and the apparent distortion of the basal shaft and posterior spine, which renter it difficult to arrise at a correct understanding of the ontline and transverse sections, the pulp carity and the contour of the postcrior face. As mentioned above the posterior face of the posterior spine appears to be rounded or moderately kceled, the postero-lateral angles very obtuse, and in worn specimens scareely observable, but in others apparently oceupicd by an enameled ridge. A single small specimen in the collection of Mr. Van Horne, however, exhibits the superficial features of the posterior spine in nearly perfect state, showing the delicately ringed postero-lateral angles, and the median kecl bearing upon its crest a row of relatisely long, compressed, trenchant and slightly
hooked, closely approximate denticles, which might at first glance be mistaken for a continuons sharp enameled ridge, but which under the lens are seen to be isolated though very closely arranged denticles, their abrupt inferior acclivity risiug into a delicate transverse carina, the long superior slope culminating in a sharp ridge, as shown in figure $3 \mathrm{c}, \mathrm{d}$. Whether the approximate arrangement of the denticles observed in the above specimen is indicatire of specific distinctuess from its associates we bare not the means of determining; it is, however, probable that these closely arranged denticles gradually merge into the widely spaced and finally obtuse tubercles occuring near the base of the spine, as shown in fig. 1 a, and fig. 4 a.

In nearly all specimens the strong anterior ridge of the posterior spine is distinctly shown, thongh the lateral costre may be completely destroyed, and often so compressed basally as to appear like a flat scale withont the least indication of interual cavity, presenting in transverse section a wedge-shaped outline, the broad extremity formed by the anterior ridge. But an otherwise much wom individnal obtaiued by one of the writers at Alton, and the first example of the gemns found in our rocks, fortunately shows the entire section of both arms, thongh the base as usual is flatly compressed. In the latter specimen the posterior spine in the upper third has an ovate transverse section, the pulp cavity occupying about one-third the diameter, aud subcentral or situated within the posterior two-thirds of the diameter; it donbtless rapidly expands inferiorly, where the comparatively thin walls offer slight resistance to pressure exerted from without, as is the case with the basal region. The anteriorls prodnced appendage is traversed throughout by the internal cavity, which is continuous with that of the posterior spine and basal region, inclosed inferiorly by very thin walls, but diminishing towards the extremity, where the pulp eavity is abont half the dianeter of the body of the spine, and closely crowding the superior (posterior) wall, while along the inferior (anterior) side the inclosing walls are relatively massive. From these facts alone, even in the abseuce of any knowledge of the direction of the inserted base in relation to the extermal processes, the relative position of these appendages would be readily inferred from the posterior position of their interual cavities.

Intimately allied to F. Fonesii, MeCoy, of the Carboniferons limestone of Armagh, Ireland, it is chiefly distinguished by the more resticted posterior extension of the tubereulose surface, which in that form extends up the posterior spine a thitod of the distance from its base, and the less nmmerons costie which reach to an oblique line descending from the angle of divarisation. Whether or not the apmarent dissimilanity in the transverse sections of these spines is real, or that the flattenced
condition of the specimen figured by McCor, Brit. Pal. Foss. p. 62s, Pl. 3 k , fig. 26,27 , is attributable to compression, we have no ureans of determining.

The present species is dedieated to Professor McCoy, who first reeognized the generic pecnliarities of this remarkable genus of ichtlyyodornlites, as a slight testimonial of appreciation of his labors in this field of palæontology.

Position and locality: Not uncommon in the upper beds of the St. Lonis limestone; Altou, Illinois, aud St. Louis, Missouri.

Genus' ATLACANTHUS, St. J. and W.

Dorsal spine firmly implanted, curved forward, more or less laterally compressed, posterior face trnneated and longitudinally keeled or denticulate aloug the median line, ronnded in front along the concave anterior margiu, which is oceupied by a row of more or less strongly developed tubercles, which extend from apex to base, lateral surface longitudinally traversed by irregnlarly spaced, bifurcated, tuberculose costre, that bordering the yostero-lateral angles bearing laterally compressed denticles more or less similar to the posterior keel, the tubercles in the front rows radiately sculptured. Spines of small or medium size.

In the above genus is recognized the form originally described by Messis. Newberry and Worthen uuder the name Homacanthus gibbosus. As inferred from the above generic diagnosis, the spines here referred to are entirely distinct from Homacantlus, Agassiz, their affinities being with Tystracanthus, from which latter tliey are distinguished by the peenliar truncated or serrated condition of the posterior keel, as also the character of the costation and the tuberculose anterior region.

Atiacanthus gimbosus.

Pl. XXII, Fig. 6.

Homacanthus gibbosus, Newberry and Wortira, 1866, Geological Survey of Illinois, Vol. II, p. 113, Pl. KII, Fig. 1.
The species is characterized by the gentle, regular currature of the spine, which gradually tapers from the somewhat expanded base to the obtusely pointed apex, laterally compressed, subelliptical in transverse section, anterior margin angularly rounded, supportiug uumerous, relatively strong, acute, generally slightly recurved, vertieally seulptured tubercles, which rise from a broad base, closely aud regularly spaced in the upher lalf or two-thirds, gradually increasing in size towards the hase, where they are apparently less regularly and more widely spaced. 'Tlie lateral faces present five to seven, or more, relatively strong coste,
which are widely spaced above, but approaching the base frequently bifurcate, becoming more erowded and scarcely distinguishable from the intercostal ridges, which latter also bifurcates, and of which there are two to four in the upper intercostal spaces and separated by delicate punetate sulci; the costa swell at regular, though rather widely spaced intervals of four or five times their diameter, into obliquely elongated tuberculose prominences, the inferior bifurcations being more frequently interrupted, and the anterior ridge marked by distinct conical, closely arraiged tubereles, similar to those in the auterior margin, but smaller; the intervening anterior intercostal space is relatively wide, the bifureated ridge below terminating in isolated, minute tubercles. The posterior faee is abruptly truneated, the median line oecupied by a row of prominent, laterally eompressed, vertically elongated, confluent, smooth denticles, whose apices are directed slightly downward, and forming an interrupted and deeply notched keel; the postero-lateral angles oecupied by a strong ridge bearing tuberenlose denticulations, similar to those of the posterior keel. Base strong, rapidly converging inferiorls, deeply inserted forward at an angle of abont $50{ }^{\circ}$ with the dorsal line. Pulp-carity small, suborate or circular in section, and situated posterior of the middle. The largest specimen known attains two and a half inches in length, greatest diameter in the middle . 12 , thickiness abont .05 ; pulp-cavity about .03 in greatest diameter at the same point.

A rare form, we have had for examination only a few fragments of spines, besides the beantitul and well-preserved original speeimen described by Messrs. Newberry and Worthen. But so strongly marked are the generic ind specific characters in these spines that the merest fragments, showing the superficial ornanentation and seetion, are sufficient for their identification.

Position and locality: Upper beds of the St. Lonis limestone; St. Louis, Missomri.

Genus MARRACANTHUS, St. J. and W.

Dorsal spine nearly straight or with a forward curvature, obtusely terminated, rounded in front, truncated behind or rounded into the pos. terior face, which is longitulinally tidged in apmarent continuity with the lateral coste. Lateral face and anterior margin longitudinally ridged, the costa being tuberenlated, those in front more or less strongly develoned, with their apices directed upwards, and espectally in the mper part where they gradnally increase in size, forming strong, more or less deflected hooks, framsiomsely carimated; intertostal spaces minutely rialged and striato-punctate. Bate moderately inserted; form-
ing a comparatively thin plate, more or less laterally expanded posteriorly from the angular ridge in front, with more or less prominent marginal angles behind. Pulp-cavity moderately large, similar in section to the body, and occupying the posterior two-thirds of the diameter of the spine. The spines thus far determined are of small size.

The present genus is founded upon Homacanthus rectus, N. and W., which constitutes the sole representative species at this time known. It is perhaps more intimately allied to Amacanthus than it is with Tystracanthus. In costation it is strikingly like the former genus, while the transsersely carinated tubercles bear some resemblance to the latter, thongh their convexity is reversed, besides they are less individualized, their connection with the costre being more intimate than is the case with the tubercles in either Nystracanthus or Batacanthus. The uniform distribution of costre in the anterior region as well as in the posterior portion, and the peculiarly expanded base, constitute its most marked contrast with the former genus. Were the posterior face uniformly ridged with the lateral surfaces, which it certainly appears to be, its aftinities shonld be transferred to Butacanthus, probably holding an intermediate relationship with that genus and Amacanthus.

In the antero-posterior compression, especially as ohserved in the flattened base of insertion, it is interesting to note the analogy to the sting with which the candal appendage of some of the lays (Trigon, etc.) is armed.

Marracanthus rectus.

Pl. XXII, Fig. 7-9.

Homacanthus? rectus, Newberly and Wormien, 1eG6. Geol. Sur. Ill., Vol. II, p. 115, Pl. XII, fig. 6.
Dorsal spines of small size, deeply imbedded, inclined backwards at an augle of about 50° with the dorsal line, very gently carved forward, gradually and unifombly tapering towards the extremity, transverso section subtriangular. Lateral faces gently arched, rapidly converging to the rounded anterior margin, beveled along the posterior margins, with fise to eight moderately prominent angular costr, closely arranged and rarely bifurcated in the posterior portion and the three or four ridges occupying the anterior border, bat interrnpted in the anterior half by a row of large tubercles, which often extends half way or even more towards the base in mature individuals, flanking the margin on either side, and extravagantly dereloped near the apex, which they terminate in two strong beak like hooks; these singular tubercles are more or less laterally compressed, the thin concave inferior slope rising into the mote or less acntely rounded apex, the superior slope abruptly descending in a broad conrexity, merging laterally in the kecled crest, enameled
and apparently smooth. The costæ bear similar but comparatively minutc tubercles, occurring quite regularly at intervals equal to fonr or fire times their diameter, diminishing in size posteriorly, where they are also less transrerse. Intercostal spaces form narrow, punctate sulci in the posterior region, with one or two slightly wider ones in the middle, which are trascrsed by a thrcad-like line. Posterior face flattened, rounding into the postero-lateral angles, and apparently longitudinally ridged with abont fise delicate, faintly tubcreulated costæ, vers like and in continuation of the lateral costa. Base comparatively thin, sharply earinate in front, latcrally expanded, the posterior margins somewhat rapidly diverging from abore, forming an obtuse angle, from which the inferior borders are broadly rounded to the extremity, presenting from the front concare surfaces gently descending and laterally expanding from the anterior angle, in outlinc spatulate. Pulp-carity relatively large, transverse section more obtuse in front and equal to about half the diameter of the body, posterior walls about half the thickness of those in front, and opening at or just below the dorsal line in the posterior side, forming a rounded, broad excaration in the inner face of the base. A mature specimen measures little more than two inches in length, of which the base constitutes about one-fourth.

The form described is abundantly represented in our collections by more or less perfect specimens, exhibiting various stages of growth, the study of which has furnished a very clear idea of the persistent characters, as well as those attributable to age. In young specimens the tuberculation is generally more conspicuous, and the outline quite erect. Considerable variation in the relative extent of the series of large tubercles flanking the anterior margin on either side is noticed in individuals of different sizes, and therefore is apparently of mercly individual importance. But in the majority of specimens these large tubercles do not descend below the middle of the spinc, while in a few individuals they extend eren to the base. It is rare to find a specimen which exhibits the postcrior face, and our linowledge of the character of its surface has becn derived from carefully developing perfect spceimens by cutting away the uatrix. By this means the costate condition of the entire external surface of the spincs has been conclusively demonstraterl, and which offers a marked distinguishing peculiarity as compared with the scrrated keel of Amaconthus gibbosus, with which the present species was originally generically associated.

Position and locality: Uprer berls of the St. Louis limestone; Alton, Illinois, aud St. Louis, Missouri.

Genus Batacanthus, St. J. and W.

Spines long, more or less gradually tapering and enrved formard, terminating in an obtuse or turgid apex, in transverse section subcircular or oval, without distinctly defined anterior angle and posterior face, the lateral snrfaces romuding regularly into either margin, and ocenpied by more or less distinctly stellate tubercles arranged in longitndinal rows, with faint intereostal sulci, and less regular diagonal series; the tnbereles are often mueh produced along the concave anterior side, especially on approaching the smmont, where they form in some instances strong, hollow hooks, bristling the swollen extremity, and sometimes forming a few rows of obtusely conical tubercles in the posterior side for a greater or less distance below the apex. Base moderately inserted, tapered inferiorly. Pulp-carity subcentral or nearest the posterior border, similar in section to that of the body of the spine; and apparently coneealed thronghout the extent of the external body.

Perhaps the most marked peculiarity of the spines above designated consists in their symmetrically rounded transverse section and absence of a defined posterior face. In enrvature they resemble Fystractenthus and Marracunthus, with whieh latter their affinities would appear to be most intimate, as indicated by the dentienate eharacter of the tubereles towards the extremity.

As here minderstood the genns embraees Drepanacanthus? stellatus, of Newberry and Worthen, who have remarked its anomalous character, (Ill. Rep. II, p. 125), and possibly the large spine deseribed by Prof. Agassiz from the Carboniferous limestone of Bristol, England, nnder the name Oracanthus piustulosus, (Pois. Foss., I II, p. 15, Tab. 2, fig. 3, 4,) which presents apparently the same arrangement of the tuberculose ornamentation and similarly rombed anterior and posterior borders, while the thickened wall inclosing the pulp-carity along the coneave side would seem to indicate the reversed or anterior curvature of the spine, the base not being preserved in the original noticed by Professor Agassiz.

A small iehthyodornlite from the Carboniferous limestone of Russia, described by Col. Romanowsky under the name Myriacanthus semigramilutus,* may also prove to be referable to the genus here reeognized. The latter form is distinguished by its straight, very gradnally tapering ontline, nearly circular transserse seetion, with a large central cavity, and bearing externally along one side two rows of obtuse, closely arranged tubercles; the base is not shown in the specimen, which is

[^28]about. 1 inch in diameter, and probably above one inch and a half in length.

The species thas fir determined belong to the Lower Carboniferons formations, and that described under the specific term B. buculiformis is regarded as the typical representative of the gemms.

Batacantmus baculiformis, St. J. and W.

Pl. XXI, Fig. 4, 5, 6, 7, 8.

Spines of medium size, gently eurved and vers gradually tapering from the base toward the turgid, blnntly terminated summit, transverse section oval, slightly compressed posteriorly, and uniformly rounded along both margins. External surface occupied by ten to thirteen, more or less, faint longitudinal costie in either side, separated by a narrow sulcus, and bearing mumerous radiately seulptured tubereles, arranged in more or less regular oblique series gently deseending from the anterior to the posterior border, though subject to considerable rariation in the latter respect, especially in the posterior region, where the transcerse arrangement is very irregular. The tnbercles in the anterior portion of the spine, where their apices have been more or less abraded, are obliquely transucrse or crescentiform, the concare side toward the apex, and vertically spaced by three times their own diameter; posteriorly they become slightly elongated vertically, and more acuminate, smaller and more crowded, their cecentric apiees, as in the anterior rows, generally directed above. Towards the summit the tubercles suddenly derelop iuto strong, conieal processes, which are apparently smooth, and which form a singular bristling armature of the turgid extremity, occupying the greater part of the lateral surfaces and the anterior margin. Base, as shown in a fragment of a small spine, inserted at an angle of about 40° with the dorsal line, strong and tapering to an obtuse point, excavated posteriorly. l'ulp-cavity neally laalf the diameter of the spine, lateral walls nearly the same thickness as the posterior, and about half the strength of the wall along the concave anterior border, extending quite to the summit, and probably opening posteriorly below the line of insertion. A specimen half an inch in greatest diameter near the base probabiy attaned seven or eight inches in length, about the dimensions of the largest examples at present known.

The fraçments of spines of the present speeies are readily recognizable by the transverse and gencrally obliquely arranged tubercles of the anterior region, their posterior half being generally distorted by the yielding of the thin walls inclosing the pulp cavity to external pressure. A beantiful example which we owe to Mr. Wachsmumin, showing nearly
an entire spine, wanting only an inch or two of the inferior extremits, exhibits the comection of the singular swollen apex, with its clawshaped tuberculose processes, to the body of the spine, a relationship which would liardly be suspected were tho two parts found detached, as they gencrally are. The large spinose hooks of the extremity in this specinen seem to be traversed by a cavity comecting with the internal or pulp-cavity, and tilled with a soft chalky substance. Other specimeus, however, exhibit, on remoring the smooth external shell, an inner dense core, but with an exceedingly delicate perforation, which is appareutly in direct communication with the coarse medullary canals which traverse the body walls.

Position and locality: Not common, fish-bed horizon in the upper part of the Keokuk limestone, Lagrange and St. Francissille, Missouri ; Keokuk, Iowa; and possibly in the fish-bed of the lower or division beds at Nauroo, Illinois.

Batacanthus stellatus.

Pl. XXI, Fig. 1, 2,3.
Drepanucanthus? stellatus, Newbelimy and Torthes, 1860, Geol. Sur Ill., Tol. II, p. 125, Pl. XII, fig. 7.
Spines of medium size, gradually tapering to an obtuse point, moderately curvod, transverse section subovate, lateral surfaces compressed and regularly rounded into either borler. Lateral face marked by twelve to sixteell, move or less, obscure, closely approximated, longitudinal costa, ornamented in the middle region by delicate, subconical, strongly sculptured tubercles, separated vertically by twice or three times their diameter, and arranged in irregular diagonal order, the series generally extending obliquely upwards from the anterior border. Towards the upper part in the convex posterior side the tubercles become suddenly eularged to several times their dimension in the lateral faces, widely spaced vertically, laterally compressed or vertically elongated, strongly ridged, with their obtuse, eccentric apices below the middle, and forming about five rows embracing the rounded margin; in the lower portion of the spine the tubercles of the posterior border present searcely appreciable difference in size and form from those in the lateral faces. Along the anterior border, and perhaps extending nearly to the base and probably reaching to the apex, several more or less regular rows, at least four in some examples, of strong, more or less laterally compressed, trenchant, recurved denticles occur, those on either side of the median line being largest, and apparently irregularly interspersed with small tubereles similar to those in the lateral surfaces; the large denticles are sometimes scattered at irregular intervals in the body of the spine, especially in the upper portion, and in most iustances
they are strongly ridged vertically, though the two largest anterior rows are generally quite smooth, probably in consequence of wear. Base unknown. Pulp-cavity of moderate size, in section similar to that of the body, rapidly diminishing in diameter above, the posterior wall exceeding the thickness of the lateral walls and abont half that of the anterior wall. The largest examples attain seven inches or more in length.

The species originally described by Messrs. Newberry and Worthen was hased upon an imperfect, worn specimen, obtained from the georle beds immediately overlaying the Keokuk limestone. Sulusequently additional and in some respects more perfect material has been obtained, the study of which has afforded a clearer knowledge of the generic as well as specific peculiarities by which these spines are distinguished.

Our specimens do not show the actual extent of the denticles in the anterior border, indeed they wonld seem not to reach beyond the middle descending towards the base, thongh this appearance may be deceptive. In a much worn fragment of a large spine, which we have doubtfully referred to this form (fig. 3, Pl. XXII, the lateral tubercles become somewhat transverse in the lower antenior portion of the spine, recalling the slape of the tubercles in the preceding form ; but the specimen is generally so abraded, except along the anterior margin where the strong denticles are still preserved, as to render the determination of its identity with the present form unsatisfactory.

The form here described strikingly resmbles B. baculiformis, with which it is associated, bnt mas be recognized by its perhaps more tapering and curved outline, less tumid apical extremity, more compressed lateral surfaces, and the opposite direction of the oblique disposition of the tubercles; also the oceurrence of strong tuberculose denticles along the anterior border, as also in the upper portion of the posterior side, offer marked contrast to the form cited abore.

Position and locality: Not common, in the fish-bed horizon of the Upper Keoknk limestone, at Hamilton, and in the immediately superimposed geode bed at Warsaw, Illinois.

Genus GAMPSACANTHUS, St. J. and W.

Spines long, laterally compressed, tapering, curved backward (?). Lateral faces obscurely costate longitudiually, ormanented with more or less regularly disposed, radiatingly semptured or nearly smooth tubercles, whose apices are directed upward, often interspersed with larger tubercles of the same style, especially in the eonvex borler; postrrior or concave margin oecmped by large, laterally compressed, subtrenchant denticles, slightly curved downward, widely spaced, of nearly uniform
size, or diminishing inferiorly, sometimes with minnte downward-hooked tubercles in the interspaces; apex armed with one or more strong denticles similar to those occurring in the concare border. Base transversely expanded and more or less laterally dilated, apparently not inserted or but slightly buried in the integuments. Pulp-civity large, nearly central, walls thiu below, more dense near the apex, and apparently thickest in the convex margin. Spines of small size.

The abore general description applies to two or three forms occurring in the St. Lonis and Keokuk limestone, and which hare close affinities with the spines indicated under the designation Lecracanthus. Their main distinctive featmes are the uniform denticulation of the concare margin and the apparent greater regularity in the longitudiual arrange. ment of the tubercles in the lateral faces. The character of the base is not well shown in the specimens before us, but it apparently intimately resembles that of the spines just referred to, and was probably lightly imbedded. In the latter particular, and the posterior curvature, these spines differ widely from Batacanthus, with which they have certain resemblance of general outline. The form of the larger tubereles, such as occur in the convex border of some of the species, bears a striking resemblance to the large anterior tubercles in Dipriaconthus, McCos, and the resemblance is further carried out in the peculiarly expanded base. But Prof. McCoy does not mention whether the form described by him was a hollow spiue, though he compares it with Orucanthus, but particular stress is laid on its resemblance to the comparatively solid, articulated spines of some of the Siluroids ; while those muder consideration undonbtedly belong to Selachians, the character of the basal attachment strongly suggestiug relationship with the Rays or Myliodonts.

Gampsacanthus typus, St. J. and W.

Pl XXII. Fig. 12.

Spines of small size, considerably curred, and gradually tapering, the basal portion very thin and more or less expanded before and behind, the apex apparently bluntly terminated and possibly armed with three or four flattened processes, that behind (?) largest and in all respects like the posterior denticles, that in frout smallest, with an intermediate one, possibly two risiug from either lateral face immediately beneath the crest. The body of the spines is almost invariably crushed flat, but a fragment of apparently the same form shows an oval transverse section, a rely large and nearly central pulp-cavity extending to the tip and thin lateral walls, thickened in the margins, that of the conrex margin apparently strongest; this would seem to indicate the posterior curvature of the spine. The lateral faces are marked with
delicatc scutiform tubcreles, arranged in quite regular longitudinal rows, closely approximated laterally, and rertically spaced by once to twice their diametcr, though irregular and often crowded towards the base, and interspersed with large, similarly shaped tubercles, which form perhaps three, more or less, rows in cither face, widely and irregularly spaced vertically, except in the convex margin, where they are more numerous and more uniform in size and disposition; the tnbercles, large and sinall, are oral in outline, with delicate arched transverse crest, the acutely rounded apex directed abore and generally projecting beyond the base of the abrupt concare supcrior face, the inferior side gently sloping and faintly sculpured with radiating ridges; the smaller tubercles are generally more nearly circular or transversely oval, their snm. mits adpressed, while the larger ones are longer and often produced into a sharp-pointed apex. The intercostal spaces are more or less clearly defined by a sharp impressed line, and the interspaces, or costæ, between the tubercles are delicately striato-punctate. The concare margin is set with a row of strong, laterally compressed, subtrenchant, tubercles or denticles small or faintly striated vertically at their cxpanded bases, slightly curved or hooked downward, widely spaced, the distance regularly dccreasing towards the apex, a medium size specimen bearing perhaps six to eight denticles. A specimen one and a half inches in length has a transrerse diameter ucar the middle of about . 12 inch, probably as great again as the lateral diameter.

The few specimens of the above described form which we have examined, though more or less imperfect in one or other respect, are singularly persistent in their distinctive charactcristics. Only one example preserves the extreme apex, which presents the appcarance described above, while its body ornamentation is precisely like that observed in other indiriduals. Onc large finc specimen obtained by Professor Wortuen, at St. Lonis, shows the very thin, transversely expanded base, so very like that of Lecracanthus unguiculus.

Position and locality: Upper beds of the St. Louis limestone; Alton, Illinois ; St. Isouis, Missouri.

Gampsacanthus squamosus, St. J. and W.

II. XXII, Fig. 13.

Spines proportionately short, rapidls tapering, very slightly curved backward, apex obtusely pointed or terminated in a strong, slightly curved spur, basal borders expanderl, transverse section elliptieal, though usually flattened by pressure. Lateral smfaces thickly studded with relatively large tubercles, arranged in more or less regular longitu-
dinal rows and diagonal series in both directions, vertically spaced by about their own diameter, closely approximated laterally, largest and most crowded in front and occupying the convex margin, apparently scattered posteriorly, abruptly truncated above with an arched transverse crest, sloping below and more or less distinctly radiatingly striated, though geuerally quite smooth. The costie do not appear to be distinctly defined; the vertical interspaces beneath the tubercles are finely striated, or striato-pmetate. The posterior or concare edge set with rather strong, laterally compressed; slightly downward curved denticles, spaced by little more than their diameter, and rapidly diminishing in size inferiorly. A specimen, probably imperfect, half an iuch in length, measures about . 20 inch across the expanded base.

The form described is known from only two specimens, one of which is quite perfect so far as relates to its external features, though the basal portion is donbtless broken away. It is most intimately allied to G. latus of the Keokuk limestone, both in shape and general ornamentation; the only marked distinguishing feature being the less strongly senlptured tubercles and their more crowded arrangement.

In case the specimens noticed represent nearly the entire length attained by the spines, of both these forms, one can scarcely fail to recognize affinities which almost equally ally them with Pnigeacautlustheir chief distinction, assuming their basis of support to be the same, consisting in the occurrence of a row of strong denticles in the concave margiln.

Position and loculity: Upper beds of the St. Lonis limestone; St. Louis, Missouri.

Gampsacanthus? latus, St.J. and W.

Pl. XX11, Fig. 14.

A fragment of a spine, discovered by Dr. G. A. Williams, showing about half an inch of the upper extremity of a mediun-sized specimen, seems to be allied generically with the form noticed under the name Gampsacanthus typus. The specimen is characterized by its somewhat rapidly converging anterior and posterior margins, terminated in an obtuse point, laterally compressed, broadly rounded in the gently arched convex margin, lateral faces apparently slightly converging to the more sharply rounded concave margin, which is occupied by a row of very strong, slightly compressed and recurved denticles, which are smooth or perhaps faintly ridged vertically, widely spaced and apparently diminishing in size below, where they may assume much the appearance of the tubercles. The flattened or very gently arched lateral faces and convex border present munerons scute-like, coarsely stellate tubercles,
whose apiees are direeted towards the summit, and more or less regularly arranged in elosely approxinated longitudinal rows and oblique series in both direetions, vertically spaeed by onee to twice their diame ter, and of nearly uniform size, or diminishing in size above. The interspaees are oeeupied by rather eoarse, interrupted striæ, with more distinet but irregular intercostal sulei. Pulp-eavity very large.

The solitary fragment under eonsideration exhibits so small a seetion of the spine as to render a perfeetly satisfatory eomparisoll with other forms impossible. The charaeter of its tubereulation bears a marked resemblance to Pnigeacanthus deltoides, as also the rapidly tapering outline; but the presenee of strong denticles in the eoneave margin, also the more definite longitudinal disposition of the tubereles in the lateral surfaees, distinguish it from that form, and at the same time present close affinities with Gampsacanthus, to whieh it is here referred.

Position and locality: In the upper fish-bed horizon of the Keoknk limestone ; Boonville, Missouri.

Gends Lecracanthus, St. J. and W.

Spines elongated, laterally compressed, ronnded in front and behind, tapering posteriorly (?), enrved, base expanded before and behind, very thin, apparently resting upon or but slightly imbedded iu the integuments, apex more or less transversely expanded and armed with strong denticles. Lateral surfaces rounded into either margin, and ocenpied by irregularly disposed stellate tubereles, those in the upper portion have their apices above the middle, while in the lower portion of the body they are more symmetrical, or subconical. Pulp cavity very large, eentral, the inclosing walls eorrespondingly thin, apparently thickest in the eonvex margin. Spines of small size.

The spines here indicated are closely allied to Pnigeacanthus, apparently possessing the same basal expansion and very similar tuberenlation of the lateral surfaces and borders. The tubereles appear to be uniformly distributed in the sides and anterior and posterior borders, though they are sometimes enlarged in one or other margin, large and small intermingled withont distinet arrangement. But the most marked distinguishing feature is the singularly distended, spinose tip, which presents a striking eontrast to the simple tuberculated apex of the above mentioned spines. In gueral outline, and perhaps tuberculation, these spines seem to be intimately related to Dipriacanllus, MeCoy; but their relationship is no more intimate than is that of Gampsacanthas, while the description of Dipriacanthus (Brit. Palae. Foss., p. 627, L'l. 3 k , fig. 18,) does not permit the satisfactory determination of its affinities with either of the genera here indicated.

Legracanthus unguiculus, St. J. and W.

Pl. XXII, Fig. 10, 11.

Our collections contain numerous fragmentary remains of a peculiar form, the exact affinities of which it is difficult positively to detcrmine, but which seems to be closely allied to Pnigeacanthus (Oraeanthus pnigeus, N. and W.) The specimens in no instance, save one, show the entire length of the shaft; they are about equally abundant, portions of the inferior body and short sectious of the curiously spinose tip. But one specimen, found at St. Louis, shows the connection of the almost universally dissevered parts, though it is not improbable some of the short specimens may prove to be immature spiues. It is quite conjectural whether the direction of curvature was forward or backward. If, as is inferred, Pnigeacanthus was curved in the latter direction, assuming from the character of the thin, transversely expanded inferior portion, which presents no appreciable differences distinguishing it from the abore genus, then these spines are probably similarly arched posteriorly. The body walls are exceedingly thin and of nearly uniform thickness, perhaps slightly strengthened in the margins; in colsequence of their frail build they are almost alwass crushed, the inner surfaces of the walls more or less closely approximating. But in the collection of Mr. Van Horne, a fragment of a rather large individual exhibits the sublenticular trausverse section quite satisfacturily, showing the large internal cavity and compressed or gently arched lateral surfaces, which are rounded into the broad con udre (posterior ?) margin, and from which they gradually converge to the narrower and more sharply rounded consex side. The curvature, viewed from the side, is considerable, the basal portion rather suddenly expanding both in front and behind, but none of the specimens retain any indication of an inserted extremity, on the contrary, the inferior borders become exceedingly thin, and, as mentioned by Messrs. Newberry and Worthen in connection with Pnigeacanthus (O. pnigeus), the structure is that of semi-osseous cartilage, the osseous particles of which, in the process of growth, becomes firmly impacted in the body of the spine. The middle portion of the shaft to near the extremity is of nearly uniform dimensions, or very gradually tapering to the suddenly and irregularly expanded apical extremity, which appears to be thrown slightly forward and terminated with several strong, talon-like, smooth processes or denticles, which spring from the anterior (?) margin and lateral surfaces, more or less compressed laterally, rounded and thickest along the conrex side, and curved forward. In many examples occurs a sulden tuberculose expansion in the posterior (?) margin of the spine just beneath the tip, and
whieh is probable a persistent feature of the form. The surfaces of the spine are studded with relatively large, coarsely stellate tubercles, interspersed with smaller ones, and more or less irregularly disposed, and whieh are eoarsely sculptured in radiating ridges, though generally worn smooth, abruptly terminated above, the apices directed toward the summit of the spine, which latter features are, perhaps, most apparent in the upper portion, where tho larger tubereles themselves present the appearance of eccentrically apiculate seutes. The interspaces are irregularly and finely striated or striato-punctate. A specimen below the medium size has a length of at least 1 ineh, transverse diameter near the middle .07 , greatest expansion near the tip about .10 , transrerse basal expansion abont .20 inch; lateral diameter redueed to the minimum by the compressiun of the opposite sides.
The general aspect of the spines deseribed above bear a striking. resemblance to Pnigeacanthus ; but their greater length and peeuliar armature of the apex widely distinguish them. Whether the absence of the apieal processes in the above form should be regarded as evidenee of its generic distinctness from the spines under consideration, we may not presume to have eonclusively demonstrated; but that the faets bear sueh interpretation seems, to us, unquestionable.

Position and locality: Upper beds of the St. Louis limestone; St. Louis, Missouri, Alton, Illinois.

Genes ORACANTHUS, Agassiz.

Oracanthus? obliques, St. J. and W.
Pl. XXLI. Fig. 16.
A fragment of a spine, too imperfect for satisfaetory deseription, but presenting anomalous features distinguishing it from forms previously noticed in our Carboniferous collections, we have provisionally referred to Oracanthus, with which in some respects it seems to be closely allied. The spine appears to have been of moderate length and rapidly tapered to the obtuse apex, but the posterior borders are brokell away and the remaining lateral surfaces bear evidence of compression, thus suggesting the presence of a large central catvity. The anterior margin, which is gently curvel posteriorly, presents an obtuse angle bearing prominent eccentric, obliquely transverse decussations, which gradually diminish and are finally replaced by simple tubercles on approaching the apex similar to those oceurring in the lateral faces; the transverse tubercles are widely spaced, narrow along the crest, abruptly descending above, sometimes interrupted giving rise to a series of small tubercles, and in their worn crests coarscly punctate. The lateral faces are studded with
small subconical tubercles, very variable and irregularly disposed as to size, but with indistinct traces of longitudinal ridges, which, however, are subject to frequent intermption by the interpolation of large tubercles, which is especially the case towards the smmmit, and with obscure, irregular oblique disposition ; the lateral tubercles also present a coarse punctation iu their worn crowns, with indications of vertical or radiating ridges in their sides.

The decussated_anterior ridge, or transserse tubercles, resemble the decussated ridges of Ctenacanthus ; hut this appearance cannot be associated with any of the Ctenacanthi occnrring in the same horizon, while the character of the very irregular tuberculose lateral surfaces exhibit still more remote affinities with these forms. The unique example, however, is scarcely sufficient for the determination of its generic relationship.

Position and locality: Fish-bed horizon upper part of the Keoknk limestone; Warsaw, Illinois.

Oracanthus consimilis, St. J. and W.

Pl. XXII, Fig. 15.

The form here indicated is represented by a few fraginentary specimens, which generally show only the surface tuberulation, with the exception of a siugle individual discovered by Mr. Van Horne, which exhibits the entire transverse outline of a section apparently from near the midale of a medium-sized spine. The latter specimen, which is much distorted by the compression of the lateral walls of the large pulpcavity, indicates a moderately or somewhat rapidly tapering ontline, longelliptic trmsrerse section, laterally very gently arched, and the anterior border, as indicated by the apparent greater thickness of the wall in that portion of the spine, is broadly rounded and apparently very slightly curved hackward or nearly straight ; the opposite or posterior side faintly concave vertically, relatively broader and more angularly rounded, or flattened along the median region and somewhat abruptly rominging into the lateral fices aloug the postero-lateral angles. The superficial ornamentation consists of relatively large, transverse or oval, vortically sculptured tubercles, arranged unou obscure longitudias ridges separated by faint sulci and striato-punctate, closely approximated laterally, vertically spaced hy ahout twice their diameter, disposed in incenalar transerse order, or generally descending in a slight ohlique conse from the anterior to the posterion border, and uniformly dispersed thronghont the spine, oceuring equally in the posterion and anterior margins. The tubereles culminate in a subacute apex directed towards the summit of the spine, the inferior slope gently con-
vex, that abore more abrupt and concave but presenting considerable variation in form and size in various parts of the body, two or more coalescing at the point of bifurcation of the costa, forming laterally elongated prominences traversed by an interrupted transvere crest, and one or more eccentric rows in either margin consisting of strong, oblique, irregular tubercles, in size nearly as large again as those occupying the lateral faces. Base unknown. Internal cavity large, nearly central, the lateral walls less than half the strength of those in front and behind. Transverse or greatest diameter near the middle of the spine 1 inch, lateral diameter across the postero-lateral angles . 32 , lateral diameter in front across the anterior limit of the cavity . 25 ; antero-posterior diameter of the interual cavity .70 inch.

Notwithstanding the imperfect condition of the specimens referred to above, a careful reference to the description and comparison with the illustrations given by Professor Agassiz of Orucanthus Milleri (Pois. Foss. 3, p. 13, Tab. 3, fig. 1-4,) of the Carboniferous limestone of England, leaves scarcely a doubt as to the generic identity of these fossils with Oracanthus as the genus is defimed by the typical representative 0 . Milleri, Ag. Specifically the present form is distinguished from that just named by its relatively more numerous and less obliquely disposed tubercles, which in shape are very like in both forms, though they appear to be more isolated laterally and, perhaps, vertically than is the case in 0 . Milleri.

Dr. Liedy has described a spine reported from the "Missouri Territory," and probably belonging to the Lower Carboniferous, under the name Oracanthus retustus (Jour. Acad. Nat. Sci., Phila., Vol. II, [second series,] p. 161, Pl. 16, fig. 1, 2, 3, which undonbtedly is closely allied to the abore described form. It is chiefly distinguishable by the less robust and more numerous tuberculation, features with regard to the variation of which we are not sufficiently familiar to decide their import.

In regard to their relationship with Puigeacunthus deltoides, we have little hesitation in recognizing their generic distinctness, the latter having the appearance of, and probably more intimately homologous with dermal scutes than with true fin or defensive spines-affinities no less distinct than those which distinguish the teetl from the spines, and thongh they are differences of degree, nevertheless they are always strougly marked and ummistakable, by which the thin solid elements of the integument are distinguishable one from the other.
l'osition and locality: Upper beds of the St. Louis limestone; Alton, Ill., St. Louis, Mo., Pella, Ia.

Genus PNIGEAOANTHUS, St. J. and W.

Spines eomparatively short, conical, laterally eompressed, base broadly expanded before and behind, without insertion, rapidly tapering to the obtuse apex, which is directed posteriorly, transverse section elliptical, rounded into the slightly sigmoidally eurred anterior border and eoneave posterior margin. Pu'p-cavity very large, extending nearly to the tip; lateral walls very thin, slightly thickened in the margins. External surface oeeupicd by irregnlarly disposed, radiatingly sculptured tubereles, sometimes arranged in obscure or interrupted longitudinal and diagonal order.

The affinities of the spines embraced under the above generic term would appear to be more intimate with Oraeanthus than with the spines which we have described under Lecracanthus, differing from the former in the irregular disposition of the tubercles and less solid build, and from the latter by their shorter proportions and absence of spinose tubereles in the apical extremity.

The Oracanthus prigens, N. and W., of the Keokuk limestone is regarded as the typieal example. In eomection with the original deseription of the latter form, Dr. Newberry refers to a Devonian speeies, which he has recognized under the name O. abbreviatus, and which he regards as closely allied to the above speeies.

Pnigeacanthus deltoides, St. J. and W.

Oracanthus prigers, Newberiy aud Worthen, 1866, Ill. Fep., Vol. II, p. 117, Pl. XII, ig. 3.
The present form has a triangular outline, the anterior border nearly straight or with a slight sigmoidal curvature, the opposite side gently coneare, and both rapidly eonverging to the bluntly pointed apex. In the present condition of the original and thus far only authentic example, the opposite lateral walls are pressed elose together, the breaking away of a portion of one side revealing the great extent of the internal cavity and the comparatively thin crust of the inclosing walls. The tuberculation consists of relatively strong, eecentrically conical, eoarsely sculptured, stellate tubercles, those in the lower portion of the spine being more symmetrical than those towards the apex, which latter are projected upward forming scute-like bosses, with a gentle inferior slope and abrupt concave superior face; the tubercles are arranged in obscure interrupted longitudinal series, large and small intermingled, but the largest occurring in the front half of the spine ; the interspaces are occupied by coarse, interrupted longitudinal strix. The specimen exhibits
no trace of spinose processes in the tip, the uniform tubercalation prerailing throughout, though more or less worn near the extremity; but in the coneare margin near the extremity occur large tubereles similar to those in the anterior portion of the spine, and whieh are apparently irregularly disposed.

Towards the mutilated inferior border, the inner surface of the walls present much the appearance of semi-ossified cartilage, the individual tubereles seeming to have had inflependent origin in the extreme borders, but later to have become more and more intimately conneeted by the impingement of their edges, and fimally beeane incorporated in the solid bony basis of the spine, their inner surface no longer showing suture or other signs of isolated origin. Indeed the structure of the base of these spines, as it appears under the ordinary lens, seems to be almost exactly like that of the semi-osseous cartilage of the jaws, remains of whielr we have discovered in our Lower Carboniferons deposits. Yet, it is not improbable that these bodies present all the phases of developmental origin discernible in ordinary spines, i. e., distinct formative organs by which the basis or inserted portion was formed and subsequently the enameled or external coating was produced, though here we have what at first thonght seems to be the anomalous feature of the intimate peripheral association of the organs, but which, in fact, scems to be identical with their oceurrence in the development of clormal seutes.

Position and locality: Upper fish-bed horizon of the Keokuk limestone; Keokuk, Iowa.

SYSTEMATIC AND CHRONOLOGICAL TABLE

OF FOSSIL FISHES DESCRIBED IN THE PRESENT VOLUME.

SELACHIANS.

HYBOIOONTS :

Page.Phebodus, St. J. and W., 251

- Sophice, St. J. and W'., Devouian, 2.51
Bathychrilodus, St. J. and W., 251
- McIsaacsii, St. J. and W., Devonian, 252
Pristicladodus, McCoy, 253
- Springeri, St. J. and W., Kinderhook, 255
Cladodus, Agassiz, 258
- cxilis, St. J. and W., Kinderhook, 258
- Springeri, St. J. and W., Kinderhook, 259
- exiguus, St. J. and W., Kinderlook, 261
- suecinctus, St. J. and W., Kinderhook, 265
- Wachsmuthi, St. J. and W., Kinderhook, 263
- alternatus, St. J. and W., Kinderhook, 265
- intercostatus, St. J. and W., Upper Burlington, 267
- gomphoides, St. J. and W., Upper Burlington, $2(9)$
- bellifer, St. J. aud W., Upper Burlington, 270
- promuntius, St. J. and W., Upper Burlington. 270
- raricostatus, St. J. and W., Keokuk, 271
- eccentricus, St. J. and W., St. Lotis, 272
- Vem Hornei, St. J. and W., St. Louis, 273
- euglypheus, St. J. and W', St. Louis;' 274
- Fulleri, ist. J. aud W., Coal Measures, 276
- pandrtus, St. J. aud W., Coal Measures, 278
- oarinatus, St. J. aud W., Coal Measures, 279
pacre．
Lambdorus，St．J．and W．， 280
－costatus，St．J．and W．，U．Bulington， $\because 80$
－calccolus，St．J．and W．，U．Burlington， 281
－rar．rolustus，Keoknk， $28:$
－trensversus，St．J．and W．，St．Louis， 282
－hemmlus，St．J．and W．，Chester， 283
－reffexus，St．J．and W．，Chester， 284
Hybocladodus，St．J．anḍ W．， 284
－plicatilus，St．J．and W．，U．Burlington， とが
－tenuicostntus，St．J．and W＇．，Keokuk， 256
－intermedius，St．J．and W．，Keokuk， 257
－compressus，（N．and W．sp．），U．Burlington， $\because 87$
－nitidus，St．J．and W．，Chester， 288
T＇hrinncodus，St．J．aud W＇， 289
－mams，St．J．and W＇，Kinderhook， 28：9
Mesodmodus，St．J．and W．， $9!10$
－exsculptus，St．J．and W．，Kinderhook， $3!1$
－explenatus，St．J．and W．，Kinderhook， 993
－ormetus，St．J．and W．，U．Burlington， －9！ 4
Orodus，Agassiz， 295
－parallelus，St．J．and WF．，Kinderhook， 295
－Whitci，St．J．and W．，Kinderhook， $2!37$
－decnssutus，St．J．and W．，Kinderhook， 300
－Dedeleus，St．J．and W．，Kinderhook， 301
－major，St．J．and W＇．，Lower Burlington， 302
－variocostatus，St．J．and W．，Upper Burlington， 304
－fustigiatus，St．J．and W．，U．Burlington， 306
－carinatus，St．J．and W．，Keoknk， 307
－neglectus，St．J．and W．，St．Louis， 308
－parvulus，St．J．and WI．，St．Lonis， 309
－turgidus，St．J．and W．，Chester， 310
－Alleni，St．J．and W＇．，L．Coal Measures， 310
Leiodus，St．J．and W．， 335
－cnlcaratus，St．J．and W．，U．Burlington， 336
－var．grossipmotatus，Keokuk， 337
Aygssizodus，St．J．and W＇．， 311
－rombluilis，（N．and W．sp．），U．Coal Meas．， 318
－Tirginianus，St．J．and W．，U．Coal Meas．， $3: 1$
－scitulus，St．J．and W．，M．and L．Coal Meas． 32
－corrnyutus，（N．and W．sp．），L．and U．Coal M．， ： $3: 3$
Periplectr lus，St．J．and W．， $3: 4$
－Warreni，St．J．and W｀．，V．Burlington， 32．）
－compressus，St．J．and W．，S＇t．Lonis，－ 3 ± 6
I'sis:
Periplectrodus expansus, St. J. and W., Chester, 327
Stemmatodus, St. J. and W., $3 \div 8$
- eheiriformis, St. J. and W., U. Burlington, 330
- bifureatus, (cur. ?) St. J. and W., U. Burlington, 330
- bieristatus, (car. ?) St. J. and W., U. Burlington, 331
- simplex, (var.?) St. J. and W., U. Burlington, 332
- symmetricus, St. J. and W., U. Burlington, 333
- Feokuk, St. J. and W., Keoknk, 334
- compactus, St. J. and W., Chester, 334
PETALODONTS :
Desmiodus, St. J. and IV., 337
- tumidus, St. J. and W., St. Louis, 339
- costelliferris, St. J. and W., St. Louis, 341
- ligoniformis, St. J. and W., Keoknk, 342
- ? flabellum, St. J. and W., Keoknk, 343
Temustodus, St. J. and W., 344
- rariabilis, St. J. and W., U. Burlington, 346
- rolustus, St. J. and W., U. Burlington, 345
- temicristatus, St. J. and W., Keokuk, 348
- Leidyi, St. J. and W., St. Louis, 350
- argutus, St. J. and W., Chester, 352
Herpucodus, Agassiz, 354
- occidentalis, St. J. and WV., St. Louis, 355
- compactus, St. J. and Wr., Chester, 355
Chomutodus, Agassiz, 350
- comptus, St. J. and W., U. Burlington, 356
- parallelus, St. J. and WV., Wiarsaw, 358
- inerassatus, St. J. and W., St. Louis, 359
- inconstmens, St. J. and W., S't. Louis, 360
Lisgodus, St. J. and W., 363
- curtus, St. J. and W., U. Burlington, 364
- servatus, St. J. and W., U. Burlington, 36.5
- selluliformis, St. J. and W'., St. Louis, 366
Temodus, St. J. and IV., 367
- sublumatus, St. J. and W., St. Louis, 368
- pumilus, St. J. and W., St. Lonis, :36
- mrenuntius, St. J. and W., St. Louis, 371
- sculptus, St. J. and W., St. Lonis, 373
- grossiplicatus, St. J. and W., Chester, 375
- bellicinctus, St. J. and W., Chester, 376
- depressus, St. J. and W., Chester, 378
Pank.
Tunodus polymorphus, St. J. and W., Chester, 380
Ctenoptyehius, Agassiz, 382
- pertemuis, St. J. and W., Chester, 382
- Sterensoni, St. J. and W., Coal Meas., 383
Polyrhizodus, McCoy, 384
- Williamsi, St. J. and W., Feokuk, 384
- namss, St. J. and W., Keokuk, 386
- Piasuensis, St. J. and W., Warsaw, 386
- amplus, St. J. and W., St. Louis, 387
- carbonarius, St. J. and W., Coal Meas., 389
Ductylodus, N. and W., 390
- concarus, St. J. and W., St. Louis, 390
- minimus, St. J. aud W., St. Louis, 391
- excavatus, St. J. and W., Chester, 392
Antliodus, N. and W., 393
- perovalis, St. J. and Wr., Warsaw, 393
- gracilis, St. J. and W., Warsaw, 393
Petalurlus, Owen, 394
- hybridus, St. J. and W., St. Louis, 394
- proximus, St. J. aud IV., Coal Meas., 395
Ctenopetalus, Agassiz, 396
- vinosus, St. J. and W「., Keokuk, 396
- bellulus, St. J. and W., St. Louis, 398
- limatulus, St. J. and WY., Chester, 399
- medins, St. J. and W., Chester, 400
- oceidentalis, St. J. and W., Coal Meas., 401
Pristodus, Agassiz, 402
- ? aerminatus, St. J. and W., Kinderhook, 402
Culopodns, St. J. and W., 403
apricalis, St. J. aud W., Coal Meas., 403
Petalorhynehus, Agassiz; 405
- pseudosagittatus, St. J. and W., St. Louis, 405
- distortus, St. J. and IV., St. Louis, 406
- spatulatus, St. J. and W., St. Louis, 408
Peltodus, N. and IV., 409
- quadratus, St. J. and W̌., St. Lonis, 410
- ? plicomphalus, St. J. and WF., Chester, 411
- tronscersus, St. J. and W., Coal Meas., 412
Fissodus, St. J. and W'., 413
- bifidus, St. J. and W.., Chester, 414
- trienspidatres, St. J. and W., Chester, 415
Cholodus, St. J. and W., 415
- incequelis, St. J. and W., U. Coal Meas., 416

COUHLIODONTS:

Page.
Psephodus, Agassiz, 417

- ? veticulatus, St. J. and W., Kinderhook, 417
ICHTIYODORULITES:
Ctenacanthus, Agassiz, 420
- spectabilis, St. J. and W., Kinderhook, $4 \div 0$
- sculptus, St. J. and W., Kinderhook, - 421
- varians, St. J. and W., Kinderhook, 422
- speciosus, St. J. and W., Kinderhook,- 424
- grudocostus, St. J. and Wr., U. Burlington, 425
- Burlingtonensis, St. J. and W., U. Burlington, 426
- Keokuk, St. J. and W., Keokuk, 427
- excaratus, St. J. and W., Keokuk, 428
- gemmatus, St. J. and W., St. Louis, $4 \div 9$
- pugiunculus, St. J. and W., St. Louis, 430
- similis, St. J. and W., Chester, 431
Acondylacanthus, St. J. and W., 433
- gracilis, St. J. and W., Kinderhook, 433
- aquicostatus, St. J. and W., Keokuk, 434
Asteroptychius, A gassiz, 435
- ? vetustus, St. J. and W., Kinderhook, 435
- Kcoluk, St. J. and W.. Keokuk, 436
- St. Ludorici, St. J. and W., St. Louis, 437
- ? tenuis, St. J. and W., Chester, 435
- bellulus, St. J. and W., Coal Meas., 439
Geisacanthus, St. J. and W., 440
- stellatus, St. J. aud Wr., St. Louis, 440
- bullatus, St. J. and W., Chester, 441
Anaclitacantlus, St. J. and W「., 442
- semicostatus, St. J. and W., U. Burlington, 443
Bythiacanthus, St. J. and W., 444
- Van Hornei, St. J. and W'., St. Lonis, 445
Glymmatacanthus, St. J. and W., 446
- Irishii, St. J. and W., Kinderhook, 447
Physonemus, Agassiz, 445
- proclivus, St. J. and W., Kinderhook, 451
- depressus, St. J. and W., Kinderhook, 45%
- carinatus, St. J. and W., Kinderhook, 452
- parvulus, St. J. and W'., Keokuk, $45: 3$
- Altonensis, St. J. and W., St. Louis, $45 t$
page.
Physonemus Chestercnsis, St. J. and W'., Chester, 455

1) reponacanthus, N. and W., 456

- reversus, St. J. and W., St. Lonis, 456
Tystracanthus, Leidy, 457
- mirabilis, St. J. and W., Coal Meas., 458
- acinaciformis, St. J. and W., Coal Meas., 459
Erismacanthus, McCoy, 461
- McCoyanus, St. J. and W., St. Louis, 461
Amaerenthus, St. J. and W., 464
- gibbosus, (N. and W. sp.), St. Louis, 464
Marrecanthus, St. J. and W., 465
- rectus, (N. and W. sp.), St. Louis, 466
Batacanthus, St. J. and W., 468
- baculiformis, St. J. and W., Keokuk, 469
- stcllatus, (N. and W. sp.), Keokuk, 470
Gampsacanthus, St. J. and W., 471
- typus, St. J. and W., St. Louis, 472
- squamosus, St. J. and W., St. Louis, 473
- ? latus, St. J. and W., Keokuk, 474
Lccracanthus, St. J. and W', 475
- unguiculus, St. J. and WV., St. Louis, 476
Orecanthus, Agassiz, 477
- ? obliquus, St. J. and W., Keokuk, 477
- consimilis, St. J. and W., St. Louis, 478
Pnigeacanthus, St. J. and W., 480
- deltoides, St. J. and W., Keokuk, 480

PALEONTOLOGY OF ILLINOIS.

SECTIONII.
DESCRIPTIONS OF INVERTEBRATES.

By A. H. WORTHEN and F. B. Meek.
-63

L0WER SILURIAN SPECIES.

SPONGIE.
 Genus CNEMIDIUM? Goldf.

Cnemidium? Trentonensis, Worthen.

Cnemidium Trentonensis. Side view, natural size.
General form diseoidal, hight about half as great as the breadth at the summit; summit deeply and broadly coneave, the base of the con cavity being a little to one side of the center. Furrows both on the side and in the concavity numerous at the summit but deereasing rapidly by coalescing below. Hight of a medium-sized speemen 1.50 inch; greatest breadth at the summit 3 inches in one direetion and 3.25 inches in the opposite one; depth of conearity 0.70 inch.

This fine sponge seems to be more nearly related to the genus Cnemi. dium, established by Goldfuss for certain Jurassic forms, than to Astylospongia of Roemer founded on the Upper Silurian sponges of Ten. nessee.

Lnculity and position: Three miles north east of Jixon, Lee county, Illinuis, in the lower division of the Trenton limestone.

I am indebted to Dr. Oliver Everetry, of Dixon, for the very fine specimen from which the above figures and description were drawn. For the opportunity of comparing this with a typical form of Cnemidium, from the Upper Jurassic formation of Wurtemberg, in Bavaria, I am indebted to Dr. C. Rominger, State Geologist of Michigan.

ECHINODERMATA.

Genus HOMOCRINUS, Hall.

Homocrinus angustatus, M. and W.

Il. 23. Fig. 8.

Jlomocrinus angustatus, MEEK and Wonfuis, Iero; I'roceed. A cad. Nat. Sci., Philad., p. 30.
Bonly below the first radial pieces more or less obeonic, or somowhat constricted below the middle. Base forming a narrow cup, sometimes nearly as high as wide, with vertical sides; composed of convex pieces, once and a half to nealy twice as wide as high. Subradial pieces ans long as the basals, or sometimes a little longer, and always wider; more or less convex, all hexagonal excepting one on the anal side, which is
heptagonal. First radial pieces nearly one third wider than high, being as wide as the subradials, but shorter, and not so tumid; all pentagonal, with the upper side truncated their entire breadth. Succeeding radials, of which there are three in each of the rays seen,* as wide as the first, but much shorter, or only one-third to one-fourth as long as wide, thus forming free arms so wide as to be nearly in contact all around except on the anal side; last or fourth radial supporting upon its superior slightly sloping sides the first divisions of the arms, which, at least in one of the posterior, and one of the lateral rays, bifurcate on the third piece, while some of the divisious appear to divide again on the fourth piece, which is as far as they can be traced iu the specimens examined. Column large, or nearly two-thirls as wide as the base at its comection with the latter; but suddenly tapering downwards, and, at least in one of the examples, ending with the sixth piece in a rounded poiut, eridently showing this individual to have been free at maturity.

Comecting or upper joint of the column in the only two examples seen, very thick, and in one quite tumid.

Hight to summit of first, radial pieces, 0.48 inch; breadth at top of first radial pieces, 0.50 iuch; hight of base, 0.20 inch; breadth of rays below the first division, 0.17 inch.

This species seems to be most nearly related to H. polydactylus of Shumard, from which it differs in the remarkable narrowness of its base, and the proportional greater thickness of its column. It also differs in having onls three to foum primary radials to each ray, instead of five or six.

Locality and position: Mount Carroll, Illinois, in the Cinciunati Group of the Lower Silurian.

Heterocrinus crassus, M. and W.

Pl. 23, Fig. 1.
Heterocrinus crussus, Meek and Wohthex, 1efō. Proceod. Acad. Nat. Sci., Ihalad., p. 147. Geol. Survey of 1ll., Vol. III., p. 324. 1'l. 4, fg. 1a, b, c.

For the use of the rery fine specimen figured in this volume, I am indebted to Mr. Stewart, of Plano, Kendall comnty, Illinois.

[^29]
MOLLUSCA.

 LAMELITBRANCHIATA.Modiolotsis subnasuta, M. and W.
Pl. 23, Fig. 9 a, b.
Modiolopsis subnasuta, Mefk and Worthen, 1870. Proceed. Philad. Acad. Sci., p. 4i.

Shell rather small, elongate, narrow and slightly arcuate, rather distinctly convex, the most gibbous part being along the posterior umbonal slopes abore the middle of the valres; dorsal and ventral margins slightly diverging posteriorly, so as to make the widest (highest) dart of the ralves nearest the posterior end, while the most sinuons part of the rentral margin is a little in advance of the middle; anterior end narrow, a little prodnced, with an obiique formard slope of its upper margin, to its narrowls ronnded elge; posterior margin somewhat cuncate, with an oblique trmeation more or less conrex in outline, to the posterior basal extremity, which is narrowly rounded ; cardinal margin long, and a little arched; beaks much depressed, and placed rather nearer the anterior edge than the middle; posterior umbonal slopes prominent, and forming an obtuse ridge extending obliquely backwand to the posterior basal edge of each valce; anterior muscular scar comparatively large, round, shallow, and placed near the edge of the valres; small pedal muscular scars distinct abore those of the anterior addnctors; surface of internal cast, showing moderately distinct, irregular, concentric undnlations, which are most strongly defined below, and in front of the posterior umbonal slopes, on the flattened or concare flanks.

Length, 1.31 inch; hight, 0.50 inch; convexity, 0.40 inch.
This is a neat symmetrical shell, resembling MI. nosutu, Comrad, (sp.) but differs in having the narowed anterior less prodnced, the beaks being phaced farther forward; while its posterior end is broader, and obliquely trmeated, instead of being romeded. Its general ontline is more like that of, Orthonote contracta, Hall, (Pabæont. N. Y., Vol. I, Pl. 32 , fig. $S_{,}$) though its lower margin is less distinctly sinnous, its beaks more depressed, and its posterior margin oblione; while it wants the obligue dorsal wrinkles seen on casts of that shell, being a tu mediolopsis.

On comparison with foreign species, our shell will be found to be very closely allied to the Upper Silnrian species, M. plutyphyllus, of Salter.

It differs, however, in laving its anterior end narrower and more produced, with more prominent posterior umbonal slopes.

Locality and position: Galena limestone of the Lower Silırian, in Carroll county, Illinois.

Amboniciria Illinoiensis, Worthen.
 Pl. 23, Fig. 4 a, b.

Shell above the medium size, subovate in outline, not compressed, convexity of valres nearly equal, beaks pointed, terminal, slightly oblique and rising above the cardinal margin. Hinge line straight and fully one-half as long as the longer axis of the valves, with which it ranges at an angle of about $3 \overline{5}^{\circ}$ to 40°. A low ridge commences just below tho beak on the cardinal margin, and gradually widening extends to the base of the shell, and is separated from the umbonal slope by a very shallow depression. Surface of the cast shows twenty or more simple rounded costre separated by narrower interspaces. Other surface characters unknown. Greatest length of the valves in the best example seen 3 inches; breadth at the lower extremity of the hinge line 1.88 inch; conrexity of the two ralves 1.50 inch.

Position and locality: Magnesian beds of the Cincinnati Group; Savannah, Carroll county, Illinois.

GASTEROPODA.
 Genus SUbulites, Conrad.

 Subulites inflatus, M. and W.P1. 23, Fig. 5.
Subulites injlatus, Merk and Worthen, 1869. Proceed. Philad. Aead. Nat. Sci.
Shell very ventricose, subfusiform; volutions about five and a lalf to six, those of the spire moderately convex in (external?) casts; last one very large, ventricose, and forming much the larger part of the whole, produced and contracted below so as apparently to terminate in a short canal; aperture narrow, rhombie in outline, and pointed or angnlar abore and below; suture well defined in cast; surface unknown. Might of a specimen witlo apparently about two whorls at the apex, and a portion of the lower extremity of the produced body whorl broken away, 1.55 inch; breadth of body volutiou, about 1.15 inch.

It is barely possible that this may be a ventricose, fusiform Murchisonia, as we only know it from rough casts, apparently of the exterior. As it shows $n o$ traces, however, of any revolving band, or lines, and has much the general physiognomy of Subulites, we have concluded to refer it provisionally to that group. Its most marked characters are the large size, and the ventricose form of its body volution, in whith it reminds one of some of the Carboniferons species of Macrocheilus. It differs from these, however, in the produced and subcanaliculate peculiarity of the lower part of its body whorl.

Position and locality: Galena beds of the Lower Silurian; Carroll county, Illinois.

CEPHALOPODA.

Genus CYRTOOERAS, Goldf.

Cyrtoceras Carrollensis, Worthen.
Pl. XXIII, Fig. 3.
Shell of mediun size, moderately curved and laterally compressed. Section ovate, the greatest diameter being near the middle of the chamber of habitation, which is strongly constricted above the middle, and about an inch in depth. Septa about eight to an inch on the dorsal side. Dorso-ventral diameter of the last chamber 7 lines, lateral diameter of same 5 lines. Siphuncle of moderate size, dorsal and nearly in contact with the shell. Surface markings unknown.

This shell seems to be nearly related to C. macrostomum, of Hall, Palæont. of N. Y., Vol. I, page 194, Pl. 42, fig. 1, and also to C. Isodorus, of Billings, Paleozoic Fossils of Canada, Vol. I, page 175, but may be distinguished from both by the characters given above.

Position and locality: Galena division of the Lower Silurian; Carroll county, Illinois.

ARTICULATA.

Genus ASAPHUS, Brongniart.

Asaphus (Isotelus) vigilans, M. and W.

Pl. 23, Fig. 6.
Araphus (Isotelus) rigilens, Meek and Worthex, 18\%0. Proceed. Acad. Nat. Sci., Philad., p. 53.
Body small, elliptic in general form, and moderately eonvex. Head rather more than half as long as wide, approaehing a sub-ereseentic outline, with the posterior lateral angles abruptly rounded or subangular; anterior margill apparently somewhat narrowly rounded ; posterior outline broadly and distinctly coneave, but rather straight along the middle, without any traces of marginal or oeeipital furrows. Glabella not rising above the general eonvexity of the head, and entirely undetined by any traees of dorsal furrows. Eyes situated about their own antero-posterior diameter in adrance of the posterior margin, and apparently about half way between the latter and the front, rather widely separated from each other, and very prominent, nearly round, and truneato sub-couic in form; visual surface elevated almost entirely above the general eonvexity, and eurved around so as to form about threefourths of a eirele, presenting a sinooth surfaee; palpebral lobes as elevated as the eyes, and mueh eontraeted, or merely eonnected with the glabella on the inner side by a narrow neek. Faeial sutures extending obliquely outward and backward from the eyes behind so as to interseet the posterior margin about half way between a live drawn longitudinally throngh the middle of each eye, and posterior lateral margins of the cheeks; and in front, at first eurving slightly outward a little in advance of each eye, beyond which point they converge forward so as apparently to intersect the front margin in such a manner as to leave a rather narrow anterior edge to the glabella.*
Thorax longer than the head or pygidiun, as measured over the enrve of a rolled-up specimen, showing seareely any traces of trilobation, and eomposed of eight segments. Mesial lobe, as indieated by very faint impressions on each side of the body segment, very wide and depressed, with segments nearly flat. Lateral lobes very narrow, sloping off regularly from the mesial one on each side; pleurie without furrows, and

[^30]with the exposed surfaces seen in a rolled-up specimen, narrowing off laturally very rapidly with a strong backward curve; all more or less angular at the extremity, the posterior oues being rather pointed; lapping surfaces apparently wide.

Pygidium subtrigonal, and of near the same size as the head, entirely without any indications of trilobation or segments.

Whole surface smooth, excepting a minute pitting, most distinct on the movable cheeks.

Length (measuring over the curve of a rolled up specimen) 2.75 inches, breadth 1.30 inch, length of head at the middle abont 0.75 inch, breadth between the eyes 0.47 inch, hight of eyes ou the outer side 0.20 inch. Breadth of axial lobe of thorax 0.85 inch, antero-posterior diameter of each of the first four or five segments of same near the middle 0.15 inch.

This species seems not to be nearly related to any of the described species with which we are acquainted. Its most marked characters are the prominence of its eyes, and the almost entire absence of any traces of trilobation in its thorax and pygidium, as well as the great breadth of the mesial lobe of the same, as indicated by a very obscure depression, and a minute projection on the auterior margin of each thoracic segment, on a line nearly behind the outer edge of each eye. These little projections do not extend upward, but forward, and fit into correspouding notches in the posterior margin of each succeeding segment in front. As the margin of its head and the posterior edge of its pygidium are in the specimens more or less imperfect, we cannot determine exactly their outlines.

In some respects this species resembles the young individuals of Isotelus megistos, of Lock, though it differs in not having its cheeks produced into pointed terminations behind, while its eyes are nore prominent and situated farther forward, and the mesial lobes of its thorax much less defined and distinetly wider. Its pleuræ also differ in beinga augular, or a little pointed, instead of rounded at the ends.

Position_and loculity: Carroll county, near Mount Carroll, and near Oswego, iu Kendall county, in this State, in the Cincinnati shales of the Lower Silurian.

UPPER SILURIAN SPECIES.

SPONGIE.

Astylospongia praemorsa, Goldf.? (sp.)

Pl. 25, Fig. 2 and 2 a

Astylospongia praemorsa, Goldf., 1826. Petref Germ., vol. 1, tab. 6, fig. 9; Heisinger (1837), Leth. Snec. 94, tab. 26, fig. 7; Eichrrald Silur. S'chicht, in Esthland 209; Maximilian (1843), Herzog von Leucht. Beachr. einiger neuen Thierreste der Urwelt aus den Silurisclı. Kalksch. von Zarskoje-Selo., 24 ; F. Roemer (1852-1854) ; Leonh. n. Bronn's Jahrb., 684; and in Lethae geog. ed., 3d Th. 154, tab. 27, fig. 21.
Siphonia excavata, Goldf., 1826. Petref. Germ, 1, tab. 6, fig. 8; Bronn (1851-1852), Leth. geog. ed., 3d Th., V .75.
Siphonia stipitata, Heisinger. Leth. Suec. 94, tab. XXVI, fig. 8.
Jerea excavata, d'Orbigns, '1850. Prod. de Pal. strat. 11, 286.
Astyluspongia praemorsa, F. Roemer, 1860. Sil. Fauna des Westl. Tennessoe, 1, 3.
Depressed subglobose, the breadth being to the hight as 90 to about 65 ; coucavity of summit shallow ; furrows of sides aboút 24 , somewhat flexuous, and more or less interrupted. (Under side unknown.) Hight 1.80 inch, breadth 1.30 inch.

The only specimen of this fossil we have seen is entirely silicificd, and compact in structure (in its preseut condition), while its surface is considerably worn. Consequently we are by no means clearly satisfied that it belongs to the same species as that figured by Goldfuss, Roemer and others, but merely refer it provisionally to that species, until better specimens can be obtained for comparison. On comparing it with specimens of the Tenmessce form figured by Roemer, it is seen to prescut a smoother, less porous appearance, but this we believe is due to its worn and more densely silicified condition. It also appears to want the canal openings in the depression of the summit generally seen in the Tennessce specimens, but this may be due to the accidcutal filling of these openings with silicions matter.

Position and locality: Found loose in Carroll county, Lllinois, but believed to be from the Niagara division of the Upper Silurian.

FORAMINIFERA?

Genus RECEP'TACULITES, Defrance.

Receptaculites formosus, M. and W.
Pl. 2t, Fig. 1.
Receptaculites formosus, Mefk and Torthen, 18i0. Proceedings Acal. Nat. Sci., Philad., p. 23.

Body obovate, the breadth being about three-fourths the hight, and the Fidest point a little above the middle; upper end rounded and without any umbilieoid concavity or opening, unless it may be a very small one; sides gradually tapering with a slight eonvexity from a little above the middle to an apparently moderate sized base of attaehment. Cell openings or depressions shallow, quadrangular, or transversely rhombie (those on the upper part wider than high), arranged in spirally aseeuding rows, which make nearly one turn in passing from the base to the eenter of the top; eaeli with a transverse linear central furrow, from which a similar furrow passes to the lower angle; eentral perforations of the eell depressions minute, and generally elosed in the trpical speeimen.

Hight 1.75 inch ; breadth 1.22 inch.

- This speeies differs from all others kinown to us, espeeially from any Upper Silurian horizon, in its elongated, obovate form, its ontline being almost exactly obovate, exeepting the truncation of the lower (smaller) end. In general appearance it perhaps most nearly agrees with a form found in the Galena limestone, and referred by us doubtfully to R. globularis, Hall, in the third Vol. Ill. Geol. Keports, Pl. 2, fig. 2 a, b. It differs, however, from that speeies in having the upper end more round, or less depressed, and without any umbilicoid impression. Its eell impressions are also very different, not being near so erowded, and instead of beeoming more crowded and narrower on the lower half, they are less so there than above; while the central perforation of eaeh is smaller.

Position and locality: Bridgeport, Cook eounty, Illinois. Niagara Group. Upper Siluriam.

ECHINODERMATA.

Genes EUCALTPTOCRINUS, Goldf.

Eucalyptocrinus magnus, Worthen.

> Pl. 25, Fig. 3. .

Body above the medium size, broadly discoidal below the arm bases, forming a shallow cup. Base rather deeply impressed, basal plates small and concealed in the depression for the reception of the first colnmnar facet. First radial plates large, hexagonal, wider than high, with the upper lateral angles truncated for the reception of the first interradials, and the lower angle depressed into the basal cavity ; second radials quadrangular, wider than high, but varying in their proportions; third radials hexagonal, a little wider than high, and supporting a rather high and narrow fourth radial or supra-radial, the upper portion of which turns abruptly upward for the support of an arm plate. First interradial quite large, longer than wide, with ten distinct angles, and supporting on its upper angles two long hexagonal pieces that extend npward nearly as high as the fourth radials, and like them curce upward at their upper extremities. On each side of these pieces there are four other plates, the lowest and largest being pentagonal and resting against one of the lateral angles of the first interradial, and giving support to a smaller lexagonal plate above, that in its turn supports two small triangular pieces on its upper angles. Arms and column unknown.
This large and fine species is so unlike any of the forms usually met with from this horizon that a comparison seems hardly necessary. Possibly it may be included in Dr. Troost's catalogue of the crinoids of Tennessee, published in 1850, in the Proceed. Amer. Asso., Cambridge meeting, p. 60 ; bit as no descriptions of the species there catalogned have ever been published so far as is known, this point can only be decided by a comparison of specimens.

Position and locality: Wayne county, Tennessee, in the red limestone at the base of the Upper Silurian.

BRACHIOPODA.

Genus STRICKLANDINIA, Billings.

Stricklandinia deformis, M. and W.

Pi. 24, Fig. 5 a, b.
Stricklandinia deformis, Meek and Worthen, 1870. Proceed. Philad. Acad. Nat. Sci., p. 37.
Shell (internal east) longitudinally suborate, oblong or sometimes in young examples nearly or quite as wide as long; valves very nearly equal and sometimes showing rery faint traees of an obseure mesial prominence on the dorsal valve, and of a corresponding depression near the front of the rentral ralve; hinge line straight, and less than the breadth of the valses: surface apparently smooth or only with eoneentric lines on the foung shell, while casts of the adult show some traces of a few obseure irregular radiating ridges. Beaks, area and finer surface markings unkuown.

Length of a young internal east 1 ineh, breadth .97 inch, convexity 46 ineh. Length of a larger speeimen 1.93 inch, breadth 1.58 ineh, eonvexity 1 inch.

This shell varied so greatly iu form at different stages of growth that it is vers diffcult to give a deseription that will eonvey a eorreet idea of it. Young examples from .70 to 1 inch in length approaeh a broad ovate form, being truncated on the hinge line, and somewhat narrowly rounded at the middle of the front; while their posterior lateral margins are more or less straightened and infleeted as we often see in Rensselaeria. After attaining this size and form, the shell, judging from some adult examples we have seen, seems to have suddenly commenced a more vigorous growth, mainly forward and antero laterally, so as to attain a much larger size, learing the valves of the joung shell as it were, open and spread mon the beaks, thus completely destroying the symmetry of the entire shell. At this stage of growth the shell has a curious eonstricted appearanee at the eonneetion of the young and adult shell; while the whole breadth posteriorly is ouly that of the young shell, and the widest part is then some distanee in advance of this, and the posterior margins are strongly flattened by their sudden infleetion towards each other there.

The casts show that the ehamber in the beak of the ventral valve is of moderate size, and supported on a rather short mesial septum. The
socket processes are seen, by their impressions in the cast, to be small not mited, and scarcely assuming the character of plates; while the crural processes extended from their inner lower sides forward nearly parallel, so as to leare two slender, deep perforations in the cast. The surface of the young shell appears to have been smooth, or only marked with concentric strix, but interual casts of large indiriduals sometimes show very faint traces of a few broad, irregular, radiating flattened ridges.

It is probable that this species is most nearly allied to Stricklandinia Davidsoni, of Billings (Geol. Mag., Vol. V, Pl. IV, fig. 1, 1 a), which in some stages of its growth it resembled rather nearly in form. In all the large examples, however, it differs extremely from that shell in its remarkable narrowness across the umbones, and its truncated or flattened posterior lateral margins. Its front is also less produced and less narrowly rounded in the middle in these larger specimens.

Position and locality: All the specimens of this species we have seen were found loose in Carroll county, Illinois, near rocks of the age of the Niagara Group. They are all in the condition of white quartz casts of the interior.

CEPHALOPODA.

Gqnus ORTHOCERAS, Auct.

Orthooeras crebristriatum, M. and W.
Pl. 26, Fig. 2.
Orthocerus crelisietrictum, Meek and Worthen, 1865. Proceed. Philad. Acul. Nat. Sci., p. 255.
Shell attaining a medium size, rather rapidly tapering, compressed, (in part probably due to accidental pressure) ; seetion elliptical ; septa transverse, rather deeply concave, distant less than one-third the greater diameter of the shell at the point of measurement; siphon apparently subcentral. Surface ornamented with numerous closely and very reguarly arranged, equal, thread-like ammular striat, of the samo breadth as the depressions between, and differing but slightly in size throughout the entire length of the shell.

Length of the typical specimen (which is partly septate and inperfect at both extremities) 12.50 inches, greater diameter at larger end 4.20 inches, smaller diameter of same 2.56 inches. Greater diameter of the smaller end abont 2.13 inches. smaller diameter of same 1.08 inch.

Angle of dirergence, measuring along the narrower sides, 11°. Annular strix 8 in .20 inch at the larger end, and 9 or 10 in the same space at the smaller end. The specimen figured shows only the septate portion of the shell.

The most marked character of this species is its very regularly arranged, equal striæ, which seem to pass almost, if not quite, directly around the shell. They appear to be simple, uninterrupted and,ererywhere arranged their own breadth apart. It differs from O. Laphami, from the same rock, in its much more rapid expansion from the smaller to the larger extremity, and in its compressed instead of cylindrical form, as well as in having its striæ passing directly around, instead of obliquely.

Position and locality: Joliet, Illinois; Niagara Group, Upper Silurian.

Orthoceras medullare, Hall?

$$
\text { Pl. 26, Fig. } 1 .
$$

Orthoceras medullare, Hall, 1860. Rep. Prog. Geol. Survey Wisconsin, p. 4. 20 liegents' Rept. N. Y. State Calo., p. 412, P1. 20, fig. 1 and 2.
O. strichineatum, McChessey, 1861. New Paleozoic Fossils, p. 94.

Position and locality : Niagara limestone, Joliet, Illinois.

Orthoceras angulatun, Wahl.

Pl. 24, Fig. 8.

Orthoceras angulatum, Wahlevbelig, 1897. Nova. Acta. Sci. Upsal., p. 90. O. angulatum, Hall, 20 Regeuts' Report, p. 413, Pl. XIX, figs. 10 and 11, and Pl. XXIV, fig. 1.

Position and loculity: Niagara limestone Joliet, Illinois.

Orthoceras rectum, Worthen.

$$
\text { Pl. 26, Fig. } 3 .
$$

Shell of medium size, very gradually tapering, septa moderately concave, two of the interrals being a little less in width than the diameter of the shell. Length of specimen with twelve septa preserved, 8.87 inches, length of outer chamber about 3 inches. Surface markings and siphuucle unknown.

This shell seems to be nearly related to O. crebescens of Hall, but differs from that species in its much less tapering form, and in the proportional width of the septa.

Locality and position: Joliet, Illinois, in the Niagara limestone, Upper Silurian.

Orthoceras Unionensis, Worthen.

$$
\text { Pl. 26, Fig. } 4 .
$$

Shell below the medium size, rather rapidly tapering, especially along the upper half of its septate portion, and more gradually below, slightly arcuate, (though this may be due to accident,) septa transverse, rather deeply concave, distant on the upper half of the shell a little less than one-half the greatest diameter at the point of measurement, surface markings and siphuncle unknown.

This species differs from the last in its more slender and more rapidly tapering form, and the comparative distance of its septa. Length of the septate portion of the shell in the specimen under examination, 9 inches; diameter at the base of the chamber of habitation 1.50 inch; diameter at the lower extremity, 0.45 inch.

Locality and position: Union connty, Illinois, from the red layers at the base of the Niagara, Upper Silurian.

Orthoceras Jolietensis, M. and W.

Pl. 26, Fig. 5.

Orthoceras Jolietensis, Meek and Wortire, 1865, Proceed. Acad. Nat. Sci. Philad., p. 256.
Shell much elongated, very gradually tapering, section oval or narrow elliptic; septa very concare, unusually distant or separated by spaces three-fourths the greater diameter of the shell at the point of measurement. Siphuncle and surface unknown.

Length of a septate specimen, imperfect at both extremities, 14.50 inches; greater diaucter of septate specimen at larger end, 2.75inches; smaller diameter of same, 1.77 inch; greater diameter at smaller end, 2.16 inches; smaller diameter of same, 1.30 inch. Number of septa in the entire $14 \frac{1}{2}$ inches, 8 .

This species is remarkable for its rery gradually tapering form, and musually distant septa. The latter character will alone distinguish it from any Upper Silurian species known to us, excepting O. pauciseptum, Hall, from the shaly limestone of the Lower Helderberg Group). From this New York species it will be distinguished ly its compressed instead of cylindrical form. It is true this compression may be in some degree due to accidental pressure, but it seems to be too regular along the entire lengtl of the shell not to be mainly the natural form.

Locality and position: Joliet, Illinois. Niagara division of the Upper Silurian series.

Genus PHRAGMIOOERAS, Broderip.

Ihragmoceras Byronensis, Worthen.

$$
\text { Pl. } \simeq 4, \text { Fig. } 6 .
$$

Shell rather above the medium size and moderately areuate, the septate portion of the shell as preserved in a east in magnesian limestone being about onee and a half the depth of the ehamber of habitatiou. This outer chamber is orate in ontline, measuring 2.62 inches in its dorso-ventral diameter, by 1.60 inch in a lateral direetion, about 2 inehes in depth and constrieted at its junction with the septate portion of the shell. The greater and lesser diameter of the septa are as 10 to 5 . Siphunele rather large and elose to the inner border of the shell.

This species differs from P. nestor of Hall, (20th Regents' Report on the N. Y. State Cabinet, p. 405,) in the eomparative size of its septa, and more moderate eurrature, as well as the form of its outer chamber and position of its sipliunele.

Locality and position: The specimen from which the foregoing deseription was drawn was fomd at Rock Island, in a block of Niagara limestone evidently transported from the vieinity of Port Byron, 111.

Genus CYRTOCERAS, Goldfuss.

Cyrtoceras dardanus, Hall?

Pl. 25, Fig. 6.
Oyrtoceras dardanus, Hall, 1861, Report of Progress, Geological Survey of Wisconsin, p. 43, and 20th Regents' Report on the New York Stato Cabinet of Natural Hist., p. 406, Pl. XVII, fig. 3, 4, 5 .
"Shell robust, strongly eurved, moderately expanding from the apex, and slightly contracting near the aperture; transverse section broadly elliptieal, the greater diameter in a dorso-ventral direction. Dorsal and ventral sides equally ronnded; septa distant, measming only four in is distance equal to their transverse diameter, deeply coneave and strong! y arehed forward on the dorsum. The siphuncle of moderate size, dorsal."

The above is the original deseription of this speeies, and our shell appears to differ in the following characters: General form more robust, not quite so strongly curved, septa not so strongly arehed formard on the dorsum, and apparently not so decply concare ahd measuriug five in a distance equal to their transverse dianeter. Not knowing to what extent this form may vary, we place it provisionally under this species. Shonld further comprison prove it distinet, it might take the name Cyrtoceras Fultonensis.

Loculity und position: Vulton City, Illinois; in a bulf limestone at the base of the Niagara, Upper Silurian.

Genus Lituites, Breyn.

Lituites Graftonensis, M. and W.

pl. 25, Fig. 1.
Lituites Graftonensis, Meek and Worthex, 1869. Procced. Acad. Nat. Sci., Philad.
Shell rather small, with the involuted portion discoid, planorbieular, and slightly concare on both sides; volutions four or more, slightly embracing, increasing very gradually in size, with transverse section nearly or quite circular, excepting the shallow concavity along the inuer side. Surface ornamented by numerous, distiuct, very regularly arranged costa, whieh cross the sides of the volutions very obliquely backward from the inner side, curving strongly backward as they approach the periphery, and after crossing the middle of the same, again deflected abruptly formard as on the opposite side; this indica. ting a profound sinus in the outer side of the lip, the sinus being very narrow, but not quite angular at its termination, and widening rapidly formard ; fine, somewhat imbricating striæ of growth also run parallel to the eostæ. Septa apparently rather distant and running nearly straight aeross the sides of the volutious. Siphuncle and free portion of the outer rolution unknown.

Greatest diameter of the coiled part, 2.10 inches; transverse diameter, 0.54 inch; dorso ventral diameter of outer volution, 0.52 inch.

As we have seen ucither the siphuncle nor the free part of the body chamber of this species, we cannot be positively sure it has exactly the characters of the genus Lituites. Yet as it does not show the slighest appearance of the obliquity of the volutions seen in Trochoceras, we have scarcely any doubt in regard to its being a true Lituite. Compared with Lituites Marshii, of Hall, (20th Amn. Rep. Regents' Univer. sity N. Y. on State Cab. Nat. Hist., P'l. 16, fig. 6, 7,) from the same horizon at Kankakee in this State, our species will be found to differ in having its volutions more compactly coiled together, much less rapidly increasing in size, and ornamented with sinaller and much more closely arranged costr. Its costæ also make a stronger, or deeper backwarl eurse, in crossing the periphery, which is rounded instead of being flattened, as in the Marshii. This flattening along the outer side of the whorls of L. Marshii, seems to indicate that it belongs to the subgemis Ophidioceras of Barrande, while our species agrees, in the rounded character of its periphery, with the typical Lituites.

In general appearance our shell is more like L. (Trocholites) cmmonius, of Conrad, from the Lower Silurian, though its coste are much more obligne, and differ in being separated by rounded furrows quite as wide
as the costre themselres, while its surface shows no traces of the finer sculpturing seell on that shell.

Position and locality: Grafton, Illinois; from a light-drab magnesian limestone of the age of the New York Niagara Group. Upper Silurian.

CRUSTACEA.

Genus LICHAS, Dalman.

Lichas Boltoni, Bigsby (sp.)

Pl. 25, Fig. 5.
Paradoxides Bolloni, Brosbry, 1825. Jour. Acad. Nat. Sci., Philad., Vol. IV, p. 362. Gbres, (1832,) Morogr., 1'. 6, Pl. 1, fig. 5. Also, (183g) Monthly Am, Jour. Geol., p. 360; Mablas (1834,) Trans. Geol. Soe. P'a., Vol. I, p. 103, and Med. and Plays. lesearches, p. 401.
Plat!notus Doltoni, Coxisal, 1838. Ann. Rep. Palaront., N. I., p. 118; Hall Geol. Rep., Fourth Dist., N゙. F.
Actimurus Loltomi, Castlfanu. 1843. Ess. Sur. Sil. Ssst., de l'Aner. Scpt., p. 21, t. 5, fig 3.
Lichas Boltomi, Mal.L, 18J2. P'alaont. N. I., Vol 2d., p. 311, I'l. m9, 70, fig. I a, b, ote., (wot 1 i .)
The only specimen of this species yet known to us from any Illinois locality, consists of the prgidium, in a tolerable good state of preservation. It agrees with the New York species too nearly, we think, to be regarded as a distinct species, though we can see some slight differences in its details. For instance, the anterior (rud of its mesial lobe is more convex than that of any New York specimens we bave seen, but as the latter are all in soft shale, it is probable this difference may have been produced hy pressure. The angular projections of its posterior margin are also rather more pointed than is usual in New York examples." In these characters, and its rather distinctly and coarsely granular surface, it seems to agree well with a form described by Prof. Hall under the name L. Boltoni var. Occidentalis, from Waldron, Indiana, but as we have seen no figure, and but a brief description of that type, we cannot be sure of the identity of our specimen with it.

Position and localiay : Niagara Group, of the Upper Silurian. Grafton, Illinois.

Genus ILIENUS, Dalman.

 Illmus (Bumastus) Graftonensis, M. and W.$$
\text { l'l. 25, Fig. } 4 .
$$

Illumes (Bumastus) Graftonensis, Mrik and Wonthen, 1869. Procerd. Acad. Nat. Sci., Phalal.
Attaining a rather large size. Head (letermined from internal cast) transersely subelliptic as seen from above, when placed with the under
side on a horizontal plane, its breadth being to its length very nealy as fifty to thirty; moderately convex, the hight being rather distinctly less than half the breadth, and the most prominent part a little behind the middle; while the curve over the middle, from its posterior to its anterior margin, forms about a quarter of a circle. Anterior margin, as seen from abore, presenting a nearly transsersely semielliptic eurve, aud a subquadrangular outline, as seen in a side view; lateral margins rather narrowly, and regulaty rounded in ontline, into the posterior side. Axial furrows distinct, converging formard to a point nearly opposite the middle of each eye, where they terminate in little flattened oval depressions. Eyes large, forming nearly semieircular curves, with their posterior ends as near the posterior as to the lateral margins of the head ; each with a broad, very deep furrow around beneatlo its outer side, so as to form a kind of obtuse shoulder below, from which the cheeks drop off nearly vertieally, with a slight convexity of ontline, to the inferior margins; pulpebral lobes less elevated than the middle of the $\underset{\sim}{\text { rlabella, and sloping a little outward, with an even convexity orer }}$ their whole surfaee; visual surface forming a rather narrow convex band, and showing (in interual easts) under a magnitier, nunerous very minute reticulations. Facial suture cutting the anterior margin distinctly within a line drawn antero-posteriorly through the inner ends of each eye; and intersecting the posterior margin nearly on a line with the middle of each eje. Rostral shicld flat, with a subfusiform outline, and obtuse lateral extremities; just three times as wide as its anteroposterior diameter. Surface of the internal east of the whole upper part of the head, without lines, furrows or other markings, but rather distinet transverse furrows are seeu on the rostral shield. Body and other parts nnknown.

Length of head, about 1.20 inch ; breadth of head, 2. 47 inehes ; hight or convexity, 1.05 inch. Lengtly of eyes, 0.55 inch; hight of visual surface, 0.10 inch; distance between the eyes at posterior and anterior ends, 1.65 ineh.

This speeies is perhaps inost nearly related to the common and widely distributed I. Burriensis of Murchison. It may be reatily distinguished, however. by several important differenees in the head, whieh is the only part yet known to us. In the first place, its head is much wider iu proportion to its length, and has its lateral margins, as seen from above, moch more narrowly and regularly romiled, so that the cheeks do not project any farther out from the eyes posteriorly, than laterally, the outline of the lateral margins having almost exactly the same curve as the eyes themselves. Its rostral shield also has a very difierent form from that of Murchison's species, being narrow in its antero-posterior dianeter, and distinetly obtuse, insiead of pointed at the lateral extremi-
tirs. Our species likewise shows no traces of the furrows on the cast of the upper side of the head, so strongly marked on I. Barriensis.

It is still more widely removed from I. insignis of Hall; and we know of no other described species, having the head so nearly elliptical iu outlibe, as seen from above, excepting possibly I. Salteri of Barrande, which, however, differs widely in other characters, belouging, as it does, to the small ejed section of the group.

Position and locality: Grafton, Illinois; from the Niagara division of the Upper Silurian.

Genus SPHAREXOCHUS, Beyrich.

Spherexochus Romingeri, Hall,
Pl. 24, Fig. 4.
Spharexochus Romingeri, Hall, 1862. Gcol. Rep. of Wis., p. 434, and 20th Regents' Report, p. 425. Pl. 21, figs. 4-7.
Position and locality: Joliet, Illinois; Niagara Group.

DEVONIAN SPECIES.

Genus CALCEOCRINUS, Hall.

Calceocrinus Barrisi, Worthen.
Body above the medium size and composed of thick massive plates. Lower dorsal plate triangular and about three times as wide as high.
 Upper dorsal plate less than half the size of the lower, and triangular in outline. Dorso-lateral pieces presenting an irregular pentagonal outline, with abruptly romnding lateral sides, and projecting upper angles.
Arms and columin unknown.
This species may be readily distinguished from any other known to us by its thick massive plates and robust appearance. We are indebted to the Rev. Mr. Barris, of Davenport, Iowa, for the only specimen we have secn, to whom we dedicate the species.

Posilion and locality: Davenport, Iowa; in beds of Devonian age.

MOLLUSCA.

LAMELLIBRANCHIATA.

Gevus AViculopecten, McCoy.
Aviculopecten Unionensis, Worthen.

Pl. 28, Fig. 3.

Shell of medium size, broadly suborate in outline exclusive of the ears, left valse moderately courex and oblique, anterior and posterobasal margins rounded, the latter rounding up to meet the obliquely sloping edge of the posterior margin. Anterior ear rather small, triangular, flat; posterior car about three times as large as the anterior, and more acutely angular, beak depressed, scarcely reaching beyond the cardinal margin and placed considerably in advance of the middle of the linge; surface ornamented with mumerons simple linear coste, of which about twelve may be counted on the lower margin in the space of lalf an inch, alternating somewhat in size, the smaller ones dying out towards the umbo. Crossing these linear costre are distinct lines of growth. Right valve unknown. Length of hinge line 1.20 inch ; greatest length from the umbo to the basal margin 2.25 inches, greatest transverse breadth 2.10 inches.

Position and locality: Union county, Illinois; in a dark foetid limestone, probably representing the Corniferous beds of the Devonian.

CEPHALOPODA.

Gexts Phragmoceras.

Phragmoceras Walshit, M. and W.
Pl. 28, Fig. 2 a, b.
Phragmoceras Walahi, Meek and Wommex, 1866. Proceel. Acad. Nat. Sci., Philad., p. 257.
Shell attaining a large size, clavato sublunate, being morlerately arched, increasing rather rapidly in size (particulaty in the dorso-
ventral diameter), from the smaller end to near the middle, and thence apparently somewhat tapering towards the aperture, which is not preserved in the only specimen scen. More or less compressed laterally. Body chamber apparently rather short. Septa oblique (in part from atecidental pressure in the specimeu examined), comparatisely closely arranged, the chambers between seareely equalling one-sixth the greater diameter of the shell at the widest part, and one-eighth towards the smaller end. (Siphuncle, surface markings and aperture nuknown.)

Length of specimen (imperfect at both extremities), measuring along the middle of the side parallel to the curve, about 15 inches. Greatest breadth near the midde, 5 inches ; greater diameter at the smaller end, 2.40 inches. Of the whole length of the specimen, 22 of the chambers form 10 inches, and the remaining portion of the body chamber the other 5 inches.
The only specimen of this large shell we have seen is very imperfect, and much distorted, so that it is quite probable some of the characters given may have to be modified more or less, when perfect examples are found. Its large size, general form, and rather closels arranged septa, however, will probably render its identification not very difficult.

The specific name was given in honor of B. D. Walsh, Esq., the well known Entomologist, of Rock Island, Illinois.

Position and locality: Rock Island, Illinois; Hamilton division of the Devonian.

Genus ORTHOCERAS.

Orthoceras Wincirelli, M. and W.
PI. 28, Fig. 1.
Orthoceras Winchelli, Mrek and Wonthen, 1866. Proceed. Acad. Nat. Sci., Philad., p. 25%.

Shell rather rapidly tapering; section nearly circular, its greater and smaller diameter being as 106 to 100 ; septa moderately concare, not obliqne, distant one-fifth the greater diameter of the shell at the point of measurement, and showing a gentle backward curre in crossing the dorsal and rentral sides; siphmele very small, at the points where it passes through the septa (but probably swollen between), placed on the shorter axis of the septa only abont its own breadth from the margin. Surface nearly smooth, or with more obseme lines of growth, which, like the margins of the septa, make a slight backward curve in crossing the dorsal and ventral sides.

Length of a specimen imperfect, 3.25 inches.

This speeies seems to be somewhat similar to O. occidentale of Prof. Wincmell, from the Miehigan Marshall group (Am. Jour. Sci., xxxin, 356,1862), but differs in being more rapidls tapering, and in having its siphunele nearly marginal, instead of placed midway between the eentre and the margin of the septa. If mnch swollen between the septa, its siphnncle must be really marginal at these points.

The speeifie name was given in honor of Prof. A. Winchell, Stato Geologist of Michigan.

Position and locality: White Sulphur Springs, Delaware county, Ohio; Derouian.

LOWER CARBONIFEROUS SPECIES.

ECHINODERMATA.

Genus Dorycrinus, Remer.

Dorycrinus Kelloggi, Worthen.

```
Pl. 29, Fig. 8.
```

Body below the medium size, obeonical below the arms, tapering rapidly to the truncated base, and depressed convex above; base truneated, excavated for the reception of the eolumar facet, and slightly depressed at the sutures; first radials a little wider than high, three hexagonal and two heptagonal; second radials nearly twice as wide as high, two pentagonal and three hexagonal; third radials twice as wide as high, pentagonal and hexagonal, each supporting on its superior sloping sides a pentagonal secondary radial, which is suceeeded by another heptagonal secondary radial, the latter supporting on each of its superior sloping sides two brachial pieces, giving four arm openings to each ray. First anal pieee heptagonal and about the same size as the first radials, supporting three others above, one of which is pentagonal, one hexagonal and one heptagonal ; these are sncceeded by a dozen or more minute and irregnlar shaped pieces extending up to the spiniferons or mammillary plate at the apex of the summit. Around this central plate on the
summit there are six other mammillary plates of smaller size forming three quarters of a eircle, the opening being on the anal side, and beside these there are from one to three other protuberant plates on the snmmit of each ray making in all from eighteen to twenty protuberant plates on the rault. First interradial a little larger than the seeond radials, hexagonal, and supporting two smaller pieces above, that extend up nearly to the base of the arms. Anal opening minute, slightly protuberant, and located immediately at the lase of the mammillary plate that forms the apex of the summit. Surface of all the plates finely rugose.

Dedicated to Dr. Geo. W. Kellogg, of Keokuk, Iowa, from whom I reeeired the typical speeimen.

Position and locality: Keokuk, Iowa; Keokuk limestone, Lower Carbouiferous.

Genús SYNBathocrinus Phillips.

Sinbathocrinus robustus, Shumard.

Pl. 29, Fig. 4.

Synbathocrinus robustus, Shumaird, 1866. Trans. St. Loms Acad. of Science, Vol. , p, p. 397.
"Body below the second radials depressed eonieal, enlarging rapidly from the base, width not quite donble the hight, plates thick, surface finely granulose. Base pentagonal above, short, widely truncated and exearated below by the upper joint of the column, margin of excavation finely but distinctly crenulate. First radials wider than high, quadrangular, gently eonvex, double the hight of the base; facets for seeond radials broad." The foregoing is Dr. Shumard's original description, to which the example figured enables me to add the following: Second radials quadrangular, wider than high and tanering very gently upward Arms stout and eomposed of slightly rounded plates from one half to one-third as high as wide, forming when closed a cylindrical prolongation which in the example figured is about 2.60 inches in length. Column round, and composed of rather short plates, of which about every fourth one is a little longer and wider than the others, forming rim-like projeetions.

Position and locality: Greene county, Illinois, and Buttonmould Knob, Ky.; Keokuk Group, Lower Carboniferous.

Genus Dtohocrinus, Munster.

Dichocrinus ficus, U. and L.

P1. 29, Fig. 7.
Dichocrinus ficus, Casseday and Lyon, 1860. Proceed. Am. Acal. Arts and Sci., Vol. 5, p. 24.
Body suboroid, inflated near the middle of the first radials, from which it gradually contracts both above aud below. Basal pieces similar in form and size, and when mited presenting five slightly curred depressions and one angular noteh for the reception of the radial and anal pieces. First radials five, similar in form and size, longer than wide, sub-quadrangular; the upper margin slightly indented for the reception of the second radials; sccond radials, six very small, semicircular; third radials, six small, cnneiform, axillary, supporting on their upper sloping sides two arms. Anal pieec similar in form but narrower than the first radials, and like them it supports a second and third radial and a pair of arms. Arms twelve, composed at their bases of rather stout picces nearly as long as wide, but giowing shorter above, and giving off numerous pinmulce to their extremities.

Position and locality: Crawfordsville, Indiana; from the shaly beds of the Keoknk Group, Lower Carboniferous.

Gents BARYCRINUS, Wachsmuth.

Barycrinus striatus, Worthen.

PI. 29, Fig. 5.

Body rather large, broadly obconic and composed of massive plates. Basal series very small and almost entirely concealed in the colnmmar depression. Subradials large, pentagonal? nearly triangular in ontline, the npper angle being a little longer than the laterals. First radials neally quadraugular, a little wider at the top than the length to the mildle of the facet for the reception of the next range of radials. This facet is moderately concare, and sloping ontward occupies abont onc-half the width of the first radial pieces. Anal piece large, a little longer than its greatest width, and rather more than half as large as the first radials. Surface ormamented with four or five prominent strie that begin at the base and run parallel with the lateral borders of the snbradials to their upper angles, and thence diverge to the ecntre of the facet on the npper margin of the first radials. A grannlose strnetnre is also observable on the remaining portion of the body plates. These
surface markings will serve to distinguish it from any other species of the genus at present known in the Lower Carboniferous limestone. Arms and column unknown.

Position and locality: Otter creek, Jersey county, Illinois; Keokuk limestonc, Lower Carboniferous.

Genus POTERIOCRiNUS.

Poteriocrinus Hoveyt, Worthen.
Pl. 29, Fig. 6.
Body below the second radials obconical and tapering very gradually from the top of the first radials to the column. Base nearly twice as wide at the top as long, truncated below the breadth of the column; basal plates longer than wide, pentagonal in form, with salient angles above; subradials comparatively large, length and breadth about equal, and, so far as can be sezn in the specimen under examination, hexagonal; first radial plates smaller than the subradials, pentagonal and truncated squarely across their upper margins for the reception of the next radial pieces; second radials a little longer than wide, rounded and slightly constrieted in the middle, pentagonal, and supporting the arms on their superior sloping sides.

Arms rery long, two to each ray in two of the rays seen, and one only in the other or anterior ray (as in I. Coryi), and composed of-rather short, rounded, wedge-shaped pieces, and giving off long slender pinmule to their extremities. Ventral tube rery long, cylindrical, composed of rather large plates with short, stout spines at the summit. Column round and composed of rather thin plates at the base.

Position and locality: Crawfordsville, Indiana, in shales of the Keokuk group, Lower Carboniferous.

I take pleasure in dedicating this fine species to Prof. E. O. Hovey, of Wabash College, Crawfordsville, Indiana.

Poteriocrinus Coreyt, Worthen.
Pl. 29, Fig. 2, 3.
Body below the base of the arms rather deeply cup-shaped or truncatoobconic; basal plates small pentagonal, and projecting about half their lengtl above the truncated base. Subradials moderately large, higher than wide and hexagonal. First radials pentagonal and about once and a half as wide as high, rather smaller than thie subradials, and four of them truncated their whole width for the reception of a second radiu piece. Second radials less than half as high as the first and rounded
on the outside; third radials about as high as the first, four in number and giving support on their upper sloping angles to two arms that continue single to their extremities. The middle ray on the anterior side gires off a single arm from the summit of the first radial piece, which, like the others, continues simple to its extremity. First aual plate hexagonal, about as large as the subradials, upon the upper angles of which it rests, aud supporting two smaller plates above, which are succeeded by others still smaller that exteud up to the base of the ventral tube. Ventral tube composed of very small plates, and strongly inftated at the snmmit, with a well-marked anal opening on its auterior side about half an inch above its lower extremity. The phates surrounding this opening form a prominent projecting rim, such as may be seen around this opening in the crinoids where it is located on the side of the body as in Agaricocrinus Americamus, and many others. This character may also be seen more distiuctly expressed in the example of Scophiocrinus uncus, figure 1 of the same plate.

This species is nearly related to P. Indiancnsis, M. aud W., Vol. III, Geological Survey of Illinois, p. 515, Pl. 20, fig. 4, but differs from that in the form and proportion of its body plates, and in the number and arrangement of its arms.

Position and locality: Crawfordsville, Indiana, in shales belonging to the Keokuk group, Lower Carboniferous.

This species is dedicated to Mr. L. W. Corey, of Crawfordsville, Indiana, from whom the typical specimen was receivel. For the specimen showing the rentral tube, I am indebted to Prof. E. O. Hover, of Wabash College.

Poteriocrinus Van Hornei, Worthen.

Pl. 31, Fig. 2, 3.

Body obconical below the arms, surface smooth; basal plates pentagonal as seen beyond the facet for the reception of the column, a little wider than long and uniting to form a shallow cup; subradials, three pentagonal and two hexagonal, length and breadth about equal; first radials nearly once and a half as wide as long, pentagonal and a little foncave on their upper margins so as to leave a suture between that and the second radial plate; second radiais on the anal side nearly twice as long as wide, strongly rounded and constricted in the middle and supporting the arms on their superior sloping angles. Apms, two to each ray, as firr as can be seen on our specimens, composed of smooth wedge-formed pieces, and apparently continuing single to their extremities. Anal phates, seven or eight visible, the two lowest less than half the size of the subradials, pentagonal, and resting on the upper mar-
gin of one of the irregular shaped subradials, those above are smaller and decrease in size upward. Ventral tube long and apparently cylindrical (the apex is broken off in our specimen) and composed of small pentagonal plates, crennlated or indented on their margins, giving them a stellate appearance. Column distinctly pentagonal at its junction with the base and for an inch below, which is as far as it can be seen in our specimens. This feature alone will serve to distinguish it from any other species known to us from this horizon.

Position and locality : Alton, Illinois, from the upper division of the St. Louis gronp, Lower Carboniferons.

Dedicated to my friend W. C. Van Horne, Esq., to whom I am indebted for the use of one of the examples figured.

Poteriocrinus proboscidialis, Worthen.
Pl. 31, Fig. 1.
Body below the base of the arms depressed obconical, base small, scarcely projecting beyond the circamference of the first columnar joints; basal pieces rather small, nearly twice as wide as high and forming a shallow cup. Subradials, so far as they can be seen on the anal side, a little wider than long and hexagonal; first radial plates about once and a half as wide as high and pentagonal ; second radials a little shorter than the first, quadrangular; third radials as long as the second, pentagonal, and supporting two arms on their superior sloping sides. Anal plates, eight to ten visible, extending up and orerlaping or merging into the ventral tube. The two lowest ones are the largest and liexagonal, the succeeding ones growing smaller as far as they can be traced, and all pentagonal or hextgonal. Arms, two to each ray on the anal side, and they appear to bifurcate on the sixth or tenth plate, which is produced laterally into a short, stout spine. Ventral tube nearly two inches long, and apparently a little inflated at its upper extremity, where it is surmounted by three or more short pointel spines. The surface of this organ is ornamented with longitudinal ridges, which seem to be dotted along their upper extremities with minute dimples or oval depressions, and are connected by oblique strix, that give a beautiful cancellated appearance to its surface under a magnifier. Colnmm round, and composed of alternating thin and moderately thick joints, the latter projecting a little beyond the others.

Position and locality: Carondelet, Mo., in the upper division of the St. Louis limestone, Lower Carboniferous.

Subgends SCAPHIOCRINUS, Hall.

Scaphiocrinus unicus.

Pl. 29, Fig. 1.

Scaphiocrinus unicus, Hall, 18G1. Prelim. Deser. New Crinoidea, p. 8. S. unicus, Meek and Worthen, 1872, Geol. Surrey of III., Vol. V, p. 493, Pl. 15, fig. 5.
"Body broadly eup-shaped, with a deeply depressed base, somewhat abruptly spreading at the summit of the first radials. Basal plates and lower ends of the subradials forming the bottom and sides of the earity. Arms dividing on the second radial plate; eaeh division bifureating twiee and rarely three times. The anterior ray has a single arm, which is undivided throughout. This single arm is a strongly distinetive character."

The above is the original deseription of this species as published in 1861, and the figure of an unique specimen is iutroduced here, showing the full form of the rentral tube, with a well marked anal opening on its anterior side, sitnated about midway between the apex and base of this organ. The rentral tube is strongly inflated at the upper extremity, and is surmounted by three or more strongly pointed spines. So far as I am aware this and the Potcriocrinus Corcyi are the only examples of crinoidea yet diseorered showing the position of the anal opening in the Puterincrinide.

Position and locality: Crawfordsville, Ind., Keokuk group, Lower Carboniferous. I am indebted to Prof. E. O. Hovey, of Wabash College, for this unique speeimen.

Scapmiocrinus albnormis, Worthen.
Pl 31. Fig. 6.
Body truneato obeonie, basal plates small, and coneealed in the eolumnar depression; subradials not well shown in our speeimen, in which the body plates are somewhat distorted by pressure ; two of the radial pieces longer than wide and hexagonal, the others about as wide as long and pentagonal, each giving support abore to a second radial piece. Seeond radials about as wide as long, constricted about the middle, and two of them supporting two arms on their upper slopitg sides, which contime single as far as they can be seen. On two of the other rays, and probably on all three of them, a single arm proeeeds from their upper oblique inargins, and not dividing, make but seven or eight arms altogether. Arms composed of a single series of stout, wedge-shaped pieces, giving off numerous pinnule from their inner margins, com-
posed of rather stont, round pieces, two or three times as long as wide. The number and arrangement of the arms of this species, which suggested the specilic name, will distinguish it from any other form at prescut known from this horizon.

Position and locality: Monroe county, Illinois, in the upper division of the St. Louis group. Lower Carboniferous.

Genes ONYOHOCRINUS, I . and C .

Onychocrinus magnus, Worthell.

PI. 31, Fig. 5.

Body large, and composed of massive and apparcutly smooth plates. Basal pieces small, and entirely conccaled in the columinar depression. Subradials of unequal size, the two on the anal side much smaller than the others, and the three on the anterior side showing a peutagonal form beyond the colmmar facet. First radial pieces twice as wide as long, hexagonal and heptagonal, counting the slight angular depression on their upper margins; sccond, third and fourth radials nearly as wide and rather shorter than the first; fifth radials as long as the first, measuring to the top of their upper angles, and supporting on their upper sloping margins the first of a double scrics of sccondary radials or brachial picces, of which about 27 or 28 can be counted in each series on two of the rays, but gradnally diminishing in size to their extremities, where they are no larger than their pinuulat. Each of the ten arms gives off on alternate sides from the third, fourth or fifth plate clusters of stout pinumla composed of plates similar to those of the arms, but gradually decreasing in size to their extremities. All the arm plates, as well as those of the pinnulæ, are angular below, the angle fitting into a depression in the subordinate plate. A single anal plate only is visible in our specimen, and by an oversight this is not represcnted in the drawing. It is small, about twice as long as wide, and apparcntly pentagonal. Column ronnd, comparatively large at its junction with the base, composed of very thin equal segments comecting by cremulated sutures, and decreasing in diameter nearly one-half in the space of an incli below the base.

Position and locality: Monroe connty, Illinois, in the upper division of the St. Louis group. Lower Carboniferons.

(ienus PENTREMITES, Say.

Pentremites (Trichelocrinus) Varsouviensis, Worthen.

Pl. 31, Fig. 8 and 9.

Base strongly triangular, becoming pentagonal above, and a little more than half as long as the radial pieces. Radials rather narrow, elongate, borders nearly parallel, angulated below and flattened on the sides, and truncated for the reception of the interradial pieces. Interradials rather small, lanceolate, and reaching nearly or quite to the summit. Pseudo-ambulacral fields narrow, linear, and extending downwards less than half the length of the radial pieces, and each containing about sixty pore pieces arranged in a double row.

This species is closely allied to P. lineatus, Shum., from the Burlington limestone, but differs in its more triangular base, in the proportions of its principal pieces, and in the number of pore pieces in its pseudoambulacral fields.

Position and locality: Warsaw, and Mouroe county near Columbus, Illinois, in the Warsaw division of the St. Louis group. Lower Carboniferous.

> Pentremites (Tricolocrinus) obliquatus, Romer, sp.

$$
\text { Pl. 31, Fig. } 4 .
$$

Pentatrematites obliquatus, Remer, 18J2; Monog. Blast., p. 47, Pl. 3, tig. 11.
This species also occurs in the Warsaw division of the St. Louis group in Mouroe county, Illinois, and not in the Archimedes beds of Randolph county, as cited by Romer.

Genus SPIRIFER, Sowerby.

Spirifer fastigatus, M. aud W.

$$
\text { l'1. 30, Fig. } 3 .
$$

Spirifer fastigatus, Meek and Wonthen, 1870. Proceed. Acad. Nat. Sci., Philad., p. 36.
Shell attaining a rather large size, moderately convex, very transverse, or distinctly more than twice as wide as long ; greatest breadth on the linge line; lateral extremities very attenuate and acutely pointed in young specimens, but beroming more obtuse in larger individuals; front and anterior lateral margins broadly and rather regularly rounded. Dorsal valve nearly as convex as the ventral; beak
depressed, somewhat ineurved, and seareely projecting beyond the hinge line; area of rather more than usual breadth for that of a dorsal valre, and arched with the beak; mesial fold eommencing at the beak seareely larger than one of the ribs on eaeh side of it, but inereasing gradually in breadth and prominence to the front, where it is oceupied by abont six to eight eoste, which, however, eoalesee into one or two at the beak. Tentral valve regularly convex over the eentral region, and somewhat compressed toward the lateral extremities; mesial sinus eommeneing narrow and rery small near the beak, and widening and deepening gradually to the front, where it is occupied by about eight depressed, rounded costre, whieh, like those on the fold of the other valve, eoalesee with those on each side and with each other, so as to leare but one that extends quite to the beak; beak rather depressed and not projeeting much beyond the hinge line, arehed or moderately incurved; area rather narrow, and extending, with almost perfectly parallel margins, quite out to the lateral extremities of the hinge, marked by the usual transierse and rertical striz; foramen wider than high, rather large, ind extending close up under the rather flattened apex of the beak.

Surface ornamented by depressed, rounded, bifurcating or trifid, more or less fasciculated costre, about five of which, on each side of the mesial and sinus fold, are larger than the others, and divide before reaehing the frout so as to form as many faseieuli of two or three ribs each, tho furrows between which are less strongly defined than those between the bundles. Toward the lateral extremities some eight or teu smaller, simple, obseure costix, that do not reach the beaks, may also be counted on each side of eaeh ralve, gradually becoming obsolete near the ends. Crossing the whole, fine obscure, undulating strie, and a few stronger marks of growth may be observed on well preserved specimens, the strie, however, exeepting near the front and lateral margins, not being readily seen without the aid of a magnifier.

Length about 1.45 ineh, breadth 2.20 inches, eourexity about 1.50 inch, hight of area at the beak .26 inch.

We have had specimens of this fine Spirifer under consideration for a long time, and after numerous careful comparisons we have been mable to identify it with any of the described species. It seems to be most nearly allied to our common Coal Measuce species s. comerutus, of Morton, with which it agrees in the faseiculated eharacter of its coste, and in general appearance. It differs, however, in several characters by which it can be readily distinguished on comparison. In the first phace, its larger fasciculated costa are distinetly broader, and rather more depressed on the anterior slope of its valves, and proportionally less mumerous. The incurved apex of the beak of its reutral valves is always less abruptly eurved, and much more flattened. The most
marked character, however, is to be observed in its cardinal area, which has its margius almost perfectly parallel, instcad of being always sloping from the beak to the lateral extremities. The same characters and its narrow mesial fold and sims distinguish it from the variety of S. striatus with somewhat fasciculated costa. It belongs to the subgenms Trigonotreta.

Position and locality: Crawfordsville, Indiana, in the shales of the Keokuk group. Lower Carboniferous.

Spirifer neglectus, Hall.

Pl. 30, Fig. 2 a, and 1 c.
Spirifer neglectus, Hall, 1858. Geol. of Yowa, Vol I, Part 2, p. 642, Pl. 20 , fig. 5.
"Shell trausverself oval, gibbous; hinge line less than the greatest. width, rounded at the extremities. Dorsal valve convex; mesial fold small at the beak, increasing rapidly towards the front, where it is very prominent, not plicated; beak a little clevated above the hinge, incurved. Ventral valve a little more convex, clevated in the umbonal region, mesial sinus broad and deep, with one broal, faint plication in the middle, and indications of another on each side; umbo very gibbons; beak strongly arched; area high arcuate, its lateral margins rounding gradually on each side; foramen large, triangular, a little higher than wide.

Surface marked by abont six broad, depressed and rounded, simple plications on each side of the mesial fold and sims; concentrically crossed by fine molulating strix and a few stronger wrinkles of growth."

Position and locality: Warsaw, Hamilton and Nauvoo, Illinois, and Keokuk, Iowa. Keokuk limestone, Lower Carboniferous.

Spirifer suborbicularis, Hall.

Pl. 30, Fig. 1.

Spirifer suborbicularis, Hall, 1858. Geol of Iowa, Vol. I, Part 2, p. 64t.
"Shell suborbicular, length and width nearly equal or somewhat wider than long; hinge line much shorter than the width of the shell; cardinal extremities regularly conrved. Dorsal valve convex, gibbons above the middle, with the mesial fold bccoming defincd below the beak, and somewhat prominent at the base. Ventral rake convex, gibbous above the middle, with elevated umbo and beak abruptly incmed over a narrow area, which in length is about equal to half the width of the shell formen with the dental hmella projecting, and partially closed by psendoteltidinu.

Surface marked by broad, flattened, scarcely defined plieations, of which there are seven or eight on each side of the mesial fold and sinus, with two or three more faintly defined on these parts of the shell, and some appearance of a small plication in the center of the sinus."

I'osition and locality: Warsaw, Hamilton, Nauvoo, Niota, and rarious other places in Illinois, and Keokuk, Iowa. Keokuk limestone, Lower Carboniferous.

Genus MYALINA, deKoninck.

Myalina Keokuk, Worthel.
Pl 30, Fig. 5.

Shell of medium size, subquadrate, about once and a half as high as wide, rather oblique; linge nearly straight and as long as the greatest breadth of the valres below; anterior side a little sinuate, posterior side eompressed towards the margin, sinuate or defleeted inwards immediately below the hinge and rounding into the base below ; beak of the left ralve pointed, projeeting beyoud the hinge and curving forward and inward. Surface marked by distinet, rather irregular laminæ, of which five or six may be counted in the space of half an inch.

Length of an average sized speeimen, 2.2 inches ; breadth, 1.25 inch; convexity of left valve, aloout 0.37 inch.

Position and locality: Keoknk, Iowa, and Warsaw, Nanvoo and Hamilton, Illinois; Keokuk limestone, Lower Carboniferous.

Genus PINNA, Linn.

Pinna subspatulata, Worthen.

PI. 30. Fig. 4.

This shell is only known from easts of single valves which do not admit of a mimute description. It is above the medium size, the specimens seen usualls ranging from 8 to 10 inches in length, by $1 \frac{1}{2}$ in breadth at the posterior end. Valwes very gradually tapering, sides apparently flattened towards the posterior enel, which seems to have been obliquely rounded, judging from the lines of growth to be seen on the surface of the cast. Cardinal margin slightly thickened with a rather well defined cardinal idge at the edge. Surface markings anknown.
in general form it resembles P. spatula of MreCoy, from the Carboniferous limestones of Derbyshire, but ours is a larger shell than the European species, and rather wider in proportion to its length.

Position and locality: Quite rare in the Keokuk limestonc, at Kcoknk, Iowa, and Warsaw, Hllinois. A single example of apparently the same species, has been found in the Warsaw division of the St. Louis Group, at Warsaw, Illinois.

COAL MEASURE SPECIES.

Genus AXOPHYLLUM, Edwards and Haime.

Axophyllum rudis, White and St. John.
Pl. 32, Fig. 6, a, b, e.
"Coral irregularly turbinate, contorted, often attached along a great portion of its length, usually expanding rapidly; surface marked by irregular concentric undulations of growth, and often also by numerous rootlets, some of which clasp the objects to which they may be attached. Outer portion of the calyx shallow, central portion rather deep, columella small, flattcued, the greater diameter being from the concave to the convex sidc."

The above is the original description of this species by the authors cited abore, as published in the Trans. of the Chicago Acad. of Sciences, Vol. I, p. 117, and agrees very well with the Illinois specimens illustrated on Pl. 32, fig. 6.

Position and locality: Near Collinssille, St. Clair county, Illinois, from a calcareous shale 117 fect above the Belleville coal.

A xophyllum infundibulum, Worthen.

Pll. 32, Fig. 7.

Coral turbinate, sometimes showing indications of attachment at the lower extremity; epitheca thin, and showing on its surface numerous undulations of growth, the young individuals originatiug at the bottom of the calyx, and the old examples presenting the appearance of a scrics of deep cups placed one within the other. Septa about 40. Columella nearly obsoletc in some examples, and much less strongly defined than in A. rudis.

Position and locality: Clark county, Illinois, about the horizon of coal No. 12.

Genus CYATHOXONIA, Michelin.

Cyathoxonia distorta, Worthen.

Pl. 32, Fig. 4.
Coral small, cylindrical, more or less distorted and gradually tapering at the lower extremity, where, in some examples, it shows the bases of several small spines or rootlets; surface showing numerous distinct longitudinal strie, crossed by rather indistinct wrinkles of growth. Calice circular, rather deep, with a small columella visible in one of our specimens. Septa 22 to 24 or more.

Position and locality: Cumberland counts, Illinois. Rare in the limestone over coal No.16, associated with Fusulina eylindrica, etc.

Genus CHAETETES, Fischer.

Chetetes? carbonarta, Worthen.

Pl. 32, Fig. 5.
Coral cylindrical or ramose, calices rather unequally developed, corallites small and radiating from the center with closely arranged talule.

We refer this form to the gemus Chatetes with hesitation in view of its rather undefined characters, but as the species illustrated is a well marked form in the Coal Measures, it seems desirable that it should have some desiguation.

Position and locality: St. Clair county, Illinois; in the calcareous shales over the Belleville coal.

Poteriocrinus LaSallensis, Worthen.

Pl. 32, Fig. 3.

Body below the base of the arms obconic, very gradually tapering to the middle of the subradials and more rapidly below; base small, truncated for the reception of the columnar facet, and about twice as wide as high; subradials of moderate size, length and breadth nearly equal, three hexagonal and two heptagonal ; first radials about once and a half as wide as high, pentagonal; first anal plate smaller than the subradials between the upper angles of which it rests, pentagonal; second anal plate longer than wide, hexagonal, and resting on the upper truncated margin of a subradial; third anal plate rather wider than long, hexagonal or heptagonal, and resting on the upper truncated margin of
the first anal piece. All the body plates are depressed at the augles, giving it a pentalobate character somewhat like Barycrinus peutagonus of the Keoknk limestone.

Position aud locality: LaSalle, Illinois; Upper Coal Measures.

Genus EUPACHYCRINUS, Meek and Worthen.

Eupachycrinus Craigit, Wortheu.

Pl. 32, Fig. 1.

Body subhemispherieal belorr the smmmit of the first radial pieees, composed of rather thick smooth plates, with a moderately deep eoucavity on the uuder side. Basal plates small and eoncealed in the basal depression; subradials rather large, the form of some of them not shown in our speeimen from its slightly distorted condition, but four of them are probably hexagonal and one beptagonal, with their superior angles projeeting upwards about two-thirds the lengtlo of the first radial pieces, and strongly ineurred below. First radials twice as mide as high, peutagonal, and bereled on their upper margins so as to leave a well defined suture between them and the second radial pieces. Seeond radials as wide as the first below, but gradually uarrowing upwards, and produced laterally into short stout spines, and supporting on their upper truncated margins two stont brachial pieees that give origin to two arms to eaeh ray. Arms eommeneing with a single series, but changing on the second or third piece to a double series of rather short stout interloeking pieees, that are at first more than twice as wide as high, but gradualiy diminishing in width towards their upper extremities. One rers small anal piece only is partly risible. Column unknown.

The basal portion of this speeies might be mistaken for Shumard's Scaph. ? hemisphericus, but it differs from that in its more massive body plates, and the more triangnlar form of the mpper portion of its subradials. From Eupach. Fayettensis it may be distingnished by its larger size, more robust form and less eonvex body plates.

Position aud locality : Vandalia coal slaft, from a bed of black argillaceous shaly limestone at the depth of about 230 feet, and probably near the horizon of No. 10 coal.

Dedicated to Mr. K. M. Craig, of Vamdalia, to whour I am indebted for the use of the unique specimen figured.

Eupachycrinus Bassetti, Worthell.

Pl. 32, Fig. 2.

Body large, sub-hemispherical, width about once and a half as much as the hight. Base small, depressed, with the basal plates hidden by the columnar facet. Subradials large, hexagonal so far as can be seen from the examples under examination, length and breadth nearly equal, and curving into the basal concavity below. First radials abont once and a half as wide as high, pentagonal ; second radials as wide as the first, less than half as high, except one on the anal side, which is about three-fourths the hight of the first radial on which it rests, and more decidedly pentagonal than the others, and all supporting on their margins two nearly quadrangular brachial pieces that support the arms. One anal plate only is risible, about twice as high as wide, apparently hexagonal, resting partly on two of the subradials, and extending upward uearly or quite as high as the upper lateral angles of the second radials, and curved inwardly at its upper extremity. Arms, four on the two posterior rays, and apparently but two on the others, thongh the anterior side is but partially seen in our specimens, composed of rather short stont plates, the first ones single, but soon merging into a double series of short interlocking pieces, that decrease very gradually in width towards the upper extremities of the arms. The entire surface of the body and arms ornamented with numerons irreynlarly disposed wartlike prominences, giving to it a vers strongly marked verrucose appearance.

Colnmn slender, and composed of romed alternating thin and thicker joints, the latter a little projecting, with numerons lateral appendages, or side arms, composed of small, rather thick round joints, connected by strongls crenulated sutures.

This species is nearly related to the one described by Messrs. White and St. John, in the Trans. Chicago Acad. Sci. Vol. I, page 117, under the mame Hydreinocrinus? verrucosus, but differs from that in its more robust form, in not having the margins of its body plates beveled, in the form of its anal plate, and in its somewhat different style of ornamentation.

Position and locality: Same as the last. Dedicated to Dr. G. W. BASSETT, of Vandalia, to whom I am indebted for the use of one of tho examples figured, as well as for liberal contribntions of interesting fossils from Fayette county, and for many acts of personal kindness and attention.

Genus CONOCARDIUM, Bronn.

Conocardiun obliquem, M. and W.
Pl. 33, Fig. 4.
Conocardium obliquum, Meek and Worthen, l865. Proceed. Acad. Nat. Sci., Philad., page 249.
Shell rather small, obliquely subtrigonal, gibbous; anterior side (posterior of Woodward) very obliquely and abouptly truncated with a forward slope, and flattened so as to prescnt a regular cordate outline in a front view; anterior auricle narrow, but of manown length; base very short; posterior margin sloping up from the base so as to intersect the hinge at an angle of about 4.5°, rather widely gapiug, and crenate its entire length. Beaks moderately prominent, small, strongly incurved; umbonal slopes very prominent, angnlar, and directed obliquely forward to the angular anterior basal extremity. Surface ornamented with rather sharply clevated, thread-like, subcrenate raliating ribs, narrower than the depressions between; each of these depressions on the posterior and flattened anterior sides of the valves ocenpied by a smaller intermediate rib; entire surfice also marked by fine very regular radiating and concentric striæ, so as to produce a neat, minutely caucellated sculpturing, as seen under a magnifier.

Length from the posterior extremity to the produced antero-basal angle, 0.70 inch; light from the latter to the beaks, 0.50 inch; length from the beaks to the posterior extremity, 0.37 inch; convexity, 0.44 inch; breadth of posterior hiatus, 0.17 inch.

We know of no other species liable to be confounded with this. Its most marked features are the great backward obliquity of its umbonal axis, by which its beaks are placed even a little behind the middle of the borly part of the shell ; and the beautiful regnlar cancellated style of ornament seen between the ribs, under a magnifier.

Position and locality: Coal Measures; Wabash cut off, Posey county, Indiana.

Genus PLEUROPHORUS? King.

Pleurophorus ? angulatus, M. and W.
1'1. 33, ドig. 5.
Pleurophorus 7 angulatus, Merk and Worrucs, 186.5. Proceod. Acad. Nat. Scl., Philad., page 247.
Shell oblong, about twife and a half as long as high, lather eonvex; cardinal and ventral margins straight and parallel, or the latter very faintly sinuous along the midhe; posterior side (which is a little imperfect in our specimen,) apparently obliqnely truncated above, and very
narrowly rounded below; anterior side rery short, sloping abruptly from the beaks abore, and abruptly rounded beneath; linge line very straight, rather long, but shorter than the base. Beaks depressed upon a line with the dorsal outline, and located very near the anterior margin; umbonal ridge prominent and distinctly angular from the beaks to the posterior basal extremty. Surface of internal cast, showing faint traces of two or threc distant, vers obscure, concentric rilges, or undulations.

Length 0.52 inch, hight 0.20 inch, convexity 0.16 inch.
The most marked peculiarities of this species are its oblong form, straight and parallel cardmal and ventral margins, and distinetly angular umbonal ridge. Its anterior muscnlar impression seems not to bo as distinct as usual in the genus Pleurophorus, but this may be due to a defect in our specimen, which is an internal cast. All we know of the hinge is an impression of a long, linear posterior lateral tooth, parallel to the cardinal margin, and most distinct behind. This tooth ippears to have been double in the left valve, for the reception of a similar elongated tooth in the right.

Position and locality: Wabash cut-off, near New Harmony, Indiana; Upper Coal Measures.

Genus Carbonarca, Meek and Worthen.

Genus Carbonarca, Meek and Worthen, 1870. Proc. Acad. Nat. Sci., Philad., page 39.

Shell (as determined from internal casts) equivalve, inequilateral, very convex, transversely oblong or oval; umbones gibbous, prominent, and strongly ineurved with subangular or prominent posterior slopes; valves closed all around, with smooth margins; ligament external; cardinal margin a little arched, with, at the anterior extremity in each valve, two rather oblique comparatively stout teeth, and extending along its entire length from immediately behind these, a row of minute, interlocking teeth or crenulations, as in Arca.

This genus seems to belong to the Arcide, near Isoarca. It differs, howerer, very decidedly from that genus, in lsaring, in aldition to the small interlocking cremulations along the whole length of the hinge, two well developed and independent larger teeth at the anterior end of the hinge. The specimens seen are all internal casts, but an impression of the hinge of a right valve, in the matrix, shows its characters very clearly. There is no gradation from the series of minute teeth into the two large ones at the anterior end of the hinge, the first of the smaller series immediately behind the two larger ones being as minute as any of those farther back; so that the contrast between the two sets of teeth is well marked and abrupt. The hinge margin was doubtless provided with a cardinal area, but as we only have internal casts, it has not yet been seen.

Carbonarca gibbosa, M. and W.

Pl. 33, Fig. 6.
Carbonarca gibbosa, Meek and Wonthen, 1876. Proceed. Acad. Nat. Sci., Phila., p. 40.
Shell transverse, short-oblong, very convex; posterior side wider than the other, and vertically subtrmeated; anterior margin rather narrowly ronnded; ventral margin nearly straight along the middle, bnt slopiug and rounded up anteriorls, and more abruptly belind, cardinal edge equaling two-thirds of the whole length; larger anterior teeth inclined forward and npward, and those of the small series ranging nearly vertically, or slightly inclined forward anteriorly, aud a little backward behind; umbones gibbous, but with their outer and npper surfaces a little flattened, so as to impart a slightly subangular or prominent character to the post-umbonal slopes; immediate apices of the strongly inclined beaks placed about one-fourth the entire length of the shell behind the anterior extremity. Surface markings unknown.

Length $0.8 \pm$ inch; light to top of cardinal margin (of cast) behind the beaks 0.56 inch; hight to top of the umbones 0.65 ; convexity of the two valves 0.57 inch.

Position and locality: Springfield and LaSalle, Illinois, Upper Coal Measures. The suecinens from the latter locality are, in some examples, more depressed and oblique than the typical form from near Springlield, and these may possibly belong to a distinct species, if the differences noted are not due to accidental distortion. If really distinct, this form might be called C. depressa.

Genus NAU'TILUs, Linnæus.

Nautilus (Discites) Higilandensis, Worthen.
Pl. 33, Fig. 2.
Shell of mediun size, discoid, compressed; whorls abont three, contiguous, nearly flat on the sides, the greatest convexity being near the inuer margin, which is gently roumded. Septa ratber closely arranged, crossing the sides with a graceful backward curve, and also curving backwarl on the narrow truncated periphers. Last or borly chamber long and proportionally broad, forming about latf the outer volution. Surface markings and siphmele unknown.

This shell in general form resembles Nintilus (Discites) disciformis, M. and W., from the Keokuk limestone, but differs from that in its much smatler size, (none of the specimens seen attainiug a diameter of nore than 3.50 inches, and by its proportionally broader outer chamber.

Position and locality: LaSalle, Illinois, and near Hightand, in Madison county, where it is foumd in the Shoal ereck limestone above coal No. 9. I am imlebted to Mr. Ad. F. Bandelier, of Mighlaud, for the use of the example figured.

Nautilus (Cryptoceras) capax, M. and W.

PI. 33, Fig. 1.

Nautilus Cryptoceras) capax, Meek and Worthen, 1865. Proceed. Acad. Nat. Sci., Phila., p. 262.
Shell attaining a moderately large size, snbglobose in furm. Umbilicus defp, with abmptly sloping walls-one third as wide as the dorsoventral diameter of the onter whorl, and showing eath of the inner tums. Whorls abont two and lalf, increasing rapidly in size, particularly in transverse bradth; last one so expanded laterally as to be apparently one-third to one-half wider than its dorso-ventral diameter; inner ones proportionally narrower. All broadly romnded on the outer side, and more narrowly roumed with a tlattened or slightly concave revolving space betwern a ridge bounding the umbilicus and the middle of each side; earlh provided witl a narrow, shallow impression along the ventral side for the reception of the imer volntions. Septa separated by spaces which measure on the outer side less than one fourth the dorso-ventral diameter of the volution at the point of measurement a little arched backwards on the slightly concare inner side of the whorls, and less distinetly so on the narrow revolving flattened space just outside of the mmbilicus, after which they cross over the broadly rounded onter side, with a very low scarcely perceptible backward curve. Aperture transversely oval, or subelliptic, and apparently angular, and effinse at eath immer lateral margin. Outer chamber rery capacions, composing less than half a rolution.

Greatest diametrr arross the dise about 7 inches ; breadtlı (transserse diameter of the aperture) 6 inches; dorso-ventral diancter 3.25 inches, breadth of umbilicus 1 inch.

The only sperimen of this species we have seen is a cast, which shows along the outur side of the whons the appearance of a tube 0.20 inch in diameter, extemling backwards from each septom. It is possible this may be a small lobe of the septa, but we have searcely a doubt in regard to its being the siphon, and hence that the species belongs to the group Cryptoceras.

Compared with N. dorsalis, Phillips, (Geol. Yorks. II, Pl. 13, fig. 1 and 2, , the type of the gromp Cryptoceras, our shell will be found to differ in its mola more broally rommed dorsmm, and much wider mouth, as well as in the pecoliar revolving flattened space near the umbilical side of the whorls, which imparts a slight angularity to the margin of the mombilims, as wrll as an modefined longitudinal ridge or prominence near the middle of the whols on each side.

Position and locality: Charboniere, Missouri. Coal Measures.

I N D E X

	page.
Aoondylacanthus..	433
" monicostatns	434
، gracilis.	. 433
Agassizodus.	311
.1 corrngatus.	323
" scitulus.	. 322
." variahilis	. 318
". Virginianas.	. 321
Amacanthas..	. 464
" gihbosus	. 464
A naclitacanthus..	. 412
" semicostatus	. 443
Antliodns gracilis.	393
" perovalis.	. 393
Antiquities..	146, 224
A mhonichia Illinoiensis.	. 495
Asaphus rigilans.	. 497
Astylospongia premorsa.	. 499
Asteroptychius belluins	. 439
" Kcokuk	. 436
St. Ludovici	. 437
tenuis	. 438
vetnstus	. 4335
Aviculopecten Unionensis	. 511
Axophyllum infundibulum.	. 525
" rudis.	. 525
Barycrinns striatus.	. 515
Batacanthus.	.. 468
" baculiformis	. 469
stellatus.	. 470
	. 251
McIsaac	. 252
Battery Rock coal.	203, 204
Bond county, geology of	. 129
" " Coal Measnres of.	. 131
" Economical geolo	
Building stone.... $20,29,35,48,60,73,87,96,103,109$	
[$120,126,144,154,183,217,233$	
Bythiacauthus	... 444
" Van Horuei. .	. . 445
Calopodus.	. 403
apicalis.	403
Carbonarca 530
" giblosa.	. 531
Centralia coal nhaft, sectio	5
Chatetes? carbonaria.	526

Cholodus.. 415
" inæqualis 416
Chester gronp 200, 221
Christian county, geology of 156
or Coal Densmres of 158
". " Economical geology of 162
Chomatodus comptus 356
" inconstans 360
". incrassatus 359
parallelus. 358
Cladodus alternatus. 265
. hellifer 270
". carinatns 279

- eccentricus 272
" englypheus $.27_{4}$
" exilis. 2.8
exiguus 261
". Fulleri 276
" gomphoides. 269
© intercostatus 267
" pandatus. 278
- prepuntius 270
" raricostatus 271
" Springeri 259
-s succinctns. 265
-. Van Hornei 273
- Wachsnuthi 263
Clark county, geology of 9
" " Coal Measures of 10
19
Clay county, geology of 88
"' " drift deposits of. 89
-" " stratifiecl rocks of. 89
Economical geology of 95
Cncmidium Trentonousis. 491
Coal Measures. 2
general section of 3
Conocardinm oblıqum 529
Coles comity. geology of. 104
" ". Coal Measures of 105
109
Crawford county, geology of 22
". . Coal Measures of 23
Economical geology of. 29
Ctonacanthus liurlingtonensis 426
excavatus 428

ERRATA.

Page $30-18 t h$ line from bottom, for "pawpaw" read "papaw."
Page 32-18th line from top, for "limstone" read "limestone."
Page $63-12$ thr line from bottom, for "coats" read "coals."
Page 92-10th line from top, for "occidentalus" read "occidentalis."
Page 151-2d ine from bottom and 16th from top, for "Machrocheilus" read "Macrocheilus."
Page 203-19th line from top, for "carbonaris" real "carbonarius."
Page $247-8$ th line from bottom, tor "horizon" read "horizons."
Page $2 t^{2}-1$ thth liwe from top, fur "in fanual facies" read "in their fannal facies."
Page 251-11th line from bottom, for "burled" read "bereled."
Page 252-9th line from bottom, for "berelled" read "bereled."
Page 254-21st line from bottom, for "sharp-curvel" read "sharp-crested."
Page 255-21st line from top, for "our own" read "our."
Page 255-ith line from bottom, for "inverted" read "inbeveled."
Page 256-2uth line from tep, for "denticnlar" read "denticnlate."
Page $261-6$ th line from top, for "expressed" real "preserved."
Page $262-9$ th line from bottom, for "wth" read "with."
Page 267-12th line from bottom, for "teeth" read "tooth."
Page 268-15th line from botrom, fer "fragmentury" read "fragmentary."
Page 270-24 line from bottom, for "representation" read "representative."
Page 271-2d line from bottom, for "form" read "fomr."
Page 281-17th line from top, for "forms" read "form."
Page 282-15th line from top, for "heeled" read "keeled."
Page 283-15th line from bottom, for "clearly" read "c'osely."
Page 2e3-8th line trom top, for "Lambdodus hamulus" real "L. hamatus," and same on page $48\{$, 6th line from top.
Page 283-14th line from bottom, for "were" read "was."
Page 288-8th line from bottom, for "crust" read "erest."
Page 290-17th line from bottom, for "one" read "an."
P.ge 291-20th line from bottom, add "Pl. VI, Fig. 9."

Page 298-16th line from top, for "fonnd" read "formed."
Page 299 - 7 th line from toll, for "Aetobatis" read "Aetobatis."
Page 326-16th line from top, for "sol" read "sets."
Page 329-7th line from bottom, "edentalons" rad "edentalous."
I'age 317-2lst line from bottom, for "striking" read "skirting."
Page 350-16th line from bottom, for "distnrbed" read "distended."
Page 351-13th line from bottom, for "aml from Warsaw' read "and not from Warsaw."
Page 354-4th line from bottom, for "collection" read "coll"ctions."
Page $360-10 \mathrm{ch}$ line from top, for "more" read "uever."
Page 360-12th line from bottom, for "vertical" read "rarietal."
Page 362-7ill line from lottom, for "have" read "has."
Page 363-7tlr line from top, for "organization" reall "acquisition."
Page 369-18th line from top, for "congenus" read "cougeners."
Page 376-1811 line from top, for "from" read "forms."
Page 3i7-10th line from botton, for "after" read "often."
Page 379-6th line from bottom, for "these" read "those."
Pame 383-3il line from top, for "indications" read "imbrications."
Pare $385-18$ th line from bottom, for "PI. XI" read "Pl. X A."
Page 3e9-Gth line from top, for "Pl. XIII, flg. 1," read "Pl. XIIL, Ag. 10."
Page 393-18th line from bottom, for "worn" read "more."

ERRATA.

Page 398-10th line from top, for "three moro or less imbricated" read "three, more or less, imbricated."
Page $401-19$ th lino from bottom, omit comma between "angle" aud "abont."
Page $404-10$ th lino from top, for "polish" read "polished."
Page 408-13th lino from botiom, for "lightly" read "slightly." .
Page $411-18$ th line from bottom. for "which" read "while."
Page 413-1st line from top, for "greatly" read "sently."
Page $415-3 d$ line from top, for "concave" read "clavate."
Page 416-15th line fro:L top, for "Petalodus" read "Peltodus."
Page $417-9$ th line firom bottom, for "Pl. XIV" read "Pl. XII."
Paga 4:6-16th line from top, semi-colon after "position."
Page $426-6$ th liue from bottom, for "border" read "borders."
Page $427-2 d$ line from top. for "faces" read "face."
Pare $4: 88$ - $1: 3$ th line from bottom, for "LeGraude" read "LaGrange."
Page $430-1$ th line from top, for "fragments" rearl "fragment."
Page $432-1 \mathrm{nt}$ line from top, for "angularis" read "angulatus."
Page 435-sth line from bottom, for "nartower' read "uarow."
Pare 44t-12th and 11 th lines from bottom, for "Astracanthus" reall "Asteracanthus" aud "Asteracanthi."
Page $448-6$ th lue from bottom, for "form" read "from."
Page 455 - 5 th line fr"u bottom, for "exterual" read "waterual."
Page $4.56-17$ th line from top, for "forms" read "form."
Page $159-13$ th liue from bottom, for "differ" read "differs."
Page $46 \geq-13$ th line from top. for "I a" read " 4 a."
Page 464 - listh line from bottom, for "truncated" read "interrupted."
Page $465-3 \mathrm{l}$ line from top, for "bifurvates" read "bifurcate."
Page $465-$ oth lime from bottom, for "face" read "faces."
Page 468 - 2d line from bottom. for "trouvis" read "tronvès"
Page til-leth lino frun top, for "Pl. XXIL" read "Pl. XXI."
Page 47.3-1eth lino fiom top, for "small" read "smooth."
Page 474 -7th line from top, for "beneath" read "between."
Page ti9-th liue from top, for "transvere" read "transterse."
Page 479-4th line from bottom, fur "thia" read "three."
Page $481-9$ th liue from top, for "plicatilus" ead "plicatilis."
Page 495-12th line from top, for "tho" read "tho."

PLATEI.

PAGE.
Fig. 1-6. Clabodus exilis, St. J. and W. 258
1 a. Ontline of minute tooth; $1 b$, wiew of outer face, enlarged, showing two latoral denticles on one extremity and thee in the opposife; $1 c$, base from below; $1 d$, profilo section. Lower fish-bed, Kinderlook.
$2 a$. Ontline of slightly larger footh, with thee lateral lenticles on oither side: $2 b$, outer surface, cularged : ₹c, baso trom botors ; ? d, profilo section. Same horizon.
$3 a$. Ontline of medium-sized, robust tooth; $3 b$, wew of onfer face, enlarged; 3ε, posterior face; $3 d_{\text {, }}$ isferion basal surface; 3 e, profile secfion. Upper fish-bed, Kiuderhook.
4 a. Ontline of small worn toofh, with fwo laferal cones on either sile; $4 b$, onfer face, enlarged; $4 c$ posterior face; $4 d$, , base from below, and profile section and transperse section of malium elusp. Sime horizon.
5 a. Front riew of small, perfect tooth, eularged ; $5 b, c$, wferior basal surface and profile scetion. Same horizon.
$6 a$. Ontliue ot imperfect footh of large size ; f b, c onfcr and posterior faces, enlarged; $6 d, e$, base from bolow and profile section. Samo lorizon.
Fig. 7. Prisicladohts SmRiNGELE, St. J. and IV
$7 a$. Ontline, nat sizo; $7 b$, vicw of oufcr face, cnluged; $\mathfrak{c} c$, infoior lasal smface; $7 d$, profilesection aud franswerso section of median eone. Lower fish-bed, Kinderhook.
Fig. 8-11. Phrstictabonts spmingem, var. Amsarus, St. J. and TV
$8 a$. Onter face of largo footh, entarged thee diameters ; \& b inferior basal surface, show. ing worn protnlorances in fronf, aud median forancu in posferior margin. Ulper fish-bed, Kinderkook.
9 a. Front view of similar specimen, entarged fwo diamefers; $9 b$, posterior face, showing broad convexity of upper basal surface; $9 c$, inferiur basal surface, showing padlike prominenes in front less won flan in the preceding example; $9 d$, prefile scetion. Lower finh-lod, Kiuderhook.
10 a. Outline of small tooth, showing autero-inferior basal promincuces; $10 b$, front viem, enlarged. Same horizon.
$11 a$. Anterior view of minute tooth, enlinged; $11 b$, posterior face; $11 c$, base from bolow, showing widely spaced protuberauces. Same horizon.
Fig. 12, 13. lふamycumilonis Mclsaacesi, St. J. aud Tr
$12 a$. View of onter face of large toof h, enlarged; $12 b$. posterior aspect; $12 c$, profile and transvorse sections of median cusp. Middle Deronian, Waterloo, Low゙a.
13 a. Front view of small, nearls perfect tooth, enlarged; $13 b^{\circ}$, posterion theo; $13 c$, inferior basal surtace; 13 d , profile seetion. Same horizon and locality.
Fig. 14, I'Howomés Sopmake, St. J. and W 251
$14 a$. View of anterior face of large tooth, cnlarged; $14 b$, posterior facc, showing well. defined median promineuse in supelim basal suface ; if c, interior basal surface; $14 d$, profile section. Mildlo Doronian, Waterloo, Iowa.

PLATEII.

$1 a$. Outlino of small tooth, nat, sizo; $1 u$, onter face, enlarged two diameters; $1 r$, hase from below ; $1 d$, profilo scetion. Lower fish-bed, Kinderbook.
2 a. Outline of little larger tooth ; 2 b, c, d, view of onter fice, inferior basal surtiree, and profile section, eularged two diameters. Same horizon.
3π. Ontline of stall larger speemen; $3 b, c$, views of outer face and inforior bisal surface, eularged two diameters. Same horizon.
4 c. View of outer face of large tooth; $4 b$, posterion face oularged; A c, profilo riew, enlarged; 4 d, inferior basal surtico. Same borizon.
5 a. View of outer face of mentimm sized tooth, enlarged; $5 b$, c, inferior basal sulface and profilo section, nat. size. Same horizon.
6 a. Anterior faco of medium-sized, worn tooth, the two large lateral dentieles alone remain; $6 b$, posterior face; $6 c$, showing the worn inforior basal surface; $6 d$, profile section. Same horizon.
7a. View of outer face of slightly smaller tooth, exhibiting other features dute to abrasion; $7 b$, base trom below. Same borizon.
8%. Onter face of minate tooth, mueli worn, enlarged fons diameters; $8 b, c$, inferior basal surface, profile section and transcerse section of median cone. Samo borizon,
9 . Onter fia 0 of vory small, worn tooth, enlarged four diameters; $0 b$, base from below. Same horizon.
10 a. Outer fice of minute tonth in whieh only one lateral denticle remains on one extremity and two on the opposite, enlargod fom diameters; $10 b$, baso from below. Same horizon.
11 c. Outer faeo of an abnormally developed tooth, eularged one-half; $11 b$, posterior face, sbowing the contracted prominence of uppre basal surface; $11 c$, view of base fiom below. Same borizon.
12 a. Oiter face of mimte, porfeet tooth, enlarged fon diameters; $12 b, c, d$, posterior face, intorior luasal surfice, and profile section. Same horizou.
13 a. Viow of outer face of samall perfect tooth, showing excessive dovelopment of aeces. sory denticles at baso of crown, enlarged thren diameters; $13 b, c$, base from bolow, and prof'e section, Same horizon.
Fig. 14-18. Clabodus alidelenatis, St. J. and 5
$14 a$. Outline, nat. size; $14 b$, outer surface, enlarged threo diameters; if cod, iuferior basal surfaee, and profilo section, nit. sizo. Lower fish-bed, Kinderhook.
15 a.)uthne of little more robust tooth; $15 b, r, d, e$, viows of outer: posterior, and inferior basil aspects, and profile section, enlarged theodrameters. Samo horizon.
16a. ()utlino ot smaller tooth; $16 b$, onter faco, enlarged threo diameters; $16 c$, base from below; 1tid, profilo soction. एpper fish bed, Kinderhook.
17 a. Uutline of very small tooth: $17 b, c, d$, views of outer faco inforior basal surface, and profie section, enlarged three damotors. Lower fish-bed, Kinderhook.
18 a. View of onter faco of medinm-sized tooth, enlarged fon diameters; partial restoration, outline from tootlı from upper fish bed, coromal ornamentation from specimen from tower fisb-bed of the kinderhook.

PLATEIII.

PAGE.
Fig. 1 7. Chanoves Wンachsmenti, Sit. J. ahd W 263
1 a. View of onter face of tooth; $1 b$, hase from below, showing scarcely defincd bosses in tiont: $1 c$, profilesection. upper tish-hed Kinderlook.
2 a. Outer face of slighty smaller tooth : $2 b$, posterior fice, showing superior baval region; $2 c$, inferior basal suface, sbowing blobed character of outer basal ridge; 2d, pro. file and trausverse seetions of median cone. Same horizon.
$3 a$. Onter face of medinn-sized, perfect tooth; $3 b$, base from below; $3 c$, protile and trans. verse sections of median cusp. Samo hosizon.
4 a. View of outer face of large tooth. Same horizon.
5 a. Posterior aspect of medium-sized tootb. Same horizon.
$6 a$. Ontline of outer face of small tooth; $6 b$, posterior face; $6 c$, inferior basal surface. Same horizon.
i a. Outline of outer face of very small tooth. Same borizon.
Fig. E-12. Cladodus succinctus, St. J. and W
8 a. Outer face of medium-sized, normal specimen, enlarged; $8 b$, inferior basal sufface, nat. size; $8 c$, profile section. Upper tish-hed Kinderhook.
9 a. Onter face of slightly smaller twoth, showing absence of accessory processes at base of median cone, enlarged; $9 b$, posterior face; $9 c$, interior hasal surface; $9 d$, profile and transverse section of median cone. Same horizon.
$10 a$. Outline of outer face; $10 b$, onter face, enlarged ; $10 c$, base from helow; $10 a$, profile section. Same horizon.
11 t. Median cone of small tootb, enlarged two diameters, showing ornamentation of poste. rior lace; $11 b$, showing the outer face; $11 c$, profile view. Same horizon.
12 a. Onter faem of large tooth, emamel layer partially exfolated; $12 b$, posterior face; $12 c$, base from below, showing constriction in onter basal ridge giving riso to pad-like prominences at eilher extremity ; $12 d$, protile section. Same horizo.ı.
Fig. 13-15. Cladodus fxigutis, St. J. and W
$13 a$. Ontline of onter face of medinm-sized tooth; $13 b$, the same, enlarged two diameters; $13 c$, inferior lusal smface; 13 , profile section. Lower fish-bed Kinderhook.
14α. Outer face of smaller tooth, enlarged two diancters ; $14 b$, inferior hasal surface, showing faint bilobed condition of outer basal ridge; $14 c$, profile section. Same horizon.
15 a. View of outer face of an abummally developed tooth, eularged two diameters; 15 b , base from below : $15 c$, protile section. Same horizon.

PLATE IV.

page.
Fig. 1-3. Clabodus euglyphrus, St, J, and W 2741 a. View of anterior face of minate tooth, eularged; $1 b$, base from below. St. Louislimestone; Alton, Illinois.
2 a. Outer face of medium-sized tooth, cularged; $2 b$. view of base from below. Same hori-zon ; St. Louis, Missouri.
$3 a$. Onter face of large tooth, enlarged two diameters; $3 b$. view of posterior face ; 3 o, base from below: $3 d$, profile section. St. Louis beds ; I'ella, Iowa.
Fig. 4. Cladodun eccextmous, St. J. and TI 272
$4 a$. View of onter face of medimni-sized tooth, enlarged two diameters; $4 b$, inferior basal surface; $4 c$, protile seetion. St. Louis limestone; St. Louis, Missouri.
Fig. 5. Cisabonus Van Monizl. St. J. ank W.273
$5 a$. Onter face of medum-sized perfect tooth, $5 b$, posterior face; $5 c$, inforior basal sur. face; 5 d, profilo section. St. Lonis lmmestome; Alton, Ilinois
Fig. G, $7, \quad$ Cladodus Cahinatles, St. J. and Wr.
6 a. Tiew of outer lace of minnte touth, enlarged; $6 b$ b ase frem below; $6 c$, profile sec. tion. Midlle Coal Measnres; Guthrio county, Iowa.
7 a. Onter face of large symmetrical tooth, enlarged; $7 b$, ont line of base from below. Coal Measures, Girard, Illinois.
Fig. 8. Cladonus pandatus, St. J. and π^{+}
$8 a$. View of outer fince, eularged fonr diameters; $8 b$, posterosuperior basal aspect; $8 c$, inferion basal surlice ; 8 , profilosection. Coal Measures; Carlinville, Illinois.
Fig. 9. Cladedus Fulleris, St. J. and W
9 on Outer faco of minnto tooth probably referable to this species, enlarged four diameters; 9 b , posterior face ; 9 c, base from bclow; 9 , profilo scction. Middle Coal Meas. ures; Iowa.
Fig. 10. Cianodus beldifer, St. J. and W
10 a . Viow of outer fice of large tooth; 10 b , posterior face; $10 c$, profile viow; 10 d , base from below. Upper Burlington limestene; Lonisa county Iowa.

11 a . Outer face of tooth, enlarged two diamcters; 11 b , pesterier face; 11 c , base from below;

Fig. 12-16. Clamonts gompiotnes, St. J. and W... 269
$12 a$ Onter lace of small tooth; 12b, posterior face; $12 c$ base from belew; $12 d$, profile section. Upper Burlington, Lonisa county, Iowa.
13 a. Outer face of minute tooth, cularged; 13 b , base from below. Same hormon and locality.
$14 a$. Onter face of medium-sized, imperfect tooth. Samo horicou and locality.
15 u. Onter face of tooth, showing but one deuticle cither sude of median cone; $15 b$, pesterior fire ; $15 c$, profile section. Same horizon and locality.
16 a Onter face of large, less symmetrical tooth; 16 b, profite section. Samo horizon and locality.
Fig. 17. Cladobus fretinuxtirs, St. J. and W
17 a View of outer faco of unaly perfect tootly ; $17 b$, posterion face; $17 c$, viow of inferior hasal surdace. Uppor Burliseton; Lonisa rounty, lowa.
Fig. 18. Clamohlis empicostitis, St. J. ail W $2: 1$
18 (View of outri lace of tonth; is b, profile secton, Kicokuk limestoue.
(f)

路

PLATEV.

Fig. 5. Lambuodu's Calceolu's, St. J. and W.. 281
5 a. Front view; $5 b$, view from above; $5 c$, side view. Upper Burlington; Loaisa county, Iowa.
Fig. 6. Lasibdodus nobustus, St. J. and W.. 283
$6 a, b, c$. Viers from the front, above and side. Keokuk limestone.
Fig. 7. Hybocladodus Nitidus, St. J. and W. 288
$7 a$. Front view of tooth, enlarged four diameters; $7 b$, posterior face; $7 c$, front view, slrowing inferior basal region; $7 d$, base from below; $7 e$, profilo section. Chester limestone; Chester, III.
Fig. 8.
Ifyboclamodés Compressus, (N. and W. sp.)
8 a,b, C. Vicws of onter and posterior faces, and protilo section. Upper Bnrlington; Lonisa county, lowa.
Fyg. 9. Ilyboclabonus ptacathlis, St. J. and W...
$9 a, b, c$. Views of outer and posterior faces, and profile section. Upper Burlington; Louisa county, Iowa.
Fig. 10. Myboclahobus texiticostatlos, St. J. and W.. 286
$10 a, b, c$. Onter and imer fices and profile section. Keokuk limestone; Illinois.

$11 a, b$. View of outcr face, and proflesection. Keoliuk limestone.
Fig. 1214.
12a. View of orrtos fack (ot tooth, enlarged two diancters; $12 b$, the same further enlarged; $12 c$, jonterior fiace; $12 d$, base from befow; $12 e$, profile section, enlaryd same as 12 b . Cpuc Butington; Louisa county, Lowa.
$13 a, b, c, d$. Sinilar views of a less robnst specimen. Same borizon and locality.
$14 a, b, c, d$. Similar vews of atrong, woln tooth. Same horizon and locality.
Fig. 15-1\%.
Mraonsonum Exilanater, St.J. and W
15. V. View of postron face of symmetrical tooth: 15 b , outer fiace, enlarged two diameters : 15 c , hase firom below ; 15 d , Irotile section. Kinderhook beds, Burliugton, Iowa.
16 a. Outer face of recentric tootb, en inged two diancters; $16 b$, view of base from below; 16 c , profile section. Same horizon and locality.
17 a. U. I'osterior face, and profile section of an abmormal or eccentrically developed tooth, enlarged one-half. Same honimon and locality.

PLATE V.-Continued.
Fig. 18-22.

18 a. | View of posterior face of a large, perfect tooth, eularged one-half. Minderhook |
| ---: |
| beds; Burington, Iowa. |

PLATE VI.

page.
Fig. 1-3. Oronets fastigiatus, St. J. and W 306
1 a. Posterior face of large tooth; $1 b$, view of outer face; $1 c$, ontline of crown from above;1 d, profile section. Upper Burlington lmestone; Lonisa connty, Iowa.
$2 a, b, c, d$. Similar views of smaller specimen. Same horizon and locality,
3 a. Fiew of posterior faco of tooth, showing crown worn down to a regular arched out-Jine; $3 b$, vew from abore. Same horizon and locality.
Fig. 4,5 Oronus turginus, St.J. and W. 310
4 a Posterior face of tooth, enlargerl fonr diametors; $4 b$, outer face; $4 c$, ontline of crownfiom above, enlargod two diameters; $4 d$, profile section. Chester limestone;Chester, Ihmois.
5 a, Ontline of posterior face of a more slendir tooth, enlarged two diameters. Same hori-\%on and locality.
Fig. 6. Oront's pabvulus, st. J and W 3096 a Thew of postcrior face of tooth, enlarged two dianeters: $6 b$, onter faco ; $6 c$, ontlineof ciown from above; $6 d$, profile section. St. Louis limestone; Alron, Illiuois.
 3017 a. Postenior face of large size tooth; $7 b$, onter face; $7 c$, risw of crown from abovo; γd,protile section. Kinderhook beds: bullington, Lowa.
8 a. View from abore of a slightly smallar, arruate tooth; $; b$ outer face. Same horizon and locality.
Fig. 9. Mesommonts Exacturtues, St. J.and Wr 291
9 a,b, c. Views of the posteriur face, crown from alove, and profile section of a large tooth ;a) d, ontline from above of another specimen. Kinderhook beds; Burlington,Iowa
 300
$10 a$. View of medinmsized tooth frem above: $10 b$, untline riew of imner face; $10 c$, profiesection. Kiurterhook betk: Burlingtun, Lwwa.
11 a. Tiow of posterior face of large, peafect toolh; 11 b, opposite faco; $11 c$, profilosection ; II d, ont live fon above. same horizon and locality.
$12 a$. Postarior face of large worn tooth; $12 b$, onter facc. Same horizon and locality.
$13 a, b, c$. Smilar views of a tooth, cone truncatcd from wear. Same horizon and locality.
$14 a$. Fiew from above of a tooth of uniform proportions, also worn by attrition. Same honizon and localıty.
$15 a$. View of a small tooth from abore. Same horizon and locality.
Fig. 16-18. A (asassizonew scitulus, St. J. and W^{-} 322
$16 a$. Onter face of tooth, enlarged three dianoters; if b, postcrior face; $16 c$, crown fiom above; 16 d, profile section. Middle Coal Measures; Iowa.
17 (\%. Group of three teeth, nat. size, showing both faces. Middle Coal Measures; Yowa.
18α. Tiew of outer face of morerobust tooth ; $18 b$, crown from above; $18 c$, profile section. Coal No. 5 ; Lllimois.
Fig. 19-id. Psephones 3 nemiculatus, St. J. and iv $.41 \%$$19 a$. Posterion face of very larse tootla; $19 b$, outer face, showing inferior surface of base ;$1!9$ c, outline of crown from above; 19 d, profile section. Kinderhook beds; Lur-lington, Iowa.
20 a. Inncr face of medium size tooth; $20 b$, opposite face; $20 c$, profile section. Same horizon and locality.
$21 a, b, c$. Similar riews of smaller specimen, the retionlated ornamentation more restricted to the basal bobder. Same horizon and locality.
22 a. Fiew o: ${ }^{\circ}$ (rown from alowe of a worn tooth, showing no trace of ornamentation, Same horizon and locality.
$23 a, b, c, d$. Views of the posterior and onter faees, mitho from abore, and profile section of a small tooth. Same hotizon and locality.
$24 a, b$. Posicrior and ontor vicws of a small, acmminato tooth : $21 c$, profle outline ; $24 d$, outline of crown from above. Same honi\%n and locality.
Fig. O5. Onones W1HTJ1, St. J. and W'.. 297

 the deltoid figure and inrol ment oi the serics. Kindernonk beds; Marshall county, Iowa
Fig. 26.
(hronts Neglivett's, St. J. and W crown from above, and protile section. St. Louis limestone: Pella, Iowa.

PLATEVII.

Fig. 1-9. Orodus vamiocostatus, St. J. and W..
$1 a$. View of outor face of emall, anterior (?) tooth, base broken away; $1 b$, crown from
abore. Uppor Bmilington limestone; Louisa county, Lowa.
$2 a$. Posterior face of a minute posterior (?) tooth; $2 b$, crown from abore; $2 c$, profile sec.
tion. Same horizon and locality
3 a. View of inner face of similar but larger tooth; 3 b, crown from above, showing eccen-
trie median prominence. Same horizon and locality.
4 a. A larger subcireular tooth, seen from abovo. Same horizon and locality.
5 a. View of imer face of larger and moro laterally elongated tooth; $5 b$, crown from abore.
Same herizon and locality.
(i) a. Similar tooth, posterior face, crown worn ; $6 b$, riew from aboro; $6 c$, profilo eection.
Same horizou and locality-
$7 a$. Onter aspect of medium-sized tooth, showing excavated anterior basal region, superior
shouller parallel with the coronal margin, and berelod inferior surface of the base,
and the onter crown face; 7b, crown from above ; $7 c$, profile section. Same hori-
zon and locality.
8 a. View of inner face of similar tooth, the median cono truncated from wear ; $8 b$, crown
scen from above. Same horizon and locality.
9 a. Fosterior face of a large tooth, also moro or less worn; 9 , crown seen from above.
Same hosizon and locality.
Fig. 10. Oronus major, St. J. aud W 302
10 a. View of imer face of nediun-sized tooth; $10 b$, crown as seen from above; $10 c$, pro.
file section. Lowor Burlington limestone; Burlington, Iowa.

$11 a$. I'osterior faco of largo tooth; $11 b$, view of outer face; $11 c$, profilo section. Upper
Burlington; Isouisa county, Iowa.
12 a. Medium-sizod tooth, inner faco; $12 b$, ontlino of crown from abore. Samo horizonaud
locality.
13 a. Smaller, apieulate tooth, onter face; $13 b$, ontline from above. Same horizon and
localits.
$14 a$. Outer face of small, robnst tonth; $14 b$, outline from abore. Same horizou and locality.
15 a. Onter face of a vory small, acmminate anterior (?) tootb; $15 b$, posterior face; $15 c$, out-
line of crown from abore. Same horizou aud locality.
$16 a$. Outcr face of an eecentric acmminate tooth, anterior (?); $16 b$, outlinc of crown from
abore. Sanchorizon and localits.
17 a. View of outer face of posterior (?) tooth ; $17 b$, posterior face; $17 c$, outline of crown
from above. Samo horizon and locality.
14. a. Outer faco of a similar tooth; $18 b$, vicw of crown from above; $18 c$, profilo section.
Same horizon; Burlington. Iowa.
Fig. 19. Oroidus A dulini, St. J. and W
Fig. 19. Orojus Adlient, St. J. and W
19 a. View of inner face; $19 b$, view of crown from above: $19 c$, profile section. Lower Coal Measures; Iowa

PLATE VIII.

Fig. 1.

Agassizodus variabilis

pace
Tiew of specimen exhibiting the nearly complete rentition of one ramns, proba bly the left side of the matudible or lower jaw, reluced to two-thirds the aatural size. Towarls the anterior extremity of the specimen at a, series of teeth are shown. which, from their reversed position, would appear to have formed part of the dental armature of the opposite ramns. LTpper Coal Measures, Osige, Kansas
$2 a, b$. Views showing the posterior and anterior faces of a large, perfect tooth belong. ing to the modian row of acummate teeth of the rightiamms. Upper Coal Meas., Mill* county, Iowa.
$3 a, b, c \quad$ Posterior and anterior fices, and nutline from abore, of a small worn tooth from near the onter extremity of the sime row. Same position and locality as the preceding, anf fom which were obtaned the spechmens of the following figntes 11 p to Fig. 2t, so associated as to learo to room to doubt that they formed part of the dental remans of one and the samo fish
$\& a, b, c$. Views of : medium sizerl tonth belonging to the merlian row of the left rauus, showing the postrior ant intcrion faces, andoutline from abore. The abraded condtion of the crowt iusticates its position io the onter half of the row.
$5 a, b, c, d$. Similat viows and protilesection of a small outer tooth of the same row.
$6 a, b, c \quad$ losterior and anterior faces, and outline from above, of a specimen remarkable for the perrentric ponitinn ot the merliam prominence, and which may have belouged to the median row of the right ramos of the upper jaw.
\% a, b, c, d. Similar vietss, aml profile section of a large perfect tooth, probably bolonging to the first mow anterime the median row, the immature condition of the root as well as the unabadded state of the crown plainly indicating its inner position. l'ussibly pertaning to the upper jaw.
$3 a, b, c, d$. Similar view of a matnm tooth of the first row anterior to the median row of the left ratulty of the mathible.
$9 a, b, c$. Views showing the postermor and anterior taces, and outline from abore of a mature, pelfect footh of the same ramos as the precedug, and probably belonging to one of the antcrior rows.
$10 a, b, c$. The samo views of a suall tooth, probably referab'e to one of the posterior rows of the same ranus.
$11 a, b, c$. Similar views of a still smal maturc tooth, which probably belonged to one of thecxtreme posterior rows of the same ramus.
$12 a, b, c$. Similar vicurs of matme tooth, probably belonging to one of the anterlor rows of the right ramus of the mandible.
$13 a, b, c$. The same riews of small tooth of one of the posterior rows of right ramus.
$14 a, b, c$ Similar riess of a rery small tooth apparently belonging to one of the extreme antorior rofs of the right ramus.
1.5 a, b, c. Similar viows of a tooth, probably belonging to one of the extreme posterior rows of the maxillaties, showing the crown at one extremity dirided intotwo minnte secondary cones, which latter recall some of the ontire teeth composing the extreme onter rows in fiont.
$16 a, b, c$. Posterior, anterior, aml profle ricws of a very small, irregularly-shaped, depressca tonth, possibly pertaining to the maxillary, or upper jaw.
$17 a, b, c, d$ Outline from abore, natural size, and enlargements showing the posterine (?) and lateral faces of a minute cylindrical tooth. the continuation into the root restorot in ontline.
$18 a, b, c \quad$ Views of a minnte, lateralls compressed tooth, presenting the normal rertical proportions peculiar to the form, showing the crown from above, lateral and antcrior aspects of lower jaw.
$19 a, b, c \quad$ Views, natural size and chlarifed, from aboye, and latoral aspect, of an exceedingly minnte tooth, ill which the root is relatively very shallow and proportionately hroad antero posteriorly
$20 a, b$. Vicws fiom above and postcrior (?) face of a similar tootl to the last preceding, but laterally more elongatct, with two distinct coromal prominences rising from the conmon basal support. Enlarged two diameters.
$21 a, b, c$ Enlarged viown oxhibiting the external surface from above, a, the abrupt face antl foreshortened rias of the shatlow excavated inferior surtace, b, and profile, c, of a minute body smposed to pertain to tho dermal envering of tho same fish to which the previnusly figurd teeth holonget. 'These dermal or shagreen sales are gnite common and very varided iu shape.
22
Restoration, showing the probablo angle of divergence of the rami from the symnhysis in front posteriorly and the convohted or inrolled arrangement of the ruws of tecth, as indicated in the large specimen, lig. 1.

Fig. 23. Agacsizodes Vieginianus, St. J and W restored in onthon ; sutnior face, showing telitibily shallow root ; c, viow of elown fom :hoore; d pontile section. Position abont 100 feet above the

Plate VIII.-Continued.

Fig 94.
$24 a$

Fig. 25.
25 a.

Fig 26.
$26 a$

Fig. 27.
$27 a$.

Fis. 28.
$2=a$

Fig. 29. $\because a$.
$30 a$

Fig. 31.

Fig. 3\%.
3: a
$33 a$

Fig. 34.
$34 a$

Fig 35.
35 a.b, c.

F'ig. 36.
$36 a$.
$3: a b$

Iig. 3 c
3e 1

Agasazodles cormigatus, N. and W.
PAGE.
Vies of the posterior face of a medinum sized tooth of one uf the median rows, showng the wreater portion of the crown, the ontline of the lase restored; b, anterior face; c, crown as scen form above, the apex broken away, and extremities restored in outline; d, profile section. Upper Coal Meas., near Manhattan, Kansas.

Periplectronuts Wammay, St. J, and W

Siew of a nomly perfect footli, from above, showiug the coronal cusps and the beveled latomi edges; b, pofile view, showing the strong inrollment of the anterior extrenity of the mature teoth; c, view of the posterior face, showing the docp, massive basal portion, beneath which appears the inolled anterior portion of the crown. Buflington creek, Iowa. Upper Burlington.

Piew from above, enlinged two dianetens, showing the lateral compression of the tooth; $26 b$. profile view, showing the slight incollment; $26 c$, posterior face. Alton, Illinois; St. Lomis limestone.
 one diameter: 27 b . protile viow ; 27 c , postenion face, showiug the lateral ex. pansion of the basal portion. Chester, Illinois; Cbester limestone.

Stevmatonts symermicts, St. J. and W.......................................
iew from above, showing the coronal cusps, aud callosities at the auterior ex. tromity of tho tooth, enlarged; $28 b$, profle view: $28 c$ posterior view, showing the inforion surfact of base, foreshortencd. Buffington ereek, Lowa; U. lsulington

View from abowe, showing the datened anterior border, and irregular dispe sitiou of tho cusps; 20 b, protik: sew; 29 c, inferor surface, enlanged. Buthingtou cto k, Iowa; LT. Burliuston.
Viow from alove of a nearly perfect tooth, slowing the striation of the posterior ensps, and the minute abraded cuspis in the angle of the anterior extremity, enlarged six dianeters: 30 b , vew from below, showing inferior hasal sur. face, and relative position of the postctior cusps, one of the large exterior ones broken away and restured in ontline. Butlington creek, Towa.

Vjew from above, enlarged one dinmeter, slowing the posterolateral prolonga. tions, and the relatively bricf or arrested median row of ensps: $31 b$, protilo view; $31 c$. view showng the infermor hasal region, evilently more or less abraded. Buflington creek, luwa; [. Burlington.

Tootlo as seen trum aluve a mimote and apparently perfect specimen, enlarged; $32 b$, protile vow, show ine the downwird produced interior or terminal extrenity: 32 c. view from bolow, showitg the excavated basal suitace. Butlington cacok, lowa: U. Burlagton.
superior surface of a large specimen, having firmly attacherl the narow anterior extremuty a pair of apparently similar but mach worn lental ctests, he tween which the laver body is woded : 33 b, protilo view, the ontlime of base restored in outline; $33 c_{\text {, viow fom below, the base much worn, and }}$ showing the anterninferior borders of the pair of antesion teeth. Butherton ereek, Iow:

Profile vien of a large singlo crested tooth: a portion of the extwral larer
 nat ensps in the hory, of dentual porton of the tonth. Burlington, Lowa; U. Imalington.

Superior, profile, and infor for fows of a modimm sha specimen, showing towards the antemion extomity only simglo fow of small appressed consp, while towats the ofmosite extamity in double row of alfernating 'usps are scen. Bulhugtou creck, Iow: : E. Burlinerton.

View from above of a later, single erested tooth, which exhibits the amomalous features of a bad or bifurcation abruphly arisig fiom one of the lateral sur. fiees nealy milway botwern the extrmities, and which ennsists of thrce sirong enspos, apparenty tirmly soldered to tho matin body of the tooth. Bnflington creek, Iow: : IT. Inirlington.
Viows from above and in protile of a symmental single crested fonth, the base, which is worn, restor col in ontline. Buflington creek, lowa

V'ifw or apure surface of small tooth houthg a median tow of latge eurps, with

1 L A T E I X.

1 a. View of concave face of tooth: $1 b$, convex face: $1 c$, siew from thove, enlarged two diameters: 1 d , rulargement showing the disposition of tho coronal folds in con cave face: $1 e$, enlargement showing folds in consex tiace ; $1 f$, outline view in profile, enlarged : $1 g$, protile section, enlarged St. Louis limestone ; Alton, Illinois.
$2 a$. Ontline nat. size, and enlargement showing the concave face of a minute tooth inter. medrate in form Same horizon and locality
3 a. Concare face of small arched tooth, enlarged two diameters; $\mathbf{3} b$, showing the conver face; $3 c$, ontline view in protile same horizon and locality
$4 a$. View of coucare face of still smaller tooth, enlarged two diameters; $4 b$, convex face ; $4 c$. ontline of crown from above: $4 d$, outline riew in profile; $4 e$, protile section Same borizon ant locality.
Fig. 5,6 . Vexistode's argioús, St. J. and $W^{\text {}}$
5 a. Concaro face of medium-sized tooth; $5 b$, conrex face; $5 c$, view of conrex face, enlarged two diameters; $5 d$, outline from above, showing arrangement of basal folds, enªrged ; īe. enlargement showing portion concave coronal belt ; $5 f$, similar enlargement of convex face; $5 g$, ontline view in profile, enlarged; $5 h$, profile section. Chester linestone, upper fish-bed; Chester, lllinois
6 a. Concave face of smaller, arched tooth; $6 b$, view trom above; $6 c$, similar view, enlarged two liameters; $6 d$, similar siew of one extremity still further enlarged, showing disposition of coronal folds; $6 e$, profice section onlarged Same horizon and local. ity
Fig. 7-14. Vestisionus varmabmis, st. d. and W... 346
7a. Tooth of normal size and form, seen from abovo; i b, profile section. Cpper Burling. ton limestone; Lonisal county, Lowa
8 a. Concaro crown face of similar merlium-si\%ed tooth; $8 b$, convex face, base restored in outline; \& c, profile sfction. Same horizon and locality.
$9 a, b$. Similar risws of a less denticnlate variety. Same lorion and locality.
$10 a$. View of convex fince of large tooth, with laterally compresssed median cone; 10 b . profile view. Same horizon and locality.
11 a. A small, linear, low-crested tonth, seen from abowe, enlarged two diameters; $11 b$, pro. file section. Sane lori\%on and locality
12 a. View from above of a very flat valiety, in which the rrest is but slightly raised above basal imbrications. Same hori\%on and locality
13 a. Concave fuce of small, thiangular, acmminate tooth; $13 b$, consex liaco; $13 c$, profile section. Same lonizon and locality.
11 a Concave face of more rohust touth of same variety; $11 b$, convex face, showing relatively decp lase amd intermpterl commal folds: $14 c$, profile section. Same horizon and lucality.

15 a. Mediunsize tooth scen tion abow: 15 b, brotile section. Upper Mulington: Lonisa county, Iuwa.
$16 a$. Convex face of larer, sharp-ctented torm : $10 b$, protile view. Samo horizon and local. ity.
17 a Small hear variety, view fom above mowing apex but slighty elerated above ciest; $17 b$, profile section Same hotizon and locality.
18 a. A very small linear form, seen from above, crest forms a low, oven ridge, coroual folds fief̧nently intermpted. culanged two diamoters: 18 b, profile section Same hori. zon and localty:

Plate IX-Continued.

PAGE.

Fig. 19-24. Ventstodus tenuichistatus, St. J. and W... 34.
19 a. Concave face of small tooth of normal shape, showing borders of convex side; $19 b$, convex face; 19 c, profile section. Keoknk limestone; vicinity of Warsaw, Ill.
20 a. A more slender tooth, in which the apex is less prominent, seen from abore. Same horizon and locality.
21 a. View from abore of large, robnst tooth, showing compressed crest, and laterally conipresserl median cone; $21 b$, conrex face, basal band imperfect from wear ; $21 c$, profile section. Same horizon and locality.
2.3 a. A large, elongated tooth, seen from above; $2 \cdot b$, conrex face, the worn crest restored in outline; $22 c, d$, profile sections at middle and extremity of tooth. Same horizon and locality.
23 a. Viow from abore of small, linear, even-crested tooth; $23 b$, profle section. Same horizon and locality -
$21 a$. Concave face of small, triangular, acuminate tooth; $24 b$, conrex face, bise restored in ontline; $\leftrightharpoons 4 c$, outline view in profile. Same horizon and viciuity.

PLATE X 。

Fig. 1-4. Cionatodus Varsouviensis, St. J. and W.. ... 363
1 a. View from abore; $1 b$, convex face; $1 c$, profilo section. Warsaw beds; above Alton, Illinois.
$2 a, b, c$. Similar riews of a larger, worn specimen. Samo horizon and locality.
$3 a, b, c$. Similar riews of large tooth, showing extravagantly dereloped convor crown facc Samo horizon; Barreft's, Missouri
$4 a$. Fragment of ohlique tooth, seen from above; $4 b$, profile section. Samo horizon, above Alton, Illinois.

Fig. 5-14. Cnomatoml's 1мconstišs, St.J. and W.. 360
$5 a$. Coneare face of tooth of ordinary appearance; $5 b$, opposite face, base restored in outline ; $5 c$, profilo section, showing nearly vortical root. St. Louislimestono; Pella, Lowa.
6 a A long. slender tooth seen fiom above; $6 b$, convex aspect; $6 c$, profilo section. Same horizon and locality.
$\boldsymbol{7} a$. Concave face of small tooth, ircegularly serrated along crest; $\boldsymbol{7} b$, convex face; $7 c$, profile section. Same horizon and locality.
$8 a, b, c$. Sinilar views of small tooth with oblique root. Same horizon and locality.
$9 a, b, c$. Similar viows of tooth with extremely oblique root. Same horizon and locality.
$10 a, b, c$. The same riews of a morc regular tooth, with obliqne baso. Same horizon and locality.
$11 a, b, c$. Similar vicws of a more eccentric tooth. Same horizon and locality.
$12 a, b, c$. Similar views showing both faces of base and tho beveled inferior surface. Same horizon and locality.
13 a. View from abovo of largo tooth, with nearly median crest; $13 b$, conrex face, show. ing relatively shallow root; $13 c$, profilo section. Same horizon and locality.
14 a. Profile section of large specimen with rertical root, both facos of crown rertically concaro. Same horizon and locality.
Fig. 15-17. Chomatodus Chesterensis, St. J. and W
15 a. Mcdium-sizod tootb, soen from abore; $15 b$, conrex face, showing docp baso; $15 c$, profile section. Chester limestone; Chester, Illinois.
$15 a$. Concare faco of fagmont of small tooth, wlth oblique base; $16 b$, convex face; 16 c, profilo section. Samo horizon and locality.
$17 a, b, c$. Similar riows of large, nearly perfect tooth; $17 d$, riew of crown from abore, showing nearly median crest. Same horizon and locality.
Fig. 18. Chomatonus incrassatus. St. J. and V... 359
18 a. Viow of concare face of inclium-sized tooth, enlarged tro diameters; 18 b , convex face and basc ; 18c, profilo scction. St. Lonis limestonc; Alton, Illinois.
Fig. 19-22.
19 a. Concare aspect of large, symmetrical tooth, showing base and beroled inferior surface; $19 b$, riew of convex face; $19 c$, outline of crown from above; $\mathbf{1 9} d, c$, profile sections. Upper Burlington; Louisa county, Lowa.
$20 a, b, c$. Similar views of short, robust tooth. Samo horizon and locality.
$21 a, b, c$. Same views of a similar shapel, smaller tooth. Same horizon and locality.
$22 a, b, c$. Similar riews of small tooth. Samo horizon and locality.
Fig. 23.
Cifomatodés abculatus. St. J
$23 a$. View of concare crown-face, showing part of base; $23 b$, convex crown-face, base partially restored; $23 c$, riew of crown from above; 23 d, nrofile scction. Upper Coal Measurcs, Alams county, Iowa.

fossimeforyfras.
「H DNLSTODA

PLATEXA.

Ifi u, b, c, d. Views of concave and convex faces, ontline from above, and profile soction, minarged two liameters. St. Louis limestone; Alton, Illliois.
Fig. 17 19. Lecoott's semenit's, St. J. and W
if a, b, c. Fiews of comans and convex lices, and outlinc of crown from above, enlarged two dianmerrs. Vpper Burlington limestono; Louisa county, Lowa.
18 a, b, c. Concave amd convex fices, and protile section of slighty stronger toofh, enlarged two diameters. Sime horizon amel locality.
19 a,b, c. Similar virws ol a large, robust tonth enlarged two diameters. Same horizon and locality:

PLATEXA.-Continued.
page.
Fig. 2020. Lisgodus curtus, St. J. and W 364
20 a . Convex face of worn, laterally elougated tooth; Upper Burlington; Louisa county,Iowa.
$21 a, b, c$. Views of concave and conrex faces, and profile section, of specimen of normal form, enlarged two diamoters. Same horizon and locality.
$22 a, b, c$. Similar views of smaller, vertically elongated tooth, enlarged two diameters. Same horizon and locality.
Fig. 23. POLIRHIzODU's Wibliarsi, St. J. aud W 384
23 \%. View from the basat side of a small worn tooth; 23 b , profile section. Reoknklimestone; Keokuk, Iowa.
Fig. 24, 25. Polyrhizodt's carbonarics, St. J. and W 389
玉4 a, h. Sketch of concave and courex faces, restoration of fig. 10, Pl. 13. Coal Measures;Belleville, Illinois
$25 a, b, c$. Concare aud courex faces, ant profile section, of smaller tooth. Upper Coal Mea-sures; near Spriumfield, Illiuois.
Fig. $20 . \quad$ Ctenonetalls medus, St. J. and W. r.. 40026 a . Convex face; 26 b , sketch of the coucare aจpect; $20 c$, profile section. Chesterlimestone; Chester, Illinuis.
Fig. 27. Ctenoptychius pertextis, St. J. and W 38227 a. Tiew of concavelice, enlarged two dimmeters; $27 b$, couvex face; $27 c$, profile sec.tion. Chester limestone, lower fish-bed; Chester, Hinois.

(

PLATE XI.

Fig. 1-5. Tanaonus pumlut, St. J. and W 369
1 a. Viow of concare face of perfect tooth of modinm sizo and normal form; $1 b$, conresaspect; 1 c, profile section. St. Lonis limestone; Pella, Iowa,
2 a. Concare face of sinall, triangular-shaped tooth; $2 b$, opposite face; $2 c$, outline of crown from above; $2 d$, profile outline. Same liorizon and locality.
3 a. View of concave face of larger tooth, crest worn; $3 b$, convex face; $3 c$, profle section. St. Louis heds; Alton, Illinois
4 a. Concare face of still larger tooth, crest worn plane with basal margins; $4 b$, conver aspect, ontline of crest restored. Same horizon and locality.
5 a. Concave aspect of snall abraled or immature specimen, which las lost the external enamel layer, enlarged two diameters; $5 b$, view of convex face, showing sulcation of basal area, and worn coronal surface; 5 c, profile section, showing concarity of concave face. St. Louis beds; Pella, Iowa.
Fig. 6-10. Tanadoues phexustilis, St. J. and W
6 a. Concave face of large symmetrical tooth; $6 b$, opposite face; $6 c$, ontline of crown from above; $6 d$, profile section. St. Lonis limostone: St. Lonis, Missouri.
$7 a$. Viow from abore of a stronger specimen; $7 b$, convex aspect; $7 c$, profile section. Same horizon; Alton Illinois.
3 a. Viow from above of similar, laterally arched tooth; $8 b$, profile section; 9 a, concare face of same specimen. Sime horizon and locality.
$10 a$. Concare face of small oxample; $10 b$, convex faco; $10 c$, profile section. St. Louis beds ; Pella, Iowa.

$11 a$. Concave face of medium size tonth; $11 b$, opposito face, slowing denticulate crest ; $11 c$, profile section. Chester limstono; Cbester, Illinois.
$12 a$. View from above of an obtuse-crested tooth; $12 b$, conrox face; $12 c$, profile section. Same borizon and locality.
$13 a$. Ontline from above of small specimen: $13 b$, concave face, enlargod two diameters: $13 c$ convex aspect; $13 d$, profile section. Same horizon and locality.
Fig. 14-16, $25 . \quad$ Tanaonus helticinctes, St. J. and W.
$14 a$. Concave faco of large perfect tooth; $14 b$, convex face; $14 c$, profile section. Chester limestone; Chester, Illinois.
13 a. Concave face of a worn tooth, in which the coronal folds arescarcely disoernible, and the root terminated in a wedgo shaped edge; 15 b , conver faco, showing abrasion of basal area; $15 c$, profilo section. Samo horizon and locality.
$16 a$. Concavo face of sinall immaturo or worn tooth, coronal folds obsolete; $16 b$, convex face, showing worn space along tho basal angle; $16 c$, profile soction. Same borizon and locality.
$25 a, b, c$. Similar views of another tooth. Samo horizon and locality.
Fig. 17-19, 24. Tanaodus porysombús, St. J. and W.
$17 a$. Concave face of large tooth, enlarged two diameters; $17 b$, convex aspect, infcrior coronal anglo worn; 17 c. profilo section. Chester limestone; Chester; Illinois.
18 a. Concare finco of smaller. less symmetrical footh, cularged fwo dianetcrs; 18 b, opposite face, slowing sulcation along basil augle; $18 c$, profile section. Samo horizon and locality.
19 a. Concave aspect of small tooth, enlargod two dianeters; $19 b$, opposite face; $19 c$, profile section. Same horizon aud locality.
$24 a, b, c$. Viers of concare and convox faces and profilesection, of au olliptical-sbaped tooth, probably referable to the above form, enlarged two diancters. Sane horizon and locality.

Plate II-Continued.

PAGE.

SO a. Concare face of large srmmetrical iouth: $=08$, conrex face corval folds obsolete: So e, protile section. St. Lonis limestoze: Alion, Mlinois.
21 a. Otilize of concare face of spall eccentric tooth : 2! b. The same ealaryed two diameiers : : i c. conrex fiace; ?l \& proile section. S. Louis beds; Pella, Iowa,
2a. ©. c. Similar- Tier of small ssmmetrical :ooth. Same horizon and localitr.
23 c. Ounire of concate face : 23 . Vietr of concare iace. enlarged two diameters; 23 c conrex face Ehowinz conwal folds: :3 e profle section, showing ontline of perfect noot, and unusuả cozcarity of the comeare face. Si. Louis; Alion Minois

 Lioz. Chesier limestoze: Chester Minois

 מion. ミ. Logis Liméstone = Alion, Minois.

※a. Concare iace, besul binder imptiect; sib. conrex iace: ※ c, prosle section. Tharsat becis

 ssciol. Tarsaw beds

PLATE XII.

PAGEFig. 1-4. Petalorhynchus paeudosaggitatus, St. J. and W405
$1 a$. Convex face of small tooth ; $1 b$, concaro face; $1 c$, profile section. St. Lonis beds, Pella, Iowa.
2α. Concare face of large tooth; 2b, convex aspect;2c, profilo section. St. Louis; Alton, Illinois.
3α. Ontline of convex face of very large acuminate tooth, with forked root. Same horizon and locality.
4α. Similar ontline of medium-sized. symmetrical tooth. St. Lonis; Pella, Iowa.

5α. Convex aspect of large tooth with tumid apex; $5 b$, sido view. St. Lonis limestone; Alton, Tllinois,
$6 a$. Convex face of small tonth; $6 b$, concave face; $6 c$, profile section. St. Louis; Pclla, Iowa.

$7 a$. Conrox faco of molium sized tooth; $7 b$, concare faee showing deeply arched hasal margin; $7 c$, profile section. St. Lonis bods; Pella, Iowa.
$8 a, b, c$. Similar views of smaller specimen. St. Lonis; Alton, Illinois.
Fig. 9. Ctenompalus bellulus, st. J. and W.. 398
9 a. View of gromp of teoth from the convex side, enlargee two diameters; $9 b$, riew of opposite face, showingentire ontline of the largest specimen; $9 c$, profile section of large tooth. St. Louis beds; Pella, Iowa.
Fig. 10. Petalodus mymandts, St. I and W. ... 394
$10 a$. Conrex face of large tootlı; $10 b$, concavo face ; $10 c$, profile soction. St. Lonis; Alton, Illinois.
Fig. 11. Petalonus Proximus, St. J. and W... 395
$11 a$. Convex face of nearly perfect tooth; $11 b$. view of concare face; $11 c$, profle soction. Upper Coal Measnres, Springfield, Illinois.
Fig. 12.
Petalodus curtus? N. and W.
$12 a$. Tiow of convex face of medium-sized tooth; crest worn nearly plane with convex basal margin; $12 b$, concaro face, ehowing corrngatod ornamentation; $\mathbf{1 2} c$, profile scction. Keoknk limestone, Bentonsport, Iowa.
Fig. 13. Ctexorefalus vivosus, St. J. and W.. 396
$13 a$. Convex crown-faco ; $13 b$, profile section. Kcoknk limestono, Bentonsport, Iowa.
Fig. 14. Ctejopetalus occideatalis, St. J. and W .401
14 a. Viow of convex face; $14 b$, concave face; $14 c$, proflo section. Lower Coal Measures, Fort Dodge, Iowa.
Fig. 15. Ctenohtychils Stevexsoni, St. J. and W .. 353
15 a. View of convex face; 15 , concave face; $15 c$, profle section. Coal Measurcs, West Virginia.
Fig. 16, 17. Caloronus aricalis, St. J. and W.. 403
$16 a$. Conrex face of tooth, enlarged two diametcre; $16 b$, e nencaro aspoct; $16 c$, profile ontline. Middle Coal Mcasures, Iowa.
$17 a$. Convex face of smaller tooth, enlarged two diameters; $17 b$, concave face showing hooked apex; $17 c$, profilo ontline. Same horizon and locality.
Fig. 18. C'tesoretalis hmatuldes, St. J. and W.
18 a. Fiew of convex face; 18 b , profile section. Chester limestone, Chester, Illinois.

PLATEXIII.

PAGE.
Fig. 1, $2 . \quad$ Fimsontes bifibles, St. J. and if 414
1 a. Coneave face of perfect tooth; $1 b$, conver face; $1 c$, profile section. Chester lime-stone; Chester, Illinois.2a. Coneave face of smaller, less perfeet specimen; $2 b$, profile seetion. Same horizon and locality.
Fig. 3. Fisodes thelspibatus, St. J. and W 4153 a. Concare faee of an imperfect toth; basal borders restored; $3 b$. opposite taee ; $3 c$,profile section. Chester, Illitois.
Fig. 4, 5. CAOLODL's INEQLALIS, St. J. and IV 416
4 a. Coneave face of an imperfect tooth, hasal border broken away: $4 b$, view of convexfieo; 4 c, profile section. Upper Coal Nleasures; Iowa.
5 a. View of coneare fiee of more robust tooth, basal border and root destroyed; $5 b$, eon-vex face; 5 c, profile section. Upper Coal Measures; Springfield, Illinois.
Fig. 6, $\%$ I. Iflomes quabratus, St. J. and W 410
6 a. Convex face of perfect tooth, enlarged two diameters; 6 b, profile section. St. Lonislinestone: Alton, Illinois.
7 a. Concave face of an imperfect tooth; $7 b$, convex face; $7 c$, profile section. Same hori-zon and loeality:
Eig. 8. I'rlomés trinsversés, St. J. and W 412
8 . Conrex face of nearly entire tooth, enlarged two diameters; $8 b$, profile section. "CoalMeasures; Carlinsille, Illinois.
Fig 9. Pelitohe s ? micominalis, St. J. and W 4119 a. Concaro face, basal margin imperfeet; $9 b$, eonrex face, root restored in ontline; $9 c$,profile section. Chester limestone; Chester, Illinois.
Fig. 10. Polymuzodus carbonallits, St. f. and W. 3.9
10 a. Appearanee of original cxample, consex face, partially restored in outline; $10 b$, profilesoetion. Upper Coal Measnres ; Lasalle, Illinois-
Fig. 11. Pobyriazodus Whllamsi, St. J. and W 384$11 a$. View of eoneave fiee, slowing dentate root; $11 b$, view of erown from abore, showingthituratiug surface in the convex face; 11 c , profile scetion. Keokuk limestone;Boonville, Missouri.
 386
12 a. Concave lace of nearly perfect tooth; $12 b$, eovrex faee; $12 c$, protile section. Warsatwbeds; above Alton. Illinois.
 387
$13 a$. Concare face of perfect tooth, $13 b$, convex face: $13 c$, protile setion. St. Louis lime-stone; Alton, Illinois.
Fig. 14. Pwirimzodus Littont, N. and W. 38.5$14 a, b, c$. (Gonease and eonvex faces. and pofile section, of nearly perfect tooth, introdueedfor eomparison with preeeding form. St. Louis; Alton, Illinois.
Fig. 15. Polybilmodrs Ninis, sta of and W 386
$15 a, b$ Convex face and wotilo section; $15 c, d$, the same riews. enlarged two dianeters.Keokink limestone; Bentonsport, Iowa.
Fig 16. Dactuiouls Excolviles, st. J. and W 392
$16 a$. Concare fare, root broken away, enlaged two diameters; $16 b$, convex face; $16 c$, 1 ro-file spction. Chester limestone; Chester; Lllinois.
Fig. 17, 18. Dactupone concayus, St. J. and IT 390
17 a. Concare face of medmm-size tooth; $17 b$, convex face; $17 c$. profile seetion. St. Louislimestone; Altom, Illinois.
18 a. Coneave face of large speeimen, extremities of fangs broken amay; $18 b$, convex face ;le c, protile section. Same horizon and loeality.
Fig. 19. Dacrichirs mames, St. J. and W 391
19 a. Concave faee of tooth, enlarged two diameters; $19 b$, opposite face; $19 c$, profile seetion.St. Louis limestone ; Alton, Illinois.

PLATEXIV.

Fig. 1.
$1 a$ Side view of a nearly perfect specimen; $1 b$, transverse section of spine near upper extremity, showing pulp carity and contour of posterior face; $1 c$, eulargement showing disposition and form of tnbercles, the eccentric anterior ridge near the base, with profile outline; $1 d$, eulargement of tubercle of third costa from front, ncar base, and profile ontline ; $1 e, f$, anlargement of tubercles from middle costæ; $1 g$, enlargement of costio and tubercles in middle and posterior portions abore. Lower fish-bed Kinderbook; Burlington, Iowa.
Fig. 2.
$2 a$.
Side view of broken spine, partially restored in ontline, the inner dotted lines showing the ontline of the pulpecarity; $2 b$, view of upper half of postcrior face, showing the strong, rounded, median keel and deuticles along the posterolateral angles; $2 c$, transverse section about one-fourth the distance from the apex; $2 d$, traneverse section near line of insertion, showing the deoply excavated posterior border; $2 e$, cnlargement of costic near base in frout; $2 f$, enlargement of middle costro of right sille near base ; $2 g$, enlargement of tenth costa from frout in lower third of spine of same side ; $2 h$, enlargement of posterior costa near base ; $2 i$, profile enlargement of posterior denticles. Upper fish-bed Kinderbook; Burlington, Iowa.
Fig. 3, Ctenacanthus spechosus, St. J. and W.
3 a. Side riew of large imperfect spine partially restored in outline; $3 b$, transverso section. below the opening of internal cavity; $3 c$, transverse section near the upper extrem. ity, posterior ontline restored; $3 d$, enlargement of costre from various parts of the spine; $3 e$, enlargement of fragment of another individual, showing tho posterior denticles, etc. Lower fish.bed Kinderhook; Burtington, Iowa.
4 a. Side view of a worn specimen, probally referable to this form, in which the decussations of tho costro are obsolete; $4 b$, view of the posterior face; $4 c, d$, transrerse sections near base and upper part Samc horizon and locality,

Fig obl

PLATE XV.

PAGE.
Fig. 1. Ctenacinthits spectabilis. St. I. and W 420
1 a. Side riew, tip and postero-interior border partially restored in out'une; $1 b, c$, transverse sections at broken extremity and iear basal line; $1 d$, enlargement of costas in the midhle near base; $1 e$, enlargement of costie of anterior margin abore, showiug their appearance when worn. Kinderhook beds; LeGrande, Iowa.
Fig- 2,3. Ctevacantills giradocontits, it. J. and W
$2 a$. Side view of tragment of spine: $2 b$, enlargentent of a section from tho upper extremity, showing details ot ornamentation: $2 c$, view of section of postcrior face; $2 d, e$, transverse section and enlargenent showing contonr of posterior face ; $2 f$, enlargements in outline, slowing elevation of costie from the side and end. Upper Burlington; Quincy, Hhinois.
$3 a$. Frament from near the apex of a specimen refored to the above form, enlarged; $3 b$ enlargement of posterior edge, and sectuon slowing ontline of the anterior ridge. same horizon, Lonisa county, lowa.
Fig. 4, 5. Ctenacantiles extavater, St. J. and W
4 a. Side riew of a broken spine, cnlarged about two diameters, $4 b$, further eulargement of anterior ridge; $4 c$, view of posterior face near extremity, showing position of denticles and median concarity, enlarged abont two diameters; $4 d$, transverse scction, enlargrel. Kcoknk limestone; Bentonsport, Iowa.
5 a. Sitlo view of a fragment showing the tip of a larger spine, and transverse section of the same. Same horizon; LaGrange, Missouri.
Fig. 6, $7 . \quad$ Ctenacanthls Burlingtonemah, St. J. and W.. 426
6 a. Side view of npper portion of suine; $6 b$, enlargenent of postchior border ; $6 c$, transrease section. Upper Burlington; Louisa connty; Iowa.
7 a. Side view of lower portion of spine, baso restoned in ontline; $7 U$, en'argemont of pos. terior margin, showing relatively smaller and obtnsely conical denticles than occur in tho upper portion; $7 c$, enlargement along the anterior border, showing ornamentation of three or ton tuberculose costre ; γd, enlargement showing the anterior rillge and laterally compressel tubercles ; $7 e$, section of posterior face; - f, g, transverse sections, mat. sizo am enlarged. same hori\%on and locality.
Fig. \&. Crexicanimis Kmokle, St. s. and W. 427
ε a. Side tiew of late, we l-preserved spocinen. the broken inferior extremity showing momld of pulpearity : the omamented costat in front partially restored; $8 b$, transerse scetion enlarged : e c, conlargement of posterior border, show:ng sculpthred denticles, hfuched and implantod costic, etc; $8 d$, enargement of the anterion mangin, showing tubercnlnse conta, etc.; $8 c$, enlargement of tho ante1 in ridge, showing depressed tuberbles. Keoknk limestone; Bonnvills, Mo.

9 a. Side view of imperfect spine, surface manmentation partially restored; $9 b$, transrerso section. St. Louns limestone: Alton, Lllinuis.
10 a. Bulargements from a small tragment of a spiue, showing anterior bidge and several costak from the front, midllo and posterior portions of the spine : $10 b$, anterior rider, cularged. sime borizon and locality.

11 a. Side view of mpere pxtremity of spint: $11 b$, enlargenent of the anterior and two of the lateral costa, showing the obliquely striated lateral margins of the anterior melye, etc; $11 r$, enlargement of antcrion ridge; $11 d$, transions seetion. Ches. ter limesthno: Chester. Hlinois.

PLATE XVI.

Fig. 1.

Asteroprycinus verusits, St.J. and W

PAGE.
1π. Side view, enlarged two diameters ; $1 b$, section of one side further enlarged, slowing details of intercostal striation, and apperance of the more or less worn poste. rior denticles: 1 e, mbargement of portion of posterior tace showing position of denticles along the postero-lateral magles, also the faint median ridge: 1 d , transverse section, enlarged. Lower fish-berl, Kinderhook: Bullington, Iowa.

Fig. 2.
2π

Fig. 3,4.
3
Lateral view of a perfect preserved specimen, showinc intereostal tubercles, and poste. rior denticles-the later are repnenenter slightly too large-enlarged two diane. ters; $3 b$, section of postcrior face, onlarged iwo diameters; $3 c$, d, side views of denticles belouging to the upper and lower series, enlarged; 3 e, transverse scetion. St. Louis hmestone; Altun, llinois.
. 1

Fig. 5, 6.
$5 \quad \ell$.

Lateral riew of a fragment of a large spine, probably referable to this species, show. ing the surface in perfect state of preservation; 11 b , enlargement of a portion of the surface, and profile section of the costa; $11 c$, transvorse sectiou. Upper Hish. the surface, and profile section of the costa; 11 c, transvorse sectiou. Upper fish.
bed, Kiuderhook; Bmilugton, Iowa.
$12 a$. Latcral view of a large spine; $12 b$, enlargement of aportion along the autoriormargin; $12 c$, enlargement showing section ot the posterion face, showing form of denticles, cte; $12 d$, sille view of a denticle, enlarged; $12 e$, transversescetion ; $12 f$, enlarged section of anterior portion of spine. Keokuk limestone; Warsaw, Hlinois.
13 a.

Fig. 14.
11 a
Asterortychats lieoktk, St. J. and W.
Sile view of an imperfect spine, enlargell two diameters, and restored in ontline; $2 b$, sketch of the posterior face, enlarged two diametcrs ; 2 c, transverse section. Keo. kuk limestone; Warsaw, Illinois
ide view of a neary entire fill.spinn : 4 h, section of the posterior face near the lower extremity, cularged one haff. showing median keel and position of dentieles; 4 c , section along the anterior margin. enlarged, showing Ewo costa, and striatopunctate intercostal spaces; $f d$, en argement of sectron from the posterior border near the lower extromity, showing theimegnat strie in the intercostal spaces, and the posterior denticles; \& enlargmuent of posterior border noar upper extremity, showing the downwad hooked demticles, etc.; $\& f, y$, transverse scetions near the lower and mpper extromities, enlarged one half, showing relative prominenco of median keel 11 ditferent parts of the spime. Sume horizon, St. Louis, Missonri.

Asteroptychifs rentis, St. J. and W... $5 c$, traasverse section near the lower extremity. Chester limestone, Chester, Ill.
Lateral view of a fragment showing tho tip of a spine, enlarg d two diameters; 6 b , enlargement showing portion of the posterion faee, which is faintly channeled instead of keeled. as in the lower portion of the spine; $6 c$, cnlargement of the posterion border; showing intercostal striation, and dentieles; $6 d$, transverse section, enlarged two dianeters. Same horizon and locality.

> Asteroprychus bellulls, St. J. and W.

Side view of a small spine shoming the base; $7 b$, view of anterior edge; $7 c$, transverse section ; 7 d , enlargement of portion of lateral sniface. Coal Dleasnres; Carlla. ville, Tlinois.

Side riew of spine, enlarged one-half; $8 b$, transversosection. Uppor fish bed, Kinder. hook; Burlington, Iowa.
Side view of a fragment wear the upper extremity, cnlarged iwo diameters; $9 b_{4}$ poste riou faee, enlarged two diameters; $9 c$, transverse section, enlarged. Same horizon and locality.
Side fiew of the tip of a very small spine, referred to the above torm, enlarged two diametcrs: $10 b$, transrerse section; $10 c$, enlargement of one of the denticles seen from the outcr side. Lower lish-bed, Kinlerhook; Burlington, Iowa. e view of a sualles specimen; 13 b , enlargemont showing the broad infercostal space along the anterior margin; 13 c, cularqencut of porfion along the posterior border: $13{ }^{2} d$, en argement of the posterior face; $13 e$, transvorso seetion, enlarged. Same horizon, Keoknk, Lowa.

.

Side view of spine; $14 b$, framsverso sertion near tho broken distal ond ; $14 c$, trans- .436 verse section near the inferior extremity. Upper Bulington limestone; Jinding. ton. lowa.

18
1
1

$$
\frac{4}{1} \frac{1}{4}+1818
$$

$$
\sqrt{4}-2-\frac{1}{4}+\frac{1}{4}
$$

Hint

PIATEXVII.

1 a Side view of finspine; $1 b$, anterion aspect, reduced to one fourtb matural size; $1 c$, view showing posterior face: $1 d, \varepsilon$, f, views of thlercles showing inferior side, lateral view, and seen from above; $1 g$, outline of an elongated tubercle, seen from above; $1 h$, transverse section near tbe middle of exposed portion of spine; $1 i$, similar section across the base midway between the anterior shoulder and the inferior extremity. St. Lonis limestone; Alton, Illinois.
Fig. 2. Glymamacanthis Irthin, St. J. and IV.
$2 a$. Side view of fragment of spune, base partially restored in ontline; $2 b$, uansvorse sec. tion, partially restored in ontling along tbe posterior side; $z c$, enlargement of tubercles as seen from above, whowing also the interspaces; $2 d$, side view of a single tubercle, enlarged. Kinderhook beds; Marshall county, Iowa.
Fig. 3, 4 Geisacanthus bullatles, St. J. and W.
3α. Side view of a spine showing the base and part of the exposed portion, enlarged two diameters, the upper portion of the figure representing the snrface dennded of tubercles, as seen in fig. $4 a ; 3 b$, enlargement showing one of the tubercles seen from above, and latcral view in outline. Cbester limestone; Chester, Ill.
4 a. Side view of an imperfect spine, showing patch of surfice near tip denuded of tubercles, and below the pulp-cavity is exposed by the breaking away of the lateral wall. Same horizon and locality.


```
3
``` \(t\) 4
\[
=
\]

\[
\cdots-=
\]

\[
-\geq
\]

\section*{PLATE XYII.}

-

\section*{P L A TE XIX.}
1'AGE.
Fig 1-3. Physonemus Abtonexsis, St. J. and W 454
1a. Side view of largo spocimen; 1 b, front viow. t \(c\). viow of the posterior face; 1 d.e.f. \(g\), trausrerse sections at pointsindicated by correspouling letters, fig. 1 a. St. Lonis limestone; Alton, Illinois.
\(2 a\). Side view of a smallor spme, tho postorior fime broken away, restored in ontline; \(2 b\), \(c, d\) e, \(f\), transcerse sections. Same lomanu and locality
is a Side view of very sinall spine, probably meforable to tho above aperies, hat having tho antero-inferior shouller truncated; \(3 b\), front view ; \(3 c, d\), \(e\), transrerse sections. St. Louis beds; Pella, Iowa.
Fig 1 Physonemus Ciesterexsis, St. J. and W155
\& 8 Side view enlarged two dianeters, and ontine matural size; \(4 b\), front viow, enlargral two diameters; \(4 c, d\) e, transverse sections, enlarged two dimmeters. Chester limestove; Cbester, Illinois.
Fig. 5, 6. Drepanacayimes ueversite, itt. J. aud W
5 a. Side view of frament of spine, base restomed in outlino, anterior limit of interual cavity indreated by tho duttell line; \(5 b\), culargentut, slo wing tuberenlation of the auterior border; \(\bar{c} c\), enlargement of thbercles of middle ridge; \(5 d\), enlargement of tubercles posterior ritge ; \(5 e\), tmasversa section, posterior face restured in outline St. Lonis limestone; Alton, Iltheris.
6 a Latural view of small, wom spine, passibly refermblo to the above species, and trans. verse section of the sime. Samo lumizan, St Louis, Missouri.

(1)

\(\square\)
\(\square\)

\section*{PLATEXX.}

Xyintlacantius mrabilis, St. J. and W
.458
\(1 a\). Side view, natural size; \(1 b\), view from front, showing lisposition of tuberclos along the anterior margin, reduced to one-fourth natural size; 1 c, portion of posterior face, reduced to one-fourth natural size; \(1 d\), transverse section in upper part of the spine, partially restored: \(1 e\), similar scction near base, showing the walls of the pulp cavity distorted by pressure; \(1 f-l\), varions views of tubercles, oularged; \(1 f\), tuberc'e from ons of the midalle rows near top of spine; 1 g , from the third row near top: \(1 h\), large tubercle from one of the anterior rows in middle of the spine; \(1 i\), large transverso tnbercle near base, \(1 k, l\), small tubercles of middle rows near baso. Coal No. 4 or 5 , Fulton county, Illinois.

Fig. 2. Xvbtracantius Acinaciformis, St. J and W... 45
\(2 \alpha\). Side riew of spine, natural size, with enlargements of tubercles; \(2 b\), view of posterion face; \(2 c\), trabsverse section near middle of spine; \(2 d\), portion of anterior margin showiug arraugement of tubercles. Coal No. 5 ; Carlinville, Illinois.
3. Fragment of aumbletmined spine, enlarged. Middle Coal Measures; Dallas connty, Iowa.

\section*{PLATE XXI.}

Fig. 1-3 BATACANTILS stellatis (N. and W.sp.)... 470
1 a. Side view of an imperfect and worn spine, showing large tubercles in the upper portion of the posterior border, tbe spinoso thbereles of the midde and lower antcrior side, and eutline of pulp eavits ; 1 b , sketch of npper portion of the pesteriorside, showing arlwangement of tubercles; \(1 c\), transverse section; \(1 d\). enlargement of one of the large pesterior tubereles, seen from above and profio ontlinc; 1 e, anlarged sketch of tuberches of tho tateral faces. The original specineu figureal in Vol. II, Pl. 12, fis. 7 Geode bed of the Keokuk; Warsaw, Illinois
2 (t. Side vies of fragment of the midalle portion of a similar spino, 1 he tubereulation of the lateral surfaces nearly obsolete from alorasion, but showing the bases of the anterior inbercles; \(2 L\), sketeh of anterior face, sbowing disposition of tubercles; \& c, trausrersesection. Epper tish-bed Keeknk limestone; Kamilton, Illinois.
3 a. Side view of a larger specincu, lueserving the antcier tubereles entio; \(3 b, c, d\), enlargements of tuberclos fiom niddle regien near base, frem the inper portion near the posterior side, and one of tho large anteriertubereles, and section. Same herizon and lecality.
Fig. 1-8. Batacantile baculiforais, St. J. aud Wr
4 a. Side view ei a meally entile spine, showing the swellen extremity armed with strong tubercalose pucesses; \(4 \bar{b}\), enlargenucnt of ene of the large spinese tubercles of the upper oxtromity; \(4 c\), d, enlargement of tubereles from npper and middle porflon of the spine; \(4 e\), tubercles from the posterier portion; \(4 f\), transverso scetien. Keokuk limestone; Keokuk, Lows.
5 a. View of the anterior face of a fragment of a similar but worn specimen. Same honizon aud locality.
6 a. Sido vies of fragment of a large specimen; \(6 b, c, d\), pulargements of tubereles from the antelior, middle and posterior portions of the spine, and prefile entlines of the same; \(6 e\), transvelse secticu. La Grange, Missonit, in the same horizont.
? e. Side view of tragment of a small spine, shewing the base and outline of internal cias. ity. Samo horizon, St. Francisville, Missonri
8 a. Fragment of the npper extremily ef a large spine, probably referable to the above fiom. Same herizen, Nauvon, Illinois.

Fig. 9. Clenacantile PUGILNCIILA, St. J. and W.
9 a. View of postelion face of spine, twisted towarls the extremity so as to bing into View purtion of one ot tho latural faces, hase inperfect; \(9 b\), transvelse section; 9 c , enlargement of a section trom near the midalle of the spine, showing the elaracter of the ornancutation in the lateral faee. St. Louis limestone; St. Lenis, Missouri. 10 c , section of the posterior face near the middle, slighty cularged; 10 d, enlarge. ment of porifun of lateral fitee, showing the disposition of tubereles and faint costa. Witly protile outlines of tuberdes; \(10 e\), 1 ransterse section near middlo of spine, natural size ambenarged. St. Louis limestone; St. Leuls, Missouri.

Fig. 11. Fragment of an maletermincd ichtlyodorulite (?). Cpper Pnrlington limestone; Lonisa counts゙, Iowa.

\section*{PLATEXXII.}
Fig. 1-5. Embmachnothes McCoyanes, St. J. and W
l'age.\(1 a\). Side viow of nearls entire spine, enlarged two diameters; \(1 b, c, d\), enlargement of tubercles from varions parts of tho anterior prong. St. Lonis linestone; St. Lonis, Missonri
\(\approx\) a Side riew of an imperfect worn specimen, exhibiting perfcet transerge sections of either proug, as shown in fig 2b,c, d. Same hoizon, A'ton, Illinois.
Left side of posterior prong, eularged two diameters, showing costation and dentichlate posterior border' \(3 b\), antwior border, fohled longitudinally as thongh by pressure; 3 o enlurgement of postering border, showing form and arrangement of nlenticles, ste; \(3 d\), enlargement of two denticles, seen from above. Same horizon amb locality.
4a Side view of posterior spine, enlarged one-lalf, showing more willely spaced denticles of posterior border, and tuberenlation of anterior intercostal space; \(4 b\), transversesection, compressed, and, \(4 c\), restored ontline: \(4 d\), side and viow from above of one of the posterior denticles. Same horizon, St. Lonis, Missouri
5 a. Section from a large anterior spine, enlarged two diameters, slowng crowded arrangement of tubereles in sonse specimens. Same borizon and locality.
Fig. 6.

Side viow of pertect spine, enlargel two diameters; \(7 b\), enlargenent of portion of extremity; \(\boldsymbol{i c}\), similar embrgement of section fom lower gart of spine, showing lateral face: \(i d\), similax enlargement of a section sluwing the posterior face; \(7 e, f, g, h i\), ealargements shinwing diferent views of the large anteriur dentiches near the summit of the spine; \(7 k\), tramsverse section, enlarged. St Lonis limestone; St Lonis. Missomri.
\(8 a\). Sketch of a small spme, showing the anterior aspect, and latorally expandenf flattencd Lase: \(8 L\), lateral view, ontline; \(8 c\), transperse section across tho insertal bise. Same horizon and locality.
3 a View of a framment of a large spine, showing portion of the posterior face, the contral cavity and posterior face of the a panded base; ! \(b c d\), transverse suctions at points indicated by correspoming letters in pecedng figure. Samo horizous and locality.
Fig. 10, 11.
10 \(a\). Side view of a metmm-sized, hearly perfect spine, enlarged two diancters; \(10 b\), en. largement of tubercles fiom near the mildle of the spine; 10 e , transerge sec. tions mar middle aml across the timsversely capanded bise, the upper shle being the foaterior or concave bortler; euldrged two ditucters. St. Lonis lane stone; sit Louls, Missonhi.
Lateral view of a frament showing the urper extremity of a large specimen, chlarged two diameters: 11 J , transerse section of ont of the large apical denti-
 promincuce, the upper edge corrosponding to the posterior margiu. Samo hosizon and jocality.

\section*{PLatexXII-Continued.}

Fiy 12

Firr. 13.
\(13 a\).

Fig. 14.
\(14 a\).

Fig 15.
\(15 a\).

Fig. 16.
\(16 a\). View of tho anterior (?) margin of a fragment of the upper portion of a spine ; \(16 \boldsymbol{b}, \boldsymbol{c}\), transrerse section. Keokırk limestone: Warsaw, Inlinuis.

\(?\)
i
\[
\theta
\]

.
\[
1
\]

\section*{PLATE XXII.}
PAGE.
Fig. 1. Meterocrinus crassus 493
View of a nearly perfect example of this fine species, showing the arms to their extremities.
Fig. 2. Montolorsis, cast-undet.Fig. 3. Cyrtoceras Carroldensis496
Fig. 4. A mbonichia Illinoiensis 495
4 a. Profile riew, showing the beak.4 b. Side view of a nearly complete valve.
Fig. 5. Subulites nflatus 495
Fig. 6. Asamiles vigilans 497
View of a rolled specimen showing glabella.
Fig. 7. Gontorhora?
Cast in magnesian limestone from the Trenton beds of Carroll county.
Fig. 8. Honochinus angustatus 492
Fig. 9. Modiolopsis subnasuta 494
9 a. Side fiew of a natural cast.9 b. Dorsal view of the same.

7. SIITRGAN.

MISTRILANKBTVIS.

\section*{PLATE XXIV.}
Fig. 1. Receptactlites formost
PAGE 500
Side view of specimen, natural size.
Fig. 2. Eicalyrtochines (sp.undet.)2. View of the summit from a natnral cast in magnesian limestone.\(2 a\). Side view of the same specimen.
Fig. 3. Illent's (Bramastus), sp. undetFig. 4.Sphemexochus Romingeri510
4. Glabella seen from above; 4 a, side view of the saine.
Fig. 5. Stricklandinta deformis. 5025. View of ventral valve; \(5 a\), viow of dorsal valve.5 b. Profile view of the same.
Fig. 6. Pirmamoceras Brronensis 506
Side riew of a nearly entire internal cast
Fig. 8. Orthoceras angulatum 5048. View of specimen showing the surface markings.8 a. Section showing the position of the siphuncle.

上2m
yinim
En

\section*{PLATE XXV.}
PAGR.
Fig. 1. Lituites Graftonensis 507
Fig. 2. Astyloriongia premorsa? 499
\(2 a\). View of summit ; \(2 b\), side riew.
Fig. 3. Eucalyptocrinus magnus 501
Basal riew of an arerage-sized example.
Fig. 4. Illenus (Bumastus) Griftonensis 508
Tiew of the glabella seen from above.
Fig. 5. Lichas Boltoni. 508
View of a nearly perfect pygidium.
Fig. 6. Cybtoceras dambanus? 506\(6 a\). Side view of the specimen.ti b. Section showing the position of the siphuncle.

\section*{PLATE XXVI.}Page.
Fig. 1. Orthoceras medulhare? 504
Fig. 2. Orthoceras cribristriatum 503
Fig. 3. Orthocrias rectum 504
Fig. 4. Orthoceras Unionensis 505
Fig. 5. Onthoceras Jolletends 505

18
\[
2=0
\]

\section*{PLATEXXVII}

\footnotetext{
vage.
Fig. I \(a\). Nautilư (Discles) onNatu's ? Var. Amplds
1 a. View of the ventral or outer side of the curve of an imperfect internal cast, (one-half nat. diameter), showing the curves of the septa in crossing the periphery.
1b. A side view of same. Neutilus (Discites) ornatus? var. amplus. Mock and Worthen, 1865. Proc. Philad. Acad. Nat. Sci., p. 265.

Fig. 2. Gyroceras constmetum.
A side view of imperfect internal cast. Two views of this same fossil were given on plate 12 of vohme III; but the sile view was not given there for wint of room, and is adder here to complete the illustration of the spocios as fiar as can be done at this time.
}

\section*{}

\section*{PLATE XXVIII.}
Fig. 1. Orthoceras Winchellif 512PAGR.
Fig. 2. Phragmoceras Walchir. 5112 a. Side view of an imperfect internal cast, distorted by accidental pressure ; reduced tohalf the natural diameter.2 b. Another view of same.
Fig. 3. Aviculopecten Untonensis. 511
View of a left valve, natural size.

\section*{}

\[
8111
\]

\section*{PLATE X XIX.}
Page.
Fig. 1 Scaphochinus uaicus 519Specimen showing the ventral tube with its anal opening.
Fig. 2, \(3 . \quad\) Poteriocrinus Corexi 5162. Specimen showing ventral tubo and anal opening.\(3,3 a\). Opposite sides of a nearly perfect exanple showing the arms nearly entire.
Fig. 4. Strabathocrinus robistus. 514
View of a nearly perfect example.
515
Fig. 5. Barycrinus striatus
\(5 a\). View of anternor side; \(5 b\), basal view ; \(5 c\), view of the anal side.
Fig. 6. Poteriocrinus Hoveyf 516
View of a nearly perfect example showing the arms and ventral tube.
Fig. 7. Dichockinus ficus 515
Specimen witl the arms attached.
Fig. 8. Dorderinus Kelloggl 513
8 a. View of the anal side.
\(8 b\). View of the anterior side
c. View of the crown.

为

\section*{PLATEXXX.}
page.
Fig. 1. Sirmper suborbiculanis 523\(1 a\). Dorsal view ; \(\mathbf{1} b\), view of ventral valve.1 d. Profile view showing the beaks.
Fig. 2. Silmifer neglectus 523\(2 a\). Profile view; \(1 c\), front view.
Fig. 3. Spimfer pastigatus 521
3 a. Dorsal view showing cardinal area
3 b . View of the ventral valve.
Fig. \(4 . \quad\) Pinna subspatulata 524
Fig. 5. Myalisa Keokuk 524View of a left valve.

\section*{PALTEXXXI.}
PAGE
Fier 1 Poteriocininus riroboscidialis 518Side view of the anal side.
Fig \(2-3\) Poterbochinus Van horset 517
View of the anal sile and ventral tube. 3. View of another example with armsand colnmo.
Fig. 4 Pextremites (Tricelocrinus) obliquatus 521
\(4 a\).thl \(4 b\). Opposite views of same individual
Fig 5 Onychocrinus magnés 520
Fig \({ }^{6}\) Scarhocrinus abvommis 519
Fig iView of a very large and noally perfect example, showing the long ventral tubeand the arms noarly to their cxtremities.
Fig 8,9 Pevtrmmites (Thicheocrinus) Varsouviengis. 521
3. Small individal from Monroe conaty, In9. A larger example from Warsaw, showing the piunula and a portion of the columu.

\[
-1 x^{-1} 8
\]

\section*{PLATEXXXII.}
PAGE
Fig. 1. Eupacitychinus Cbaigh 527
1 a. Basal view of a destorted base.
1. Side view, showiug the arms, etc.
Fig, 2. Eupacimerinuts Basetti 528
2. Auterior view.
2 a. View of the anal side.
Fig. 3. Poterrorrinuts Lasadjefisis 526
3. Anal sido; \(3 a\), View of the opposite side.
Fig. \(4 . \quad\) Ciathoxonia mistorfa 5264 and 4 a. Viows of two mdividuals.
Fig. 5. Chetetes cabbonaria 5:2
Fig. 6. Axornyllum rubrs 525
6. Sille view of a short specimen.
6 a. View of the chalice and columella.6 b . Side view of a longer specimen.
Fig. 7. Axormylaum infundibulum 525
7 a. View of the chalice.
7. Side view of an old specimon.
7 b. A more conical example, possibly distinct.

Hin
蹅

\section*{PLATEXXXIII.}
Fig. 1. Nauthels (Chyproceras) capax. 53:1. Dorsal view ; \(1 a\), side view.
Fig. 2. Nautili's (Discites) Highlandensis. 531
Fig. 3. Aviculonecten. (spec. undet.)View of the interior of a right valve.
Fig. 4. Conocardina obliquem 529
4 a Dorsal view ; 4. sicie view.Fig. 5. Pleurophorus ? angulatus.529
Fig. 6. Carbonarca gibbosa 531
6 View of the erenulated hinge line.
6 a. Antelior view showing the beaks.
6 b. Lateral view

\section*{\(=\)}
(H)
```


[^0]:    Foet.

[^1]:    Ft.
    
    Thin-betrled sandstono, 2 to 8 inches......................................................................................... . 8
    
    Section on Indian ereek, three miles sonth of Lawrenceville :
    
    Argiltacenus sha'c, with iron bahds................................................................................... 25
    
    
    Bhaish mandstoнio in the bed of tho creok .............................................................................. ?"

[^2]:    F't. In

[^3]:    
    
    3, Blue shate with caleareous norlales......................................................................................... 3 to 4
    4. In ack hammated shato exteuling to the creek level .................................................................... 4

[^4]:    Drift day and soil.
    56
    Arnilluceous shale................................................................................................................. 30
    Limestone................................................................................................................................... 0 . 6
    Coal .................................................................................................................................... 3

[^5]:    * This is equivalent to No. 47, of the general section of the Coal Measures, on p. 2, et seq.

[^6]:    No. 1. Corered slope of loess and drift.
    Ft. In

    $$
    \text { No, 2. IIeary-bediled sandstone. .................................................................................. } 15
    $$

    $$
    \text { No. 3. Slope with partial outerops of shale.................................................................. } 25
    $$

    $$
    \text { No. 4. Silicious shale........................................................................................................ } 8
    $$

    $$
    \text { Fo. 5. Bine argillaceous shale, with bands of fossiliferous iron ore at the bottom....... } 4
    $$

    $$
    \text { No. 6. Bituıninous slale...................................................................... } 6 \text { in. to } 0 \quad 8
    $$

    $$
    \text { No. 7. Calcareous slaalc, and shaly bituminons limestone.......................................... } 0 \text { to } 3
    $$

    $$
    \text { No. 8. Blatk shate. ............................................................................................ } 6 \text { in. to } 1
    $$

    $$
    \text { Nio. 9. Green clay shales, or fire-clay.................................................................. . . } 1 \text { to } 2
    $$

    $$
    \text { No. 10. Sandy shales and sandstone in rirer bed....................................................... } 10 \text { to } 12
    $$

[^7]:    Feet-
    Sandstone, partly in remular berls, and partly masslve................................................................ 25
    Pebbly conglomerate, with fragments of coal and mineral charcoal........................................ 2 to 4
    Black laminated shale, with concretions of bituminous limestone........................................ 3
    Dove-eolored clity slate, with fossil furns.................................................................................. 2 to 3
    Shaly sandstone, appearing some distance below......................................................................... 3 to 4

[^8]:    It ln.

[^9]:    
    Impure limestone.............................................................................................................. 1 . 1 .
    Blue and brown sandy shales................................................................................ . . 25 to 30

[^10]:    * These two counties and the county of Livingston were assigned to Mr. M. C. Freeman in the spring of 1866 , and he was paid in full for surveying and reporting on them, but failing to obtain any report from him, thongh repeatedly promised, and after a delay of eight sears wating for hm to fultil his obligations, I was compelled, when all the rest of the counties had been reported on. and this volme was otherwise ready for the press, to go into these counties myself and make such examiuations as the limited time and unfarorablo season wonld permit.
    d. H. WORTHEN.

[^11]:    1. Jrift of sand and clay.
    
    2. Gray shales with ironstone concretions abounding in some very nice fossils, including Leda arata, Solenomya radiata, Myalina, resemhling M. meliniformis, Schizodus near S. Rossieus Allorisma, Aviculopecten and Edmondia;5
[^12]:    Sue section of shaft aud boring at Vandaha, at the close of this chapter.

[^13]:    1. Ferraginous limestono containing Pinna per-acuta, Bryozoa, Prod. Nebrascensis, and Synacladia biserialis.

    Ft. In.
    2
    2. Nodular drab shale, soou becoming a firm bed of rock ......................................................
    3. Rougli and irregulaty bed lod limestone, lower part a pretty bluish.gray; has a few small drusy carities with erystals of cale spur; fossils are Athyris subtilita, crinoid stems,
    Prod. longispinus, Aviculopecten carboniferns, Terebratula bovidens, and Spirifer cameratus

[^14]:    2. Ash-brown clay. ......................................................................................................... 8
    3. Brown clay and small rounded pebbles .................................................................. 15
[^15]:    *Note. - I also believe them equivalent to Nos. 162 to 166 of my Missouri river section, published in Vol. 2, No. 2, Trans. St. Louis Acad. Sci., St. Louis, 1866. The limestoues of the North and South Fork of Sanganon closely resemble, both in lithological appearance and fussils, beds in the northern part of Cass county, and those near Randolph, in Clay county, Missouri.

[^16]:    Ft. In.

[^17]:    1. Browu ash-clay, a few pebhles in the lower part.......................................................................... 20
    2. Bituminous coal, the uppre one font las thin hands of clay slable-the lower is good coal.... 3
    3. Upper part fire clay; in middle are buti nodules of arenaccons limestone.......................... . . 16
[^18]:    1 Brown and luff clays and sands, a few small springs at tho bottom $!$
    
    3. Blue clay and bowhers ........................................................................................................ 8

[^19]:    n. Ft . In

    1. Sandstone and sandy shale, upper part gray, middle brown with plants. .68
    2. Bituminous shale aud septaia. ................................................................................................ 6
    3. Dark clay slialo .................................................................................................................... 4
    4. Shales and nodular limestone, fossils.................................................................................. $1_{\frac{1}{2}}$
    5. Iblue and olive shales............................................................................................................... 5
    6. Gray sandstone and sandy shalo......................................................................................... 26
    7. Dark slaale and thin beds of gray limestone ....................................................................... 5
    
    
    8. Mostly luff asandstono . . . . ............................................................................................. 12
    9. Clay and calcareons slates, fossils .................................................................................... 20
[^20]:    3. Hiue clay shalcs.
[^21]:    * Note.-Mr. Wm. A. Wilson of this county, living ton miles sonth of Decatur, struck gas on his farm in the autum of $18 \% 1$, at a depth of 45 feet. It camo from immediately beneath the hard pan and was fomd at seven differeut localities on the place, and the flow appearing to be constant he utilized it in furnishing his dwelling house with both light and fuel. It comes from a bed of guick sand beneath the hard pan, which has becn penetrated to the depth of fifteen feet withont reachiug the botton. When last heard from sume eightecn months after its discovery, the gas still continned to flow without any apparent decrease in the quantity.

    A quater of a mile east of this gas well another horing was made, which at a depth of abont fifty feet passed through a bed of black peaty soil some four or fivelect iu thekuess, but wo gas was fomul. A. II. W.

[^22]:    * Since this report was written I risitor this locality in company with (f. E. Sklderes, Esur, of Bowlesville, and tracel the blufs carclully from battory rock to the month of tho Salime. From this examination I am contident there are two seams of coal above the battory rock coal onteropping between theso points, which cither represent eats Non. 2 and 3 of the general suction riven on pase 2 et serf. of this volnme, or else they are local seans that have not been seen clsewbere.

[^23]:    "Specific grasity, 1.047. 100 pasts of brine contains 7.2 per cent. of dry matter.
    The brine contains in 100 parts: The resulting salt contains in 100 parts:

    | Chlonide of sodium (common salt) | 6. 2131 | 8677 |
    | :---: | :---: | :---: |
    | Chlorite of calcium. | 3996 | 555 |
    | Chloride of maguesium. | 2124 | 295 |
    | Sulphate of lime. | . 3448 | 4.79 |
    | Water. | $\begin{array}{r} 7.1990 \\ 92.8000 \end{array}$ | 97.06 |

    Traces of bromide of sodium, chloride of potassium, todido of sodium, and chloride of iron."
    The "Saline" brine is of the same strength as the Kanawha, and requires seventy-five gallons to make a bushel (fifty pounds) of salt. I have no analysis of the latter brine for comparison, but I hare been informed that it contains more chloride of calcium and less sulphate of lime. The sulphate of lime in the "Saline" brine is a souree of much aunoyance, and large sums of money were expended by Messrs. Temple \& Castles before their efforts to get rid of it were crowned with success. They are now, however, manufacturing an art:cle of salt that ranks equal to the Kanawlia in purity and antiseptic properties.

[^24]:    * Note.-Nrom an examination of the Coal Measures in Williamson county, which joins Saline on the west, I fomd all the lower coals from No. 2 to No. 7 well derelopet, from which it would seem that the conchusion above expressed is not well anthenticated, for the coal beds in the vicinity of Stone Fort canot powibly belong higher in the series than coals No. 2 or 3 of the general section. A. H. W.

[^25]:    * Pois. Foss. du Vieux Grès-rouge, p. 124, Tab. 33, figg. 29, 30, 31.

[^26]:    - Disc. de queques restes de Poissons Fossileo, trouvès dans le calcare carbonifère du Gouveruemeut de Toula. l'ar Hemadius Romanowaky ; Moscow, 1864.

[^27]:    * Alphatetical Catalogne of the Type Speeimens of Fossil Fishes in the Collection of the Eatl of Finniskillen, at Florence Court. Geol. Mag., vol. vi, Dec., 1869.

[^28]:    * Desce quelques restes de Poissons Fossiles, tronvis dans le ealcaire carlonitere de Gouvernemont de 'Tonla. L'ar Hemadius Romanowsky. Moscow, Imp. I'Un. Imperiale, 1864.

[^29]:    * The right posterior bayserms to bo an exception to this statement, as it rppectors wolave only three ratials inchuling tho first, with the secoud one nearly as large as the finst. Its phata, however, are not woll perserved.

[^30]:    * As the speclmen is imperfe-t here, it is possible these sutures may not reach the auterior margin in front.

